organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-(3-chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 April 2010; accepted 16 April 2010; online 24 April 2010)

In the title compound, C8H5Br3ClNO, the conformation of the N—H bond is anti to the 3-chloro substituent in the benzene ring. An intra­molecular N—H⋯Br hydrogen bond occurs. In the crystal, mol­ecules are packed into infinite chains in the a-axis direction by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For background and related structures, see: Brown (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]); Gowda et al. (2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o381.], 2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o386.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5Br3ClNO

  • Mr = 406.31

  • Orthorhombic, P b c a

  • a = 12.803 (1) Å

  • b = 9.146 (1) Å

  • c = 20.221 (3) Å

  • V = 2367.8 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 14.47 mm−1

  • T = 299 K

  • 0.53 × 0.33 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.049, Tmax = 0.123

  • 3870 measured reflections

  • 2114 independent reflections

  • 1646 reflections with I > 2σ(I)

  • Rint = 0.110

  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.387

  • S = 1.59

  • 2114 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 2.07 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.20 3.032 (13) 162
N1—H1N⋯Br3 0.86 2.84 3.177 (9) 105
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of (I), was determined as a part of our ongoing study of the effect of ring and side chain substituents on the crystal structures of N-aromatic amides (Gowda et al., 2008, 2009, 2010). In (I) the conformation of the N—H bond is anti to the 3-chloro substituent in the benzene ring (Fig.1), similar to that observed in N-(3-chlorophenyl)acetamide (II)(Gowda et al., 2008), and that between the N—H bond and the 3-methyl group in N-(3-methylphenyl)2,2,2-tribromoacetamide (III)(Gowda et al., 2009), but contrary to the syn conformation observed between the N—H bond and the 2-Chloro group in N-(2-chlorophenyl)2,2,2-tribromoacetamide (IV) (Gowda et al., 2010).

Further, the conformation of the N—H bond in (I) is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide, (II), (III) and (IV) (Gowda et al., 2008, 2009, 2010) and other amides (Brown, 1966).

The structure of (I) shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. A packing diagram (Fig. 2) illustrates the N1—H1N···O1 hydrogen bonds (Table 1) involved in the formation of molecular chains along the a-axis of the unit cell.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For background and related structures, see: Brown (1966); Gowda et al. (2008, 2009, 2010).

Experimental top

The title compound was prepared from 3-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Rod like colourless single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model [N—H = 0.86 Å, C—H = 0.93 Å] and were refined with a riding model conith isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The residual electron-density features are located in the region of Br1 and Br2. The highest peak is 0.98 Å from Br1 and the deepest hole is 1.39 Å from Br2.

Structure description top

The structure of (I), was determined as a part of our ongoing study of the effect of ring and side chain substituents on the crystal structures of N-aromatic amides (Gowda et al., 2008, 2009, 2010). In (I) the conformation of the N—H bond is anti to the 3-chloro substituent in the benzene ring (Fig.1), similar to that observed in N-(3-chlorophenyl)acetamide (II)(Gowda et al., 2008), and that between the N—H bond and the 3-methyl group in N-(3-methylphenyl)2,2,2-tribromoacetamide (III)(Gowda et al., 2009), but contrary to the syn conformation observed between the N—H bond and the 2-Chloro group in N-(2-chlorophenyl)2,2,2-tribromoacetamide (IV) (Gowda et al., 2010).

Further, the conformation of the N—H bond in (I) is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide, (II), (III) and (IV) (Gowda et al., 2008, 2009, 2010) and other amides (Brown, 1966).

The structure of (I) shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. A packing diagram (Fig. 2) illustrates the N1—H1N···O1 hydrogen bonds (Table 1) involved in the formation of molecular chains along the a-axis of the unit cell.

For the preparation of the title compound, see: Gowda et al. (2003). For background and related structures, see: Brown (1966); Gowda et al. (2008, 2009, 2010).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds shown as dashed lines.
2,2,2-Tribromo-N-(3-chlorophenyl)acetamide top
Crystal data top
C8H5Br3ClNOF(000) = 1520
Mr = 406.31Dx = 2.280 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.803 (1) Åθ = 4.4–20.5°
b = 9.146 (1) ŵ = 14.47 mm1
c = 20.221 (3) ÅT = 299 K
V = 2367.8 (5) Å3Rod, colourless
Z = 80.53 × 0.33 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.110
Graphite monochromatorθmax = 67.0°, θmin = 4.4°
ω/2θ scansh = 1511
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.049, Tmax = 0.123l = 240
3870 measured reflections3 standard reflections every 120 min
2114 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.387H-atom parameters constrained
S = 1.59 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2114 reflections(Δ/σ)max = 0.006
127 parametersΔρmax = 2.07 e Å3
0 restraintsΔρmin = 1.56 e Å3
Crystal data top
C8H5Br3ClNOV = 2367.8 (5) Å3
Mr = 406.31Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.803 (1) ŵ = 14.47 mm1
b = 9.146 (1) ÅT = 299 K
c = 20.221 (3) Å0.53 × 0.33 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1646 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.110
Tmin = 0.049, Tmax = 0.1233 standard reflections every 120 min
3870 measured reflections intensity decay: 1.5%
2114 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.387H-atom parameters constrained
S = 1.59Δρmax = 2.07 e Å3
2114 reflectionsΔρmin = 1.56 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8142 (8)0.2739 (12)0.3141 (5)0.042 (2)
C20.7763 (8)0.3768 (12)0.2709 (6)0.043 (2)
H20.71010.41670.27690.051*
C30.8383 (13)0.4204 (15)0.2184 (6)0.057 (3)
C40.9361 (13)0.3617 (16)0.2099 (8)0.071 (4)
H40.97730.39020.17430.085*
C50.9715 (11)0.2635 (18)0.2533 (9)0.077 (5)
H51.03740.22310.24670.092*
C60.9141 (11)0.2199 (13)0.3074 (8)0.059 (3)
H60.94190.15590.33850.071*
C70.6833 (9)0.2898 (11)0.4008 (5)0.042 (2)
C80.6221 (8)0.2020 (11)0.4511 (6)0.043 (2)
Br10.55384 (15)0.04007 (19)0.40907 (9)0.0787 (8)
Br20.52069 (17)0.31822 (18)0.49631 (11)0.0893 (9)
Br30.71709 (15)0.1263 (3)0.51772 (8)0.0856 (8)
Cl10.7921 (4)0.5505 (5)0.16439 (19)0.0817 (13)
N10.7560 (8)0.2201 (11)0.3684 (5)0.050 (2)
H1N0.77010.13270.38140.060*
O10.6555 (7)0.4164 (8)0.3902 (4)0.0494 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (5)0.046 (5)0.047 (6)0.008 (4)0.008 (4)0.005 (5)
C20.036 (5)0.045 (5)0.048 (6)0.006 (4)0.000 (4)0.005 (4)
C30.069 (8)0.065 (7)0.039 (5)0.018 (6)0.006 (5)0.001 (5)
C40.082 (10)0.051 (7)0.079 (10)0.009 (7)0.041 (8)0.003 (7)
C50.045 (8)0.070 (9)0.116 (12)0.003 (7)0.040 (8)0.004 (10)
C60.060 (7)0.040 (5)0.076 (8)0.003 (5)0.017 (6)0.004 (6)
C70.044 (6)0.037 (5)0.044 (5)0.002 (4)0.001 (4)0.000 (4)
C80.032 (5)0.037 (5)0.061 (6)0.006 (4)0.004 (5)0.005 (4)
Br10.0826 (13)0.0758 (12)0.0776 (12)0.0431 (9)0.0248 (8)0.0149 (8)
Br20.0953 (15)0.0610 (12)0.1114 (16)0.0226 (9)0.0628 (12)0.0087 (9)
Br30.0700 (12)0.1248 (18)0.0619 (12)0.0134 (10)0.0027 (7)0.0327 (10)
Cl10.117 (3)0.079 (2)0.0498 (19)0.006 (2)0.0019 (18)0.0161 (16)
N10.056 (6)0.041 (4)0.052 (5)0.000 (4)0.016 (5)0.015 (4)
O10.042 (4)0.037 (3)0.069 (5)0.000 (3)0.008 (4)0.009 (3)
Geometric parameters (Å, º) top
C1—C21.372 (16)C5—H50.9300
C1—C61.378 (17)C6—H60.9300
C1—N11.416 (13)C7—O11.229 (14)
C2—C31.385 (16)C7—N11.305 (16)
C2—H20.9300C7—C81.515 (15)
C3—C41.37 (2)C8—Br21.911 (10)
C3—Cl11.720 (15)C8—Br11.918 (11)
C4—C51.33 (2)C8—Br31.943 (11)
C4—H40.9300N1—H1N0.8600
C5—C61.377 (18)
C2—C1—C6120.8 (10)C5—C6—C1118.0 (14)
C2—C1—N1123.1 (10)C5—C6—H6121.0
C6—C1—N1116.1 (11)C1—C6—H6121.0
C1—C2—C3118.8 (11)O1—C7—N1125.4 (10)
C1—C2—H2120.6O1—C7—C8117.8 (10)
C3—C2—H2120.6N1—C7—C8116.5 (9)
C4—C3—C2120.4 (13)C7—C8—Br2112.2 (7)
C4—C3—Cl1120.3 (10)C7—C8—Br1110.4 (8)
C2—C3—Cl1119.3 (12)Br2—C8—Br1109.4 (5)
C5—C4—C3119.4 (12)C7—C8—Br3109.3 (7)
C5—C4—H4120.3Br2—C8—Br3107.0 (6)
C3—C4—H4120.3Br1—C8—Br3108.5 (5)
C4—C5—C6122.4 (14)C7—N1—C1126.5 (10)
C4—C5—H5118.8C7—N1—H1N116.8
C6—C5—H5118.8C1—N1—H1N116.8
C6—C1—C2—C33.2 (17)O1—C7—C8—Br26.9 (13)
N1—C1—C2—C3178.6 (11)N1—C7—C8—Br2178.6 (9)
C1—C2—C3—C40.3 (19)O1—C7—C8—Br1115.4 (10)
C1—C2—C3—Cl1179.4 (9)N1—C7—C8—Br159.1 (12)
C2—C3—C4—C51 (2)O1—C7—C8—Br3125.4 (9)
Cl1—C3—C4—C5178.3 (13)N1—C7—C8—Br360.1 (12)
C3—C4—C5—C61 (3)O1—C7—N1—C12 (2)
C4—C5—C6—C14 (2)C8—C7—N1—C1171.9 (11)
C2—C1—C6—C55 (2)C2—C1—N1—C728.2 (19)
N1—C1—C6—C5176.7 (13)C6—C1—N1—C7150.0 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.203.032 (13)162
N1—H1N···Br30.862.843.177 (9)105
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H5Br3ClNO
Mr406.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)12.803 (1), 9.146 (1), 20.221 (3)
V3)2367.8 (5)
Z8
Radiation typeCu Kα
µ (mm1)14.47
Crystal size (mm)0.53 × 0.33 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.049, 0.123
No. of measured, independent and
observed [I > 2σ(I)] reflections
3870, 2114, 1646
Rint0.110
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.387, 1.59
No. of reflections2114
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.07, 1.56

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.203.032 (13)161.7
N1—H1N···Br30.862.843.177 (9)105.4
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

P.A.S. thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds