metal-organic compounds
Bis[μ-1,2-bis(1,2,4-triazol-4-yl)ethane]bis[diiodidozinc(II)]
aCollege of Chemistry and Chemical Engineering and Material Science, The Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: libaolong@suda.edu.cn
In the title dinuclear complex, [Zn2I4(C6H8N6)2], two ZnII atoms are bridged by two 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) ligands, forming a centrosymmetric metallacycle. The coordination geometry of the ZnII ion is distorted tetrahedral with the coordination sphere formed by two N atoms from the triazole rings of two symmetry-related btre ligands and two iodide ligands.
Related literature
For the isostructural zinc complexes [Zn2(btre)2X4], where X = Cl, Br, see: Habit et al. (2009). For other triazole coordination compounds, see: Haasnoot (2000); Li et al. (2003); Zhang et al. (2007); Zhu et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2000); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810014121/gk2262sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014121/gk2262Isup2.hkl
10 ml of aqueous solution of ZnI2 (1 mmol) was added to a tube, and 10 ml of MeOH solution of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) (1.0 mmol) was carefully added above the aqueous solution. Colourless crystals were obtained after about two weeks. Anal. Calcd. for C12H16I4N12Zn2: C, 14.91; H, 1.67; N, 17.39%. Found: C, 14.82; H, 1.56; N, 17.31%.
H atom were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole) and 0.97Å (ethane), and with Uiso(H) = 1.2Ueq(C).
A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).
In our previous work, we synthesized several zincII complexes with 1,2-bis(1,2,4-triazol-1-yl)ethane (bte; Li et al., 2003; Zhang et al., 2007; Zhu et al., 2004). 1,2-Bis(1,2,4-triazol-4-yl)ethane (btre) is an isomer of 1,2-bis(1,2,4-triazol-1-yl)ethane. In the present work, we report here the preparation and
of a dimeric zincII complex, namely, [Zn(btre)I2]2 (I).The
of (I) is built up from a neutral dimeric metallacycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre lignads resulting in a discrete Zn2(btre)2 18-membered binuclear metallacycle.Each zincII centre is four-coordinated by two N atoms of btre ligands and two I lignads (Table 1), forming a distorted tetrahedral geometry. Each btre exhibits a
in (I). The N3—C5—C6—N6 torsion angle is 63.8 (7)°. The dihedral angle between the two triazole rings is 45.6 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.755 (2) Å in (I), compared with the corresponding values of 7.8750 (2) Å in [Zn(btre)Cl2]2 and 7.7980 (5) Å in [Zn(btre)Br2]2 (Habit et al., 2009).For the isostructural zinc complexes [Zn2(btre)2X4], where X = Cl, Br, see: Habit et al. (2009). For other triazole coordination compounds, see: Haasnoot (2000); Li et al. (2003); Zhang et al. (2007); Zhu et al. (2004).
Data collection: CrystalClear (Rigaku, 2000); cell
CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn2I4(C6H8N6)2] | F(000) = 1776 |
Mr = 966.71 | Dx = 2.497 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -c 2yc | Cell parameters from 4578 reflections |
a = 20.241 (5) Å | θ = 3.1–25.4° |
b = 7.3847 (14) Å | µ = 6.69 mm−1 |
c = 17.348 (4) Å | T = 293 K |
β = 97.375 (5)° | Block, yellow |
V = 2571.6 (9) Å3 | 0.59 × 0.21 × 0.20 mm |
Z = 4 |
Rigaku Mercury CCD diffractometer | 2339 independent reflections |
Radiation source: fine-focus sealed tube | 2063 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 25.3°, θmin = 3.1° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −23→24 |
Tmin = 0.110, Tmax = 0.348 | k = −8→8 |
11703 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0585P)2 + 4.1632P] where P = (Fo2 + 2Fc2)/3 |
2339 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −1.31 e Å−3 |
[Zn2I4(C6H8N6)2] | V = 2571.6 (9) Å3 |
Mr = 966.71 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.241 (5) Å | µ = 6.69 mm−1 |
b = 7.3847 (14) Å | T = 293 K |
c = 17.348 (4) Å | 0.59 × 0.21 × 0.20 mm |
β = 97.375 (5)° |
Rigaku Mercury CCD diffractometer | 2339 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2063 reflections with I > 2σ(I) |
Tmin = 0.110, Tmax = 0.348 | Rint = 0.040 |
11703 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.69 e Å−3 |
2339 reflections | Δρmin = −1.31 e Å−3 |
136 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.13008 (3) | −0.08434 (9) | 0.58428 (4) | 0.0339 (2) | |
I1 | 0.05228 (2) | 0.08983 (6) | 0.66190 (3) | 0.04764 (18) | |
I2 | 0.09753 (2) | −0.41797 (6) | 0.57188 (3) | 0.05286 (19) | |
N1 | 0.1311 (2) | 0.0385 (7) | 0.4806 (3) | 0.0372 (11) | |
N2 | 0.1752 (3) | −0.0096 (9) | 0.4306 (3) | 0.0571 (15) | |
N3 | 0.1084 (2) | 0.2012 (7) | 0.3770 (2) | 0.0340 (10) | |
N4 | 0.2741 (2) | 0.5707 (6) | 0.3664 (3) | 0.0375 (11) | |
N5 | 0.2601 (3) | 0.6027 (9) | 0.2874 (3) | 0.0580 (17) | |
N6 | 0.1672 (2) | 0.5550 (7) | 0.3363 (3) | 0.0365 (11) | |
C1 | 0.0918 (3) | 0.1627 (8) | 0.4480 (3) | 0.0361 (13) | |
H1A | 0.0573 | 0.2171 | 0.4702 | 0.043* | |
C2 | 0.1604 (4) | 0.0924 (10) | 0.3697 (4) | 0.0543 (19) | |
H2A | 0.1831 | 0.0903 | 0.3264 | 0.065* | |
C3 | 0.2178 (3) | 0.5456 (8) | 0.3934 (3) | 0.0389 (14) | |
H3A | 0.2135 | 0.5241 | 0.4453 | 0.047* | |
C4 | 0.1964 (4) | 0.5905 (10) | 0.2722 (4) | 0.057 (2) | |
H4A | 0.1732 | 0.6044 | 0.2227 | 0.069* | |
C5 | 0.0761 (3) | 0.3322 (10) | 0.3219 (3) | 0.0466 (16) | |
H5A | 0.0282 | 0.3217 | 0.3209 | 0.056* | |
H5B | 0.0867 | 0.3030 | 0.2704 | 0.056* | |
C6 | 0.0963 (3) | 0.5244 (9) | 0.3406 (4) | 0.0441 (15) | |
H6A | 0.0702 | 0.6049 | 0.3045 | 0.053* | |
H6B | 0.0867 | 0.5535 | 0.3926 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0336 (4) | 0.0388 (4) | 0.0292 (4) | −0.0052 (3) | 0.0042 (3) | 0.0017 (3) |
I1 | 0.0509 (3) | 0.0455 (3) | 0.0502 (3) | −0.00351 (19) | 0.0210 (2) | −0.00607 (18) |
I2 | 0.0723 (4) | 0.0381 (3) | 0.0476 (3) | −0.01108 (19) | 0.0055 (2) | −0.00284 (17) |
N1 | 0.042 (3) | 0.040 (3) | 0.031 (2) | −0.002 (2) | 0.011 (2) | 0.002 (2) |
N2 | 0.057 (4) | 0.071 (4) | 0.047 (3) | 0.020 (3) | 0.020 (3) | 0.015 (3) |
N3 | 0.033 (2) | 0.040 (3) | 0.028 (2) | −0.005 (2) | 0.0016 (19) | 0.004 (2) |
N4 | 0.035 (3) | 0.047 (3) | 0.030 (2) | −0.004 (2) | 0.004 (2) | 0.004 (2) |
N5 | 0.042 (3) | 0.102 (5) | 0.029 (3) | −0.005 (3) | 0.002 (2) | 0.010 (3) |
N6 | 0.031 (2) | 0.046 (3) | 0.032 (2) | −0.002 (2) | 0.002 (2) | 0.008 (2) |
C1 | 0.037 (3) | 0.038 (3) | 0.035 (3) | −0.004 (3) | 0.010 (3) | 0.001 (3) |
C2 | 0.066 (4) | 0.067 (5) | 0.034 (3) | 0.008 (4) | 0.019 (3) | 0.010 (3) |
C3 | 0.041 (3) | 0.044 (3) | 0.032 (3) | −0.004 (3) | 0.007 (3) | 0.001 (3) |
C4 | 0.050 (4) | 0.089 (6) | 0.031 (3) | −0.007 (4) | −0.001 (3) | 0.017 (3) |
C5 | 0.037 (3) | 0.068 (4) | 0.032 (3) | −0.012 (3) | −0.007 (3) | 0.009 (3) |
C6 | 0.034 (3) | 0.058 (4) | 0.040 (3) | 0.007 (3) | 0.003 (3) | 0.016 (3) |
Zn1—N1 | 2.017 (5) | N5—C4 | 1.285 (9) |
Zn1—N4i | 2.019 (5) | N6—C3 | 1.333 (7) |
Zn1—I1 | 2.5479 (8) | N6—C4 | 1.351 (8) |
Zn1—I2 | 2.5523 (9) | N6—C6 | 1.463 (7) |
N1—C1 | 1.296 (7) | C1—H1A | 0.9300 |
N1—N2 | 1.369 (7) | C2—H2A | 0.9300 |
N2—C2 | 1.301 (8) | C3—H3A | 0.9300 |
N3—C2 | 1.342 (8) | C4—H4A | 0.9300 |
N3—C1 | 1.350 (7) | C5—C6 | 1.502 (9) |
N3—C5 | 1.455 (8) | C5—H5A | 0.9700 |
N4—C3 | 1.301 (7) | C5—H5B | 0.9700 |
N4—N5 | 1.384 (7) | C6—H6A | 0.9700 |
N4—Zn1i | 2.019 (5) | C6—H6B | 0.9700 |
N1—Zn1—N4i | 103.68 (19) | N3—C1—H1A | 125.2 |
N1—Zn1—I1 | 108.78 (14) | N2—C2—N3 | 111.8 (5) |
N4i—Zn1—I1 | 112.08 (14) | N2—C2—H2A | 124.1 |
N1—Zn1—I2 | 113.03 (14) | N3—C2—H2A | 124.1 |
N4i—Zn1—I2 | 107.90 (14) | N4—C3—N6 | 110.5 (5) |
I1—Zn1—I2 | 111.19 (3) | N4—C3—H3A | 124.7 |
C1—N1—N2 | 108.7 (5) | N6—C3—H3A | 124.7 |
C1—N1—Zn1 | 129.1 (4) | N5—C4—N6 | 112.3 (6) |
N2—N1—Zn1 | 122.1 (4) | N5—C4—H4A | 123.9 |
C2—N2—N1 | 105.3 (5) | N6—C4—H4A | 123.9 |
C2—N3—C1 | 104.5 (5) | N3—C5—C6 | 113.5 (5) |
C2—N3—C5 | 128.9 (5) | N3—C5—H5A | 108.9 |
C1—N3—C5 | 126.6 (5) | C6—C5—H5A | 108.9 |
C3—N4—N5 | 107.7 (5) | N3—C5—H5B | 108.9 |
C3—N4—Zn1i | 133.9 (4) | C6—C5—H5B | 108.9 |
N5—N4—Zn1i | 118.4 (4) | H5A—C5—H5B | 107.7 |
C4—N5—N4 | 105.3 (5) | N6—C6—C5 | 112.1 (5) |
C3—N6—C4 | 104.2 (5) | N6—C6—H6A | 109.2 |
C3—N6—C6 | 128.2 (5) | C5—C6—H6A | 109.2 |
C4—N6—C6 | 127.5 (5) | N6—C6—H6B | 109.2 |
N1—C1—N3 | 109.6 (5) | C5—C6—H6B | 109.2 |
N1—C1—H1A | 125.2 | H6A—C6—H6B | 107.9 |
N4i—Zn1—N1—C1 | −131.9 (5) | C1—N3—C2—N2 | 0.9 (8) |
I1—Zn1—N1—C1 | −12.5 (5) | C5—N3—C2—N2 | −178.9 (6) |
I2—Zn1—N1—C1 | 111.5 (5) | N5—N4—C3—N6 | 1.5 (7) |
N4i—Zn1—N1—N2 | 51.5 (5) | Zn1i—N4—C3—N6 | 177.6 (4) |
I1—Zn1—N1—N2 | 171.0 (4) | C4—N6—C3—N4 | −0.9 (7) |
I2—Zn1—N1—N2 | −65.0 (5) | C6—N6—C3—N4 | 176.2 (6) |
C1—N1—N2—C2 | 1.0 (8) | N4—N5—C4—N6 | 0.9 (8) |
Zn1—N1—N2—C2 | 178.2 (5) | C3—N6—C4—N5 | −0.1 (8) |
C3—N4—N5—C4 | −1.4 (7) | C6—N6—C4—N5 | −177.1 (6) |
Zn1i—N4—N5—C4 | −178.3 (5) | C2—N3—C5—C6 | −101.4 (8) |
N2—N1—C1—N3 | −0.4 (7) | C1—N3—C5—C6 | 78.8 (7) |
Zn1—N1—C1—N3 | −177.4 (4) | C3—N6—C6—C5 | −93.3 (7) |
C2—N3—C1—N1 | −0.3 (7) | C4—N6—C6—C5 | 83.1 (8) |
C5—N3—C1—N1 | 179.6 (5) | N3—C5—C6—N6 | 63.8 (7) |
N1—N2—C2—N3 | −1.2 (9) |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn2I4(C6H8N6)2] |
Mr | 966.71 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 20.241 (5), 7.3847 (14), 17.348 (4) |
β (°) | 97.375 (5) |
V (Å3) | 2571.6 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.69 |
Crystal size (mm) | 0.59 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury CCD |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.110, 0.348 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11703, 2339, 2063 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.07 |
No. of reflections | 2339 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −1.31 |
Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Zn1—N1 | 2.017 (5) | Zn1—I1 | 2.5479 (8) |
Zn1—N4i | 2.019 (5) | Zn1—I2 | 2.5523 (9) |
N1—Zn1—N4i | 103.68 (19) | N1—Zn1—I2 | 113.03 (14) |
N1—Zn1—I1 | 108.78 (14) | N4i—Zn1—I2 | 107.90 (14) |
N4i—Zn1—I1 | 112.08 (14) | I1—Zn1—I2 | 111.19 (3) |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
Acknowledgements
This work was supported by the Natural Science Foundation of China (No. 20671066), Jiangsu Province (No. BK2006049) and the Funds of the Key Laboratory of Organic Synthesis of Jiangsu Province, People's Republic of China.
References
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Habit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem. 48, 2166–2180. Web of Science PubMed Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, B.-L., Li, B.-Z., Zhu, X., Zhu, L.-M. & Zhang, Y. (2003). Acta Cryst. C59, m350–m351. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120–m122. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, X., Li, B.-Z., Zhou, J.-H., Li, B.-L. & Zhang, Y. (2004). Acta Cryst. C60, m191–m193. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).
In our previous work, we synthesized several zincII complexes with 1,2-bis(1,2,4-triazol-1-yl)ethane (bte; Li et al., 2003; Zhang et al., 2007; Zhu et al., 2004). 1,2-Bis(1,2,4-triazol-4-yl)ethane (btre) is an isomer of 1,2-bis(1,2,4-triazol-1-yl)ethane. In the present work, we report here the preparation and crystal structure of a dimeric zincII complex, namely, [Zn(btre)I2]2 (I).
The crystal structure of (I) is built up from a neutral dimeric metallacycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre lignads resulting in a discrete Zn2(btre)2 18-membered binuclear metallacycle.
Each zincII centre is four-coordinated by two N atoms of btre ligands and two I lignads (Table 1), forming a distorted tetrahedral geometry. Each btre exhibits a gauche conformation in (I). The N3—C5—C6—N6 torsion angle is 63.8 (7)°. The dihedral angle between the two triazole rings is 45.6 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.755 (2) Å in (I), compared with the corresponding values of 7.8750 (2) Å in [Zn(btre)Cl2]2 and 7.7980 (5) Å in [Zn(btre)Br2]2 (Habit et al., 2009).