organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Hydr­­oxy-1,1-dioxo-2H-1,2-benzo­thia­zin-3-yl)(3-meth­oxy­phen­yl)methanone

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 11 March 2010; accepted 29 March 2010; online 2 April 2010)

In the title compoud, C16H13NO5S, the heterocyclic thia­zine ring adopts a twist boat conformation with the S and N atoms displaced by 0.339 (5) and 0.322 (4) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. An intra­molecular O—H⋯O inter­action is present, forming a five-membered ring. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which result in chains along the b axis.

Related literature

For the biological activity of 1,2-benzothia­zine derivatives, see: Ikeda et al. (1992[Ikeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoht, T. (1992). Bioorg. Med. Chem. Lett. 2, 709-714.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]); Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171-1177.], 1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]). For comparison bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO5S

  • Mr = 331.33

  • Monoclinic, P 21 /c

  • a = 8.1866 (3) Å

  • b = 7.2431 (3) Å

  • c = 25.2452 (9) Å

  • β = 95.5869 (18)°

  • V = 1489.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.962, Tmax = 0.976

  • 5610 measured reflections

  • 3399 independent reflections

  • 2795 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.147

  • S = 1.09

  • 3399 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.92 (3) 1.70 (3) 2.534 (2) 148 (3)
N1—H1N⋯O4i 0.84 (3) 2.13 (3) 2.886 (3) 151 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazine dioxide derivatives have been extensively explored in the past few decades since their very first derivatives were found to be potent anti-inflammatory and analgesic agents (Lombardino et al., 1971). Benzothiazines derivatives are now known to be anti-allergy (Ikeda et al., 1992), anti-inflammatory (Lombardino et al., 1973), bactericidal (Zia-ur-Rehman et al., 2006), etc. In continuation of our research on benzothiazine compounds (Ahmad et al., 2010, Siddiqui et al., 2007), we report the synthesis and crystal structure of the title compound (I) in this paper (Fig. 1).

Bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a twist boat conformation with atoms S1 and N1 displaced by 0.339 (5) and 0.322 (4) Å , respectively, on the opposite sides from the mean plane formed by the remaining ring atoms.

The structure is stabilized by N—H···O type intermolecular hydrogen bonds which result in one dimensional chains of molecules extended along the b-axis; intramolecular interactions O3—H3O···O4 are also present resulting in five membered rings (Table 1 and Fig. 2).

Related literature top

For the biological activity of 1,2-benzothiazine derivatives, see: Ikeda et al. (1992); Ahmad et al. (2010); Lombardino et al. (1971, 1973); Zia-ur-Rehman et al. (2006); Siddiqui et al. (2007). For comparison bond lengths, see: Allen et al. (1987). For related structures, see: Siddiqui et al. (2008)

Experimental top

2-[2-(3-Methoxyphenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (5.0 g, 15.1 mmoles) was added to a solution of sodium metal (2.4 g) in dry methanol (50 ml). The mixture was subjected to reflux for half an hour. The contents of the flask were cooled to room temperature and then they were poured on ice cold HCl (50 ml, 5%). Light yellow precipitates of the title compound formed which were filtered off and washed with excess distilled water. Crystals suitable for XRD were grown in chloroform and methanol mixture (4:1). Yield = 3.7 g, 74%; m.p. = 425-427 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively; the H-atoms bonded to N and O were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atom). The final difference map was essentially featurless.

Structure description top

Benzothiazine dioxide derivatives have been extensively explored in the past few decades since their very first derivatives were found to be potent anti-inflammatory and analgesic agents (Lombardino et al., 1971). Benzothiazines derivatives are now known to be anti-allergy (Ikeda et al., 1992), anti-inflammatory (Lombardino et al., 1973), bactericidal (Zia-ur-Rehman et al., 2006), etc. In continuation of our research on benzothiazine compounds (Ahmad et al., 2010, Siddiqui et al., 2007), we report the synthesis and crystal structure of the title compound (I) in this paper (Fig. 1).

Bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a twist boat conformation with atoms S1 and N1 displaced by 0.339 (5) and 0.322 (4) Å , respectively, on the opposite sides from the mean plane formed by the remaining ring atoms.

The structure is stabilized by N—H···O type intermolecular hydrogen bonds which result in one dimensional chains of molecules extended along the b-axis; intramolecular interactions O3—H3O···O4 are also present resulting in five membered rings (Table 1 and Fig. 2).

For the biological activity of 1,2-benzothiazine derivatives, see: Ikeda et al. (1992); Ahmad et al. (2010); Lombardino et al. (1971, 1973); Zia-ur-Rehman et al. (2006); Siddiqui et al. (2007). For comparison bond lengths, see: Allen et al. (1987). For related structures, see: Siddiqui et al. (2008)

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. A unit cell showing molecular packing of the title compound; hydrogen bonds are represented by dashed lines. The H-atoms not involved in H-bonds have been excluded for clarity.
(4-Hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)(3-methoxyphenyl)methanone top
Crystal data top
C16H13NO5SF(000) = 688
Mr = 331.33Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3461 reflections
a = 8.1866 (3) Åθ = 1.0–27.5°
b = 7.2431 (3) ŵ = 0.24 mm1
c = 25.2452 (9) ÅT = 295 K
β = 95.5869 (18)°Block, yellow
V = 1489.84 (10) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3399 independent reflections
Radiation source: fine-focus sealed tube2795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1010
Tmin = 0.962, Tmax = 0.976k = 99
5610 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.051P)2 + 1.1474P]
where P = (Fo2 + 2Fc2)/3
3399 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H13NO5SV = 1489.84 (10) Å3
Mr = 331.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1866 (3) ŵ = 0.24 mm1
b = 7.2431 (3) ÅT = 295 K
c = 25.2452 (9) Å0.16 × 0.12 × 0.10 mm
β = 95.5869 (18)°
Data collection top
Nonius KappaCCD
diffractometer
3399 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2795 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.976Rint = 0.031
5610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.38 e Å3
3399 reflectionsΔρmin = 0.38 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30794 (7)0.18400 (11)0.10208 (2)0.0519 (2)
O10.1907 (2)0.3174 (4)0.08123 (8)0.0825 (8)
O20.2664 (3)0.0070 (3)0.09981 (8)0.0780 (7)
O30.7829 (2)0.0710 (3)0.18344 (8)0.0532 (5)
H3O0.772 (4)0.058 (4)0.2194 (12)0.064*
O40.6461 (2)0.0579 (3)0.26917 (7)0.0502 (4)
O50.2363 (2)0.2043 (3)0.40084 (7)0.0639 (6)
N10.3602 (2)0.2363 (3)0.16357 (7)0.0405 (4)
H1N0.350 (3)0.347 (4)0.1721 (11)0.049*
C10.4921 (3)0.2116 (3)0.07263 (9)0.0443 (5)
C20.4907 (4)0.2573 (4)0.01952 (10)0.0608 (7)
H20.39190.28030.00080.073*
C30.6372 (4)0.2684 (5)0.00311 (11)0.0669 (8)
H30.63740.29790.03900.080*
C40.7820 (4)0.2361 (5)0.02714 (12)0.0686 (8)
H40.88020.24420.01160.082*
C50.7853 (3)0.1919 (4)0.08025 (11)0.0561 (7)
H50.88500.17030.10020.067*
C60.6392 (3)0.1796 (3)0.10413 (9)0.0415 (5)
C70.6420 (3)0.1356 (3)0.16109 (9)0.0396 (5)
C80.5064 (3)0.1554 (3)0.18882 (8)0.0382 (5)
C90.5114 (3)0.0999 (3)0.24377 (9)0.0407 (5)
C100.3583 (3)0.0867 (3)0.27107 (9)0.0399 (5)
C110.3629 (3)0.1488 (3)0.32355 (9)0.0433 (5)
H110.45830.20050.34030.052*
C120.2229 (3)0.1324 (4)0.35052 (9)0.0485 (6)
C130.0846 (3)0.0446 (4)0.32655 (11)0.0550 (7)
H130.00780.03080.34490.066*
C140.0844 (3)0.0224 (4)0.27528 (11)0.0529 (6)
H140.00760.08450.25980.063*
C150.2183 (3)0.0011 (3)0.24657 (10)0.0469 (5)
H150.21500.03950.21150.056*
C160.0876 (4)0.2197 (6)0.42631 (13)0.0785 (10)
H16A0.10890.28710.45900.094*
H16B0.04800.09850.43370.094*
H16C0.00630.28370.40320.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0374 (3)0.0828 (5)0.0356 (3)0.0035 (3)0.0039 (2)0.0057 (3)
O10.0477 (11)0.150 (2)0.0493 (11)0.0280 (13)0.0017 (8)0.0181 (13)
O20.0722 (14)0.0964 (17)0.0683 (13)0.0391 (13)0.0216 (11)0.0321 (12)
O30.0387 (9)0.0667 (12)0.0545 (10)0.0061 (8)0.0054 (8)0.0077 (9)
O40.0439 (9)0.0615 (11)0.0446 (9)0.0019 (8)0.0011 (7)0.0117 (8)
O50.0547 (11)0.0942 (16)0.0447 (10)0.0029 (10)0.0150 (8)0.0049 (10)
N10.0389 (10)0.0488 (11)0.0340 (9)0.0058 (9)0.0049 (7)0.0035 (8)
C10.0439 (12)0.0530 (14)0.0371 (11)0.0021 (10)0.0091 (9)0.0066 (10)
C20.0648 (17)0.080 (2)0.0387 (12)0.0017 (15)0.0090 (12)0.0008 (13)
C30.082 (2)0.079 (2)0.0431 (13)0.0001 (17)0.0238 (14)0.0016 (14)
C40.0667 (18)0.085 (2)0.0598 (17)0.0013 (16)0.0357 (15)0.0012 (16)
C50.0465 (14)0.0649 (17)0.0596 (15)0.0009 (12)0.0182 (12)0.0007 (13)
C60.0422 (12)0.0427 (12)0.0411 (11)0.0013 (10)0.0112 (9)0.0045 (9)
C70.0359 (11)0.0392 (11)0.0438 (11)0.0000 (9)0.0051 (9)0.0015 (9)
C80.0367 (11)0.0422 (11)0.0357 (10)0.0031 (9)0.0032 (8)0.0006 (9)
C90.0429 (12)0.0388 (11)0.0404 (11)0.0004 (9)0.0040 (9)0.0012 (9)
C100.0414 (12)0.0406 (11)0.0380 (11)0.0027 (9)0.0053 (9)0.0060 (9)
C110.0399 (12)0.0490 (13)0.0411 (11)0.0017 (10)0.0043 (9)0.0062 (10)
C120.0480 (13)0.0568 (15)0.0417 (12)0.0070 (11)0.0096 (10)0.0082 (11)
C130.0397 (13)0.0709 (18)0.0553 (15)0.0020 (12)0.0093 (11)0.0165 (13)
C140.0392 (12)0.0593 (16)0.0585 (15)0.0052 (11)0.0035 (11)0.0105 (12)
C150.0489 (13)0.0491 (13)0.0418 (12)0.0015 (11)0.0002 (10)0.0061 (10)
C160.069 (2)0.106 (3)0.0654 (19)0.0085 (19)0.0307 (16)0.0085 (18)
Geometric parameters (Å, º) top
S1—O21.425 (2)C5—C61.394 (3)
S1—O11.426 (2)C5—H50.9300
S1—N11.6145 (19)C6—C71.471 (3)
S1—C11.756 (2)C7—C81.377 (3)
O3—C71.319 (3)C8—C91.441 (3)
O3—H3O0.92 (3)C9—C101.491 (3)
O4—C91.257 (3)C10—C151.394 (3)
O5—C121.367 (3)C10—C111.396 (3)
O5—C161.436 (3)C11—C121.394 (3)
N1—C81.426 (3)C11—H110.9300
N1—H1N0.84 (3)C12—C131.385 (4)
C1—C21.380 (3)C13—C141.382 (4)
C1—C61.396 (3)C13—H130.9300
C2—C31.381 (4)C14—C151.382 (3)
C2—H20.9300C14—H140.9300
C3—C41.366 (4)C15—H150.9300
C3—H30.9300C16—H16A0.9600
C4—C51.376 (4)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
O2—S1—O1119.57 (16)C8—C7—C6122.5 (2)
O2—S1—N1107.85 (12)C7—C8—N1119.92 (19)
O1—S1—N1107.56 (13)C7—C8—C9120.8 (2)
O2—S1—C1107.77 (12)N1—C8—C9119.30 (19)
O1—S1—C1109.96 (13)O4—C9—C8120.0 (2)
N1—S1—C1102.85 (11)O4—C9—C10118.9 (2)
C7—O3—H3O107.2 (19)C8—C9—C10121.1 (2)
C12—O5—C16116.8 (2)C15—C10—C11120.6 (2)
C8—N1—S1117.75 (15)C15—C10—C9121.0 (2)
C8—N1—H1N112.5 (19)C11—C10—C9118.1 (2)
S1—N1—H1N116.6 (19)C12—C11—C10119.2 (2)
C2—C1—C6121.2 (2)C12—C11—H11120.4
C2—C1—S1120.8 (2)C10—C11—H11120.4
C6—C1—S1117.92 (17)O5—C12—C13124.7 (2)
C1—C2—C3119.4 (3)O5—C12—C11115.2 (2)
C1—C2—H2120.3C13—C12—C11120.1 (2)
C3—C2—H2120.3C14—C13—C12119.8 (2)
C4—C3—C2120.0 (3)C14—C13—H13120.1
C4—C3—H3120.0C12—C13—H13120.1
C2—C3—H3120.0C15—C14—C13121.3 (2)
C3—C4—C5121.2 (3)C15—C14—H14119.3
C3—C4—H4119.4C13—C14—H14119.3
C5—C4—H4119.4C14—C15—C10118.8 (2)
C4—C5—C6120.0 (3)C14—C15—H15120.6
C4—C5—H5120.0C10—C15—H15120.6
C6—C5—H5120.0O5—C16—H16A109.5
C5—C6—C1118.2 (2)O5—C16—H16B109.5
C5—C6—C7120.3 (2)H16A—C16—H16B109.5
C1—C6—C7121.6 (2)O5—C16—H16C109.5
O3—C7—C8122.3 (2)H16A—C16—H16C109.5
O3—C7—C6115.16 (19)H16B—C16—H16C109.5
O2—S1—N1—C866.4 (2)C6—C7—C8—N15.7 (3)
O1—S1—N1—C8163.37 (18)O3—C7—C8—C92.0 (4)
C1—S1—N1—C847.3 (2)C6—C7—C8—C9176.1 (2)
O2—S1—C1—C294.1 (3)S1—N1—C8—C739.2 (3)
O1—S1—C1—C237.8 (3)S1—N1—C8—C9142.49 (19)
N1—S1—C1—C2152.2 (2)C7—C8—C9—O410.3 (4)
O2—S1—C1—C683.7 (2)N1—C8—C9—O4167.9 (2)
O1—S1—C1—C6144.4 (2)C7—C8—C9—C10168.2 (2)
N1—S1—C1—C630.0 (2)N1—C8—C9—C1013.6 (3)
C6—C1—C2—C31.1 (4)O4—C9—C10—C15133.0 (2)
S1—C1—C2—C3176.6 (2)C8—C9—C10—C1545.5 (3)
C1—C2—C3—C40.6 (5)O4—C9—C10—C1141.8 (3)
C2—C3—C4—C50.1 (5)C8—C9—C10—C11139.7 (2)
C3—C4—C5—C60.1 (5)C15—C10—C11—C123.1 (4)
C4—C5—C6—C10.5 (4)C9—C10—C11—C12177.9 (2)
C4—C5—C6—C7178.9 (3)C16—O5—C12—C1312.1 (4)
C2—C1—C6—C51.1 (4)C16—O5—C12—C11169.3 (3)
S1—C1—C6—C5176.7 (2)C10—C11—C12—O5177.2 (2)
C2—C1—C6—C7178.4 (2)C10—C11—C12—C134.2 (4)
S1—C1—C6—C73.8 (3)O5—C12—C13—C14179.8 (2)
C5—C6—C7—O314.2 (3)C11—C12—C13—C141.7 (4)
C1—C6—C7—O3166.3 (2)C12—C13—C14—C151.9 (4)
C5—C6—C7—C8167.5 (2)C13—C14—C15—C103.0 (4)
C1—C6—C7—C811.9 (4)C11—C10—C15—C140.4 (4)
O3—C7—C8—N1176.2 (2)C9—C10—C15—C14174.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.92 (3)1.70 (3)2.534 (2)148 (3)
N1—H1N···O4i0.84 (3)2.13 (3)2.886 (3)151 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO5S
Mr331.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.1866 (3), 7.2431 (3), 25.2452 (9)
β (°) 95.5869 (18)
V3)1489.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.962, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5610, 3399, 2795
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.147, 1.09
No. of reflections3399
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.92 (3)1.70 (3)2.534 (2)148 (3)
N1—H1N···O4i0.84 (3)2.13 (3)2.886 (3)151 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIkeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoht, T. (1992). Bioorg. Med. Chem. Lett. 2, 709–714.  CrossRef CAS Web of Science Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171–1177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds