organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diyl bis­­(pyridine-4-carboxyl­ate)

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain, and dDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 16 March 2010; accepted 28 March 2010; online 2 April 2010)

The title compound. C15H14N2O4, (I), has a gauche–gauche (O/C/C/C—O/C/C/C or GG) conformation and is a positional isomer of propane-1,3-diyl bis­(pyridine-3-carboxyl­ate), (II). The mol­ecule of (I) lies on a twofold rotation axis, which passes through the central C atom of the aliphatic chain, giving one half-mol­ecule per asymmetric unit. There is excellent agreement of the geometric parameters of (I) and (II). The most obvious differences between them are the O/C/C/C—O/C/C/C torsion angles [56.6 (2)° in (I) and 174.0 (3)/70.2 (3)° in (II) for GG and TG conformations, respectively] and the dihedral angle between the planes of the aromatic rings [80.3 (10)° in (I) and 76.5 (3)° in (II)]. The crystal structure is stabilized by weak C—H⋯ N and C—H⋯ O hydrogen bonding.

Related literature

The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability. For conformation definitions see: Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 22, 121-129.]). For related structures, see: Brito et al. (2010[Brito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010). Acta Cryst. E66, o792.]); Chatterjee et al. (2004[Chatterjee, B., Noveron, J. C., Resendiz, M., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C., Arif, A. & Stang, P. (2004). J. Am. Chem. Soc. 126, 10645-10656.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, C 2/c

  • a = 23.022 (4) Å

  • b = 4.9336 (5) Å

  • c = 11.9604 (18) Å

  • β = 98.118 (13)°

  • V = 1344.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.18 × 0.15 × 0.09 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 4231 measured reflections

  • 1251 independent reflections

  • 799 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.094

  • S = 0.87

  • 1251 reflections

  • 96 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N14i 0.95 2.65 3.505 (3) 151
C15—H15⋯N14ii 0.95 2.72 3.496 (3) 139
C3—H3A⋯O1iii 0.99 2.98 3.516 (3) 115
C3—H3B⋯O1iv 0.99 2.62 3.521 (3) 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The propanediyl group can adopt four possible conformations: trans-trans (TT), trans-gauche (TG), gauche-gauche (GG), and gauche-gauche' (GG') (Carlucci et al., 2002). The title compound C15H14N2O4, (I) has a gauche-gauche (GG) conformation and is a positional isomer of the previously reported propane-1,3-diyl bis(pyridine-3-carboxylate), (II), (Brito et al., 2010). Similar compounds have also been reported by Chatterjee et al. (2004).

The molecules of the title compound lie on a twofold rotation axis passing through the central carbon atom of the aliphatic chain such that one half of the title compound forms the asymmetric unit (Fig. 1). Both compounds shows excellent agreement of their geometric parameters. The most obvious differences between them are in the torsion angles O/C/C/C—O/C/C/C[56.6 (2)° in (I) and 174.0 (3);70.2 (3)° in (II), GG and TG conformation, respectively] and the angle between the planes of aromatics rings [80.3 (10)° (I) and 76.5 (3)° (II)]. The crystal structure is stabilized by weak C—H··· N and C—H··· O hydrogen bonding (Table 1, Fig. 2). The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability.

Related literature top

The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability. For conformation definitions see: Carlucci et al. (2002). For related structures, see: Brito et al. (2010); Chatterjee et al. (2004).

Experimental top

Isonicotinic acid (15 g, 0.122 mol) was stirred in SOCl2 (40 ml) in the presence of DMF (0.6 ml) at 60°C for 12 h. Excess thionyl chloride was removed in vacuo. Dried 1,3-Propanediol (4.9 ml, 0.061 mol) was added. After the evolution of hydrogen chloride ended, the mixture was heated at 110°C for 2 h. The mixture was then dissolved in water, and NH4OH was added. After filtration, recrystallization in ethyl acetate gave colorless crystals suitable for X-ray analysis. Yield 8.23 g(24%). Analysis calculated for C15H14N2O4:C: 62.9, H: 4.89, N: 9.68; found: C: 62.45, H: 4.85, N: 9.85. IR (KBr, cm-1):(C=O) 1727 s, (C=C) 1596 s, (Ar C—C, C=N) 1408 s, (C—O) 1278 m.

Refinement top

H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.95-0.99 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The propanediyl group can adopt four possible conformations: trans-trans (TT), trans-gauche (TG), gauche-gauche (GG), and gauche-gauche' (GG') (Carlucci et al., 2002). The title compound C15H14N2O4, (I) has a gauche-gauche (GG) conformation and is a positional isomer of the previously reported propane-1,3-diyl bis(pyridine-3-carboxylate), (II), (Brito et al., 2010). Similar compounds have also been reported by Chatterjee et al. (2004).

The molecules of the title compound lie on a twofold rotation axis passing through the central carbon atom of the aliphatic chain such that one half of the title compound forms the asymmetric unit (Fig. 1). Both compounds shows excellent agreement of their geometric parameters. The most obvious differences between them are in the torsion angles O/C/C/C—O/C/C/C[56.6 (2)° in (I) and 174.0 (3);70.2 (3)° in (II), GG and TG conformation, respectively] and the angle between the planes of aromatics rings [80.3 (10)° (I) and 76.5 (3)° (II)]. The crystal structure is stabilized by weak C—H··· N and C—H··· O hydrogen bonding (Table 1, Fig. 2). The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability.

The title compound can be used as a nucleophilic tecton in self-assembly reactions with metal centres of varying lability. For conformation definitions see: Carlucci et al. (2002). For related structures, see: Brito et al. (2010); Chatterjee et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot at the 50% probability level for the non-H atoms. Symmetry operator for generating equivalent atoms: (A) 1-x, y, -z+3/2.
[Figure 2] Fig. 2. Packing diagram of the title compound with view onto the ab plane.
[Figure 3] Fig. 3. Schematic representations of (I) and (II).
Propane-1,3-diyl bis(pyridine-4-carboxylate) top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.414 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2383 reflections
a = 23.022 (4) Åθ = 3.5–25.9°
b = 4.9336 (5) ŵ = 0.10 mm1
c = 11.9604 (18) ÅT = 173 K
β = 98.118 (13)°Plate, colourless
V = 1344.9 (3) Å30.18 × 0.15 × 0.09 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
799 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 25.6°, θmin = 3.4°
ω scansh = 2228
4231 measured reflectionsk = 55
1251 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0427P)2]
where P = (Fo2 + 2Fc2)/3
1251 reflections(Δ/σ)max < 0.001
96 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H14N2O4V = 1344.9 (3) Å3
Mr = 286.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.022 (4) ŵ = 0.10 mm1
b = 4.9336 (5) ÅT = 173 K
c = 11.9604 (18) Å0.18 × 0.15 × 0.09 mm
β = 98.118 (13)°
Data collection top
Stoe IPDS II two-circle
diffractometer
799 reflections with I > 2σ(I)
4231 measured reflectionsRint = 0.070
1251 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.87Δρmax = 0.16 e Å3
1251 reflectionsΔρmin = 0.21 e Å3
96 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43077 (7)0.6064 (3)0.47123 (12)0.0356 (4)
C10.41465 (9)0.5769 (4)0.56249 (16)0.0270 (5)
O20.43693 (6)0.7138 (3)0.65570 (11)0.0300 (4)
C30.48573 (9)0.8943 (4)0.64276 (16)0.0287 (5)
H3A0.47481.01660.57750.034*
H3B0.52040.78710.62910.034*
C40.50001.0584 (6)0.75000.0292 (7)
H40.46611.17690.75790.035*
C110.36822 (9)0.3801 (4)0.58462 (16)0.0276 (5)
C120.34752 (9)0.1948 (4)0.50109 (17)0.0299 (5)
H120.36210.19490.43070.036*
C130.30531 (10)0.0107 (4)0.52223 (17)0.0323 (5)
H130.29210.11770.46510.039*
N140.28183 (8)0.0018 (4)0.61815 (14)0.0337 (5)
C150.30185 (10)0.1843 (5)0.69753 (18)0.0360 (5)
H150.28570.18320.76630.043*
C160.34464 (10)0.3735 (4)0.68496 (17)0.0326 (5)
H160.35770.49710.74410.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0412 (9)0.0404 (9)0.0264 (7)0.0035 (8)0.0090 (6)0.0045 (7)
C10.0279 (11)0.0268 (11)0.0257 (10)0.0040 (9)0.0018 (8)0.0001 (8)
O20.0321 (8)0.0326 (8)0.0247 (7)0.0054 (7)0.0021 (6)0.0008 (6)
C30.0268 (11)0.0321 (11)0.0274 (10)0.0021 (9)0.0045 (8)0.0024 (9)
C40.0307 (16)0.0280 (16)0.0286 (14)0.0000.0034 (12)0.000
C110.0281 (11)0.0283 (11)0.0256 (9)0.0053 (9)0.0010 (8)0.0019 (8)
C120.0352 (12)0.0314 (11)0.0227 (9)0.0009 (10)0.0033 (8)0.0007 (8)
C130.0338 (12)0.0309 (11)0.0308 (10)0.0012 (10)0.0001 (9)0.0029 (9)
N140.0343 (11)0.0326 (10)0.0338 (10)0.0010 (9)0.0029 (8)0.0013 (8)
C150.0396 (13)0.0401 (13)0.0294 (11)0.0008 (11)0.0085 (9)0.0004 (10)
C160.0364 (13)0.0333 (12)0.0280 (10)0.0018 (10)0.0042 (9)0.0050 (9)
Geometric parameters (Å, º) top
O1—C11.210 (2)C11—C121.388 (3)
C1—O21.342 (2)C12—C131.379 (3)
C1—C111.495 (3)C12—H120.9500
O2—C31.459 (2)C13—N141.336 (3)
C3—C41.513 (2)C13—H130.9500
C3—H3A0.9900N14—C151.342 (3)
C3—H3B0.9900C15—C161.381 (3)
C4—C3i1.513 (2)C15—H150.9500
C4—H40.9900C16—H160.9500
C11—C161.386 (3)
O1—C1—O2124.0 (2)C12—C11—C1118.80 (18)
O1—C1—C11123.76 (18)C13—C12—C11118.75 (19)
O2—C1—C11112.26 (17)C13—C12—H12120.6
C1—O2—C3115.39 (15)C11—C12—H12120.6
O2—C3—C4108.35 (15)N14—C13—C12124.04 (19)
O2—C3—H3A110.0N14—C13—H13118.0
C4—C3—H3A110.0C12—C13—H13118.0
O2—C3—H3B110.0C13—N14—C15116.44 (19)
C4—C3—H3B110.0N14—C15—C16123.7 (2)
H3A—C3—H3B108.4N14—C15—H15118.1
C3i—C4—C3115.3 (2)C16—C15—H15118.1
C3i—C4—H4108.3C15—C16—C11118.88 (19)
C3—C4—H4108.5C15—C16—H16120.6
C16—C11—C12118.1 (2)C11—C16—H16120.6
C16—C11—C1123.08 (18)
O1—C1—O2—C33.7 (3)C16—C11—C12—C131.0 (3)
C11—C1—O2—C3175.34 (17)C1—C11—C12—C13179.05 (19)
C1—O2—C3—C4172.61 (16)C11—C12—C13—N141.4 (3)
O2—C3—C4—C3i56.56 (11)C12—C13—N14—C150.7 (3)
O1—C1—C11—C16171.1 (2)C13—N14—C15—C160.5 (3)
O2—C1—C11—C169.9 (3)N14—C15—C16—C110.8 (3)
O1—C1—C11—C128.9 (3)C12—C11—C16—C150.0 (3)
O2—C1—C11—C12170.21 (18)C1—C11—C16—C15179.9 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N14ii0.952.653.505 (3)151
C15—H15···N14iii0.952.723.496 (3)139
C3—H3A···O1iv0.992.983.516 (3)115
C3—H3B···O1v0.992.623.521 (3)152
Symmetry codes: (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)23.022 (4), 4.9336 (5), 11.9604 (18)
β (°) 98.118 (13)
V3)1344.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.18 × 0.15 × 0.09
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4231, 1251, 799
Rint0.070
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.094, 0.87
No. of reflections1251
No. of parameters96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N14i0.952.653.505 (3)150.6
C15—H15···N14ii0.952.723.496 (3)139.3
C3—H3A···O1iii0.992.983.516 (3)115.1
C3—H3B···O1iv0.992.623.521 (3)151.7
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JV thanks the Universidad de Antofagasta for PhD fellowships.

References

First citationBrito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010). Acta Cryst. E66, o792.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 22, 121–129.  CSD CrossRef Google Scholar
First citationChatterjee, B., Noveron, J. C., Resendiz, M., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C., Arif, A. & Stang, P. (2004). J. Am. Chem. Soc. 126, 10645–10656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds