metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,2-bis­­(1,2,4-triazol-4-yl)ethane]bis­­[di­iodidozinc(II)]

aCollege of Chemistry and Chemical Engineering and Material Science, The Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: libaolong@suda.edu.cn

(Received 10 March 2010; accepted 16 April 2010; online 24 April 2010)

In the title dinuclear complex, [Zn2I4(C6H8N6)2], two ZnII atoms are bridged by two 1,2-bis­(1,2,4-triazol-4-yl)ethane (btre) ligands, forming a centrosymmetric metallacycle. The coordination geometry of the ZnII ion is distorted tetra­hedral with the coordination sphere formed by two N atoms from the triazole rings of two symmetry-related btre ligands and two iodide ligands.

Related literature

For the isostructural zinc complexes [Zn2(btre)2X4], where X = Cl, Br, see: Habit et al. (2009[Habit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem. 48, 2166-2180.]). For other triazole coordin­ation compounds, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Li et al. (2003[Li, B.-L., Li, B.-Z., Zhu, X., Zhu, L.-M. & Zhang, Y. (2003). Acta Cryst. C59, m350-m351.]); Zhang et al. (2007[Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120-m122.]); Zhu et al. (2004[Zhu, X., Li, B.-Z., Zhou, J.-H., Li, B.-L. & Zhang, Y. (2004). Acta Cryst. C60, m191-m193.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2I4(C6H8N6)2]

  • Mr = 966.71

  • Monoclinic, C 2/c

  • a = 20.241 (5) Å

  • b = 7.3847 (14) Å

  • c = 17.348 (4) Å

  • β = 97.375 (5)°

  • V = 2571.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.69 mm−1

  • T = 293 K

  • 0.59 × 0.21 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.110, Tmax = 0.348

  • 11703 measured reflections

  • 2339 independent reflections

  • 2063 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.07

  • 2339 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.017 (5)
Zn1—N4i 2.019 (5)
Zn1—I1 2.5479 (8)
Zn1—I2 2.5523 (9)
N1—Zn1—N4i 103.68 (19)
N1—Zn1—I1 108.78 (14)
N4i—Zn1—I1 112.08 (14)
N1—Zn1—I2 113.03 (14)
N4i—Zn1—I2 107.90 (14)
I1—Zn1—I2 111.19 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).

In our previous work, we synthesized several zincII complexes with 1,2-bis(1,2,4-triazol-1-yl)ethane (bte; Li et al., 2003; Zhang et al., 2007; Zhu et al., 2004). 1,2-Bis(1,2,4-triazol-4-yl)ethane (btre) is an isomer of 1,2-bis(1,2,4-triazol-1-yl)ethane. In the present work, we report here the preparation and crystal structure of a dimeric zincII complex, namely, [Zn(btre)I2]2 (I).

The crystal structure of (I) is built up from a neutral dimeric metallacycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre lignads resulting in a discrete Zn2(btre)2 18-membered binuclear metallacycle.

Each zincII centre is four-coordinated by two N atoms of btre ligands and two I lignads (Table 1), forming a distorted tetrahedral geometry. Each btre exhibits a gauche conformation in (I). The N3—C5—C6—N6 torsion angle is 63.8 (7)°. The dihedral angle between the two triazole rings is 45.6 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.755 (2) Å in (I), compared with the corresponding values of 7.8750 (2) Å in [Zn(btre)Cl2]2 and 7.7980 (5) Å in [Zn(btre)Br2]2 (Habit et al., 2009).

Related literature top

For the isostructural zinc complexes [Zn2(btre)2X4], where X = Cl, Br, see: Habit et al. (2009). For other triazole coordination compounds, see: Haasnoot (2000); Li et al. (2003); Zhang et al. (2007); Zhu et al. (2004).

Experimental top

10 ml of aqueous solution of ZnI2 (1 mmol) was added to a tube, and 10 ml of MeOH solution of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) (1.0 mmol) was carefully added above the aqueous solution. Colourless crystals were obtained after about two weeks. Anal. Calcd. for C12H16I4N12Zn2: C, 14.91; H, 1.67; N, 17.39%. Found: C, 14.82; H, 1.56; N, 17.31%.

Refinement top

H atom were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole) and 0.97Å (ethane), and with Uiso(H) = 1.2Ueq(C).

Structure description top

A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).

In our previous work, we synthesized several zincII complexes with 1,2-bis(1,2,4-triazol-1-yl)ethane (bte; Li et al., 2003; Zhang et al., 2007; Zhu et al., 2004). 1,2-Bis(1,2,4-triazol-4-yl)ethane (btre) is an isomer of 1,2-bis(1,2,4-triazol-1-yl)ethane. In the present work, we report here the preparation and crystal structure of a dimeric zincII complex, namely, [Zn(btre)I2]2 (I).

The crystal structure of (I) is built up from a neutral dimeric metallacycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre lignads resulting in a discrete Zn2(btre)2 18-membered binuclear metallacycle.

Each zincII centre is four-coordinated by two N atoms of btre ligands and two I lignads (Table 1), forming a distorted tetrahedral geometry. Each btre exhibits a gauche conformation in (I). The N3—C5—C6—N6 torsion angle is 63.8 (7)°. The dihedral angle between the two triazole rings is 45.6 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.755 (2) Å in (I), compared with the corresponding values of 7.8750 (2) Å in [Zn(btre)Cl2]2 and 7.7980 (5) Å in [Zn(btre)Br2]2 (Habit et al., 2009).

For the isostructural zinc complexes [Zn2(btre)2X4], where X = Cl, Br, see: Habit et al. (2009). For other triazole coordination compounds, see: Haasnoot (2000); Li et al. (2003); Zhang et al. (2007); Zhu et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A dimeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level (symmetry code for atoms A: -x+1/2, -y+1/2, -z+1).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the [010] direction.
Bis[µ-1,2-bis(1,2,4-triazol-4-yl)ethane]bis[diiodidozinc(II)] top
Crystal data top
[Zn2I4(C6H8N6)2]F(000) = 1776
Mr = 966.71Dx = 2.497 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -c 2ycCell parameters from 4578 reflections
a = 20.241 (5) Åθ = 3.1–25.4°
b = 7.3847 (14) ŵ = 6.69 mm1
c = 17.348 (4) ÅT = 293 K
β = 97.375 (5)°Block, yellow
V = 2571.6 (9) Å30.59 × 0.21 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube2063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 2324
Tmin = 0.110, Tmax = 0.348k = 88
11703 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0585P)2 + 4.1632P]
where P = (Fo2 + 2Fc2)/3
2339 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Zn2I4(C6H8N6)2]V = 2571.6 (9) Å3
Mr = 966.71Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.241 (5) ŵ = 6.69 mm1
b = 7.3847 (14) ÅT = 293 K
c = 17.348 (4) Å0.59 × 0.21 × 0.20 mm
β = 97.375 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2063 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 0.348Rint = 0.040
11703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.69 e Å3
2339 reflectionsΔρmin = 1.31 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13008 (3)0.08434 (9)0.58428 (4)0.0339 (2)
I10.05228 (2)0.08983 (6)0.66190 (3)0.04764 (18)
I20.09753 (2)0.41797 (6)0.57188 (3)0.05286 (19)
N10.1311 (2)0.0385 (7)0.4806 (3)0.0372 (11)
N20.1752 (3)0.0096 (9)0.4306 (3)0.0571 (15)
N30.1084 (2)0.2012 (7)0.3770 (2)0.0340 (10)
N40.2741 (2)0.5707 (6)0.3664 (3)0.0375 (11)
N50.2601 (3)0.6027 (9)0.2874 (3)0.0580 (17)
N60.1672 (2)0.5550 (7)0.3363 (3)0.0365 (11)
C10.0918 (3)0.1627 (8)0.4480 (3)0.0361 (13)
H1A0.05730.21710.47020.043*
C20.1604 (4)0.0924 (10)0.3697 (4)0.0543 (19)
H2A0.18310.09030.32640.065*
C30.2178 (3)0.5456 (8)0.3934 (3)0.0389 (14)
H3A0.21350.52410.44530.047*
C40.1964 (4)0.5905 (10)0.2722 (4)0.057 (2)
H4A0.17320.60440.22270.069*
C50.0761 (3)0.3322 (10)0.3219 (3)0.0466 (16)
H5A0.02820.32170.32090.056*
H5B0.08670.30300.27040.056*
C60.0963 (3)0.5244 (9)0.3406 (4)0.0441 (15)
H6A0.07020.60490.30450.053*
H6B0.08670.55350.39260.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0336 (4)0.0388 (4)0.0292 (4)0.0052 (3)0.0042 (3)0.0017 (3)
I10.0509 (3)0.0455 (3)0.0502 (3)0.00351 (19)0.0210 (2)0.00607 (18)
I20.0723 (4)0.0381 (3)0.0476 (3)0.01108 (19)0.0055 (2)0.00284 (17)
N10.042 (3)0.040 (3)0.031 (2)0.002 (2)0.011 (2)0.002 (2)
N20.057 (4)0.071 (4)0.047 (3)0.020 (3)0.020 (3)0.015 (3)
N30.033 (2)0.040 (3)0.028 (2)0.005 (2)0.0016 (19)0.004 (2)
N40.035 (3)0.047 (3)0.030 (2)0.004 (2)0.004 (2)0.004 (2)
N50.042 (3)0.102 (5)0.029 (3)0.005 (3)0.002 (2)0.010 (3)
N60.031 (2)0.046 (3)0.032 (2)0.002 (2)0.002 (2)0.008 (2)
C10.037 (3)0.038 (3)0.035 (3)0.004 (3)0.010 (3)0.001 (3)
C20.066 (4)0.067 (5)0.034 (3)0.008 (4)0.019 (3)0.010 (3)
C30.041 (3)0.044 (3)0.032 (3)0.004 (3)0.007 (3)0.001 (3)
C40.050 (4)0.089 (6)0.031 (3)0.007 (4)0.001 (3)0.017 (3)
C50.037 (3)0.068 (4)0.032 (3)0.012 (3)0.007 (3)0.009 (3)
C60.034 (3)0.058 (4)0.040 (3)0.007 (3)0.003 (3)0.016 (3)
Geometric parameters (Å, º) top
Zn1—N12.017 (5)N5—C41.285 (9)
Zn1—N4i2.019 (5)N6—C31.333 (7)
Zn1—I12.5479 (8)N6—C41.351 (8)
Zn1—I22.5523 (9)N6—C61.463 (7)
N1—C11.296 (7)C1—H1A0.9300
N1—N21.369 (7)C2—H2A0.9300
N2—C21.301 (8)C3—H3A0.9300
N3—C21.342 (8)C4—H4A0.9300
N3—C11.350 (7)C5—C61.502 (9)
N3—C51.455 (8)C5—H5A0.9700
N4—C31.301 (7)C5—H5B0.9700
N4—N51.384 (7)C6—H6A0.9700
N4—Zn1i2.019 (5)C6—H6B0.9700
N1—Zn1—N4i103.68 (19)N3—C1—H1A125.2
N1—Zn1—I1108.78 (14)N2—C2—N3111.8 (5)
N4i—Zn1—I1112.08 (14)N2—C2—H2A124.1
N1—Zn1—I2113.03 (14)N3—C2—H2A124.1
N4i—Zn1—I2107.90 (14)N4—C3—N6110.5 (5)
I1—Zn1—I2111.19 (3)N4—C3—H3A124.7
C1—N1—N2108.7 (5)N6—C3—H3A124.7
C1—N1—Zn1129.1 (4)N5—C4—N6112.3 (6)
N2—N1—Zn1122.1 (4)N5—C4—H4A123.9
C2—N2—N1105.3 (5)N6—C4—H4A123.9
C2—N3—C1104.5 (5)N3—C5—C6113.5 (5)
C2—N3—C5128.9 (5)N3—C5—H5A108.9
C1—N3—C5126.6 (5)C6—C5—H5A108.9
C3—N4—N5107.7 (5)N3—C5—H5B108.9
C3—N4—Zn1i133.9 (4)C6—C5—H5B108.9
N5—N4—Zn1i118.4 (4)H5A—C5—H5B107.7
C4—N5—N4105.3 (5)N6—C6—C5112.1 (5)
C3—N6—C4104.2 (5)N6—C6—H6A109.2
C3—N6—C6128.2 (5)C5—C6—H6A109.2
C4—N6—C6127.5 (5)N6—C6—H6B109.2
N1—C1—N3109.6 (5)C5—C6—H6B109.2
N1—C1—H1A125.2H6A—C6—H6B107.9
N4i—Zn1—N1—C1131.9 (5)C1—N3—C2—N20.9 (8)
I1—Zn1—N1—C112.5 (5)C5—N3—C2—N2178.9 (6)
I2—Zn1—N1—C1111.5 (5)N5—N4—C3—N61.5 (7)
N4i—Zn1—N1—N251.5 (5)Zn1i—N4—C3—N6177.6 (4)
I1—Zn1—N1—N2171.0 (4)C4—N6—C3—N40.9 (7)
I2—Zn1—N1—N265.0 (5)C6—N6—C3—N4176.2 (6)
C1—N1—N2—C21.0 (8)N4—N5—C4—N60.9 (8)
Zn1—N1—N2—C2178.2 (5)C3—N6—C4—N50.1 (8)
C3—N4—N5—C41.4 (7)C6—N6—C4—N5177.1 (6)
Zn1i—N4—N5—C4178.3 (5)C2—N3—C5—C6101.4 (8)
N2—N1—C1—N30.4 (7)C1—N3—C5—C678.8 (7)
Zn1—N1—C1—N3177.4 (4)C3—N6—C6—C593.3 (7)
C2—N3—C1—N10.3 (7)C4—N6—C6—C583.1 (8)
C5—N3—C1—N1179.6 (5)N3—C5—C6—N663.8 (7)
N1—N2—C2—N31.2 (9)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn2I4(C6H8N6)2]
Mr966.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.241 (5), 7.3847 (14), 17.348 (4)
β (°) 97.375 (5)
V3)2571.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)6.69
Crystal size (mm)0.59 × 0.21 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.110, 0.348
No. of measured, independent and
observed [I > 2σ(I)] reflections
11703, 2339, 2063
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.07
No. of reflections2339
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 1.31

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N12.017 (5)Zn1—I12.5479 (8)
Zn1—N4i2.019 (5)Zn1—I22.5523 (9)
N1—Zn1—N4i103.68 (19)N1—Zn1—I2113.03 (14)
N1—Zn1—I1108.78 (14)N4i—Zn1—I2107.90 (14)
N4i—Zn1—I1112.08 (14)I1—Zn1—I2111.19 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 20671066), Jiangsu Province (No. BK2006049) and the Funds of the Key Laboratory of Organic Synthesis of Jiangsu Province, People's Republic of China.

References

First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationHabit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem. 48, 2166–2180.  Web of Science PubMed Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, B.-L., Li, B.-Z., Zhu, X., Zhu, L.-M. & Zhang, Y. (2003). Acta Cryst. C59, m350–m351.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120–m122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X., Li, B.-Z., Zhou, J.-H., Li, B.-L. & Zhang, Y. (2004). Acta Cryst. C60, m191–m193.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds