organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,4,4-Tetra­fluoro-2,3,4,5-tetra­hydro-1,6-benzodioxocine-8-carbaldehyde

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zhuosioc@yahoo.com.cn

(Received 13 March 2010; accepted 16 April 2010; online 24 April 2010)

In the title compound, C11H8F4O3, the eight-membered dialk­oxy ring adopts a highly puckered conformation. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions.

Related literature

For the applications of fluorinated mcarocyles, see: Babudri et al. (2007[Babudri, F., Farinola, G. M., Naso, F. & Ragni, R. (2007). Chem. Commun. pp. 1003-1022]).

[Scheme 1]

Experimental

Crystal data
  • C11H8F4O3

  • Mr = 264.17

  • Monoclinic, P 21 /n

  • a = 9.142 (5) Å

  • b = 11.4935 (14) Å

  • c = 10.928 (10) Å

  • β = 104.109 (15)°

  • V = 1113.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.35 × 0.24 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 5552 measured reflections

  • 2000 independent reflections

  • 972 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.146

  • S = 0.97

  • 2000 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.52 3.193 (5) 130
C8—H8B⋯O3ii 0.97 2.43 3.343 (6) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fluorinated mcarocyles play an important role in the pharmaceutical, agrochemical and advanced materials fields (Babudri et al., 2007). As part of our studies in this area, we now report the synthesis and structure of the title compound, (I).

The structure of this compound is shown in Fig. 1. The benzene ring is attached to a highly puckered eight-membered dialkoxy ring. The torsion angle at the fusion bond (O1—C8—C9—O2) is 3.27°. The C—C bond distances of the aromatic ring vary from 1.373 (3) to 1.407 (3) A, the latter being the C2—C7 fusion bond. The ring angles of the benzene ring also vary from 118.9 (8) to 120.8 (9)° indicating a slight distortion in this ring.

Related literature top

For the applications of fluorinated mcarocyles, see: Babudri et al. (2007).

Experimental top

A mixture of 3,4-dihydroxy-benzaldehyde (0.345 g, 2.5 mmol), potassium carbonate (3.453 g, 25 mmol) was refluxed in acetonitrile (20 ml) at 373 K for 45 min, then a solution of methanesulfonic acid, trifluoro-, 2,2,3,3-tetrafluoro-1,4-butanediylester in acetonitrile (5 ml) was added, the mixture was heated under reflux for 12 h. After cooling to room temperature, the inorganic salts was removed by filtration . The filtrate was concentrated under reduced pressure, The residue was purified by flash chromatography on silica gel to afford the title compound as a white solid, yield 467 mg (70.8%). Colourless blocks of (I) were grown by by slow evaporation from dichloromethane at room temperature.

Refinement top

H-atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding atoms.

Structure description top

Fluorinated mcarocyles play an important role in the pharmaceutical, agrochemical and advanced materials fields (Babudri et al., 2007). As part of our studies in this area, we now report the synthesis and structure of the title compound, (I).

The structure of this compound is shown in Fig. 1. The benzene ring is attached to a highly puckered eight-membered dialkoxy ring. The torsion angle at the fusion bond (O1—C8—C9—O2) is 3.27°. The C—C bond distances of the aromatic ring vary from 1.373 (3) to 1.407 (3) A, the latter being the C2—C7 fusion bond. The ring angles of the benzene ring also vary from 118.9 (8) to 120.8 (9)° indicating a slight distortion in this ring.

For the applications of fluorinated mcarocyles, see: Babudri et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing displacement ellipsoids drawn at the 50% probability level.
3,3,4,4-Tetrafluoro-2,3,4,5-tetrahydro-1,6-benzodioxocine-8-carbaldehyde top
Crystal data top
C11H8F4O3F(000) = 536.0
Mr = 264.17Dx = 1.576 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 733 reflections
a = 9.142 (5) Åθ = 3.2–20.1°
b = 11.4935 (14) ŵ = 0.16 mm1
c = 10.928 (10) ÅT = 298 K
β = 104.109 (15)°Block, colourless
V = 1113.6 (12) Å30.35 × 0.24 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
972 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.2°, θmin = 2.6°
ω scansh = 610
5552 measured reflectionsk = 1313
2000 independent reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.049P)2 + 0.4913P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2000 reflectionsΔρmax = 0.15 e Å3
164 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (12)
Crystal data top
C11H8F4O3V = 1113.6 (12) Å3
Mr = 264.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.142 (5) ŵ = 0.16 mm1
b = 11.4935 (14) ÅT = 298 K
c = 10.928 (10) Å0.35 × 0.24 × 0.11 mm
β = 104.109 (15)°
Data collection top
Bruker SMART CCD
diffractometer
972 reflections with I > 2σ(I)
5552 measured reflectionsRint = 0.044
2000 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.97Δρmax = 0.15 e Å3
2000 reflectionsΔρmin = 0.15 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F20.5814 (2)0.90137 (19)0.9443 (2)0.0901 (8)
F40.9709 (3)0.8853 (2)1.0613 (2)0.1040 (9)
F10.7668 (3)0.9585 (2)0.8674 (2)0.1008 (9)
F30.7960 (3)0.9756 (2)1.1293 (3)0.1194 (10)
C40.8950 (4)0.4731 (3)1.1272 (3)0.0599 (10)
H40.97890.47451.19530.072*
C70.6454 (3)0.4699 (3)0.9227 (3)0.0545 (9)
H70.56140.46890.85470.065*
C60.7048 (3)0.5746 (3)0.9715 (3)0.0535 (9)
C50.8301 (3)0.5770 (3)1.0754 (3)0.0552 (9)
C20.7096 (3)0.3650 (3)0.9738 (3)0.0549 (9)
C30.8354 (3)0.3678 (3)1.0779 (3)0.0590 (10)
H30.87850.29861.11360.071*
C100.7221 (4)0.8729 (4)0.9373 (4)0.0685 (11)
C80.8155 (4)0.7738 (3)1.1564 (3)0.0669 (11)
H8A0.85420.79571.24410.080*
H8B0.71080.75091.14450.080*
C10.6488 (4)0.2520 (4)0.9223 (4)0.0664 (11)
H10.69270.18530.96360.080*
C110.8265 (4)0.8762 (4)1.0718 (4)0.0741 (11)
C90.7179 (4)0.7596 (3)0.8678 (3)0.0657 (10)
H9A0.67160.77100.77880.079*
H9B0.81970.73100.87610.079*
O20.9011 (2)0.6785 (2)1.1261 (2)0.0670 (7)
O10.6327 (2)0.6767 (2)0.9195 (2)0.0622 (7)
O30.5453 (3)0.2397 (2)0.8295 (3)0.0825 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F20.0728 (15)0.0924 (18)0.0987 (18)0.0255 (13)0.0085 (12)0.0057 (14)
F40.0709 (15)0.112 (2)0.116 (2)0.0292 (14)0.0040 (13)0.0202 (16)
F10.1117 (19)0.0856 (18)0.0951 (19)0.0162 (14)0.0061 (14)0.0252 (14)
F30.157 (2)0.0757 (18)0.103 (2)0.0154 (16)0.0126 (17)0.0179 (16)
C40.049 (2)0.073 (3)0.046 (2)0.0005 (19)0.0088 (15)0.0038 (19)
C70.0456 (19)0.070 (3)0.0410 (19)0.0046 (18)0.0020 (15)0.0014 (18)
C60.0420 (19)0.067 (3)0.046 (2)0.0014 (17)0.0012 (16)0.0051 (18)
C50.0449 (19)0.065 (3)0.049 (2)0.0042 (17)0.0011 (16)0.0010 (18)
C20.049 (2)0.065 (2)0.047 (2)0.0067 (17)0.0062 (16)0.0003 (18)
C30.056 (2)0.065 (3)0.049 (2)0.0014 (18)0.0010 (17)0.0049 (18)
C100.065 (2)0.070 (3)0.068 (3)0.003 (2)0.010 (2)0.013 (2)
C80.063 (2)0.079 (3)0.052 (2)0.001 (2)0.0015 (17)0.009 (2)
C10.064 (2)0.071 (3)0.063 (2)0.010 (2)0.012 (2)0.003 (2)
C110.070 (3)0.071 (3)0.074 (3)0.000 (2)0.004 (2)0.009 (2)
C90.058 (2)0.084 (3)0.049 (2)0.000 (2)0.0007 (16)0.011 (2)
O20.0481 (13)0.0678 (17)0.0733 (18)0.0011 (12)0.0077 (12)0.0091 (13)
O10.0472 (13)0.0663 (17)0.0647 (16)0.0009 (12)0.0025 (11)0.0115 (13)
O30.0749 (17)0.096 (2)0.0663 (18)0.0205 (16)0.0032 (14)0.0142 (15)
Geometric parameters (Å, º) top
F2—C101.347 (4)C2—C11.469 (5)
F4—C111.357 (4)C3—H30.9300
F1—C101.368 (4)C10—C91.504 (5)
F3—C111.365 (4)C10—C111.545 (6)
C4—C31.381 (4)C8—O21.432 (4)
C4—C51.392 (4)C8—C111.515 (5)
C4—H40.9300C8—H8A0.9700
C7—C61.374 (4)C8—H8B0.9700
C7—C21.397 (4)C1—O31.215 (4)
C7—H70.9300C1—H10.9300
C6—O11.398 (4)C9—O11.430 (4)
C6—C51.402 (4)C9—H9A0.9700
C5—O21.383 (4)C9—H9B0.9700
C2—C31.407 (4)
C3—C4—C5120.3 (3)O2—C8—C11109.4 (3)
C3—C4—H4119.8O2—C8—H8A109.8
C5—C4—H4119.8C11—C8—H8A109.8
C6—C7—C2120.9 (3)O2—C8—H8B109.8
C6—C7—H7119.6C11—C8—H8B109.8
C2—C7—H7119.6H8A—C8—H8B108.3
C7—C6—O1118.4 (3)O3—C1—C2124.6 (4)
C7—C6—C5119.9 (3)O3—C1—H1117.7
O1—C6—C5121.6 (3)C2—C1—H1117.7
O2—C5—C4116.7 (3)F4—C11—F3106.6 (3)
O2—C5—C6123.5 (3)F4—C11—C8108.8 (3)
C4—C5—C6119.7 (3)F3—C11—C8108.5 (4)
C7—C2—C3119.0 (3)F4—C11—C10108.1 (4)
C7—C2—C1121.8 (3)F3—C11—C10108.1 (3)
C3—C2—C1119.2 (3)C8—C11—C10116.4 (3)
C4—C3—C2120.1 (3)O1—C9—C10109.0 (3)
C4—C3—H3119.9O1—C9—H9A109.9
C2—C3—H3119.9C10—C9—H9A109.9
F2—C10—F1106.1 (3)O1—C9—H9B109.9
F2—C10—C9109.4 (3)C10—C9—H9B109.9
F1—C10—C9108.4 (3)H9A—C9—H9B108.3
F2—C10—C11108.5 (4)C5—O2—C8120.5 (2)
F1—C10—C11108.3 (3)C6—O1—C9118.1 (2)
C9—C10—C11115.8 (3)
C2—C7—C6—O1177.7 (3)F2—C10—C11—F4160.5 (3)
C2—C7—C6—C51.1 (5)F1—C10—C11—F445.8 (4)
C3—C4—C5—O2176.8 (3)C9—C10—C11—F476.1 (4)
C3—C4—C5—C60.9 (5)F2—C10—C11—F345.4 (5)
C7—C6—C5—O2176.6 (3)F1—C10—C11—F369.2 (4)
O1—C6—C5—O26.8 (5)C9—C10—C11—F3168.8 (3)
C7—C6—C5—C41.0 (5)F2—C10—C11—C876.9 (4)
O1—C6—C5—C4177.6 (3)F1—C10—C11—C8168.5 (3)
C6—C7—C2—C30.9 (5)C9—C10—C11—C846.5 (5)
C6—C7—C2—C1179.4 (3)F2—C10—C9—O148.7 (4)
C5—C4—C3—C20.8 (5)F1—C10—C9—O1163.9 (2)
C7—C2—C3—C40.8 (5)C11—C10—C9—O174.2 (4)
C1—C2—C3—C4179.5 (3)C4—C5—O2—C8134.3 (3)
C7—C2—C1—O33.8 (6)C6—C5—O2—C849.9 (5)
C3—C2—C1—O3176.6 (4)C11—C8—O2—C5114.5 (3)
O2—C8—C11—F441.8 (4)C7—C6—O1—C9121.7 (3)
O2—C8—C11—F3157.5 (3)C5—C6—O1—C961.7 (4)
O2—C8—C11—C1080.4 (4)C10—C9—O1—C6120.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.523.193 (5)130
C8—H8B···O3ii0.972.433.343 (6)157
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H8F4O3
Mr264.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.142 (5), 11.4935 (14), 10.928 (10)
β (°) 104.109 (15)
V3)1113.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.24 × 0.11
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5552, 2000, 972
Rint0.044
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 0.97
No. of reflections2000
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.523.193 (5)130
C8—H8B···O3ii0.972.433.343 (6)157
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

We are grateful to the Doctoral Program Foundation of the Natural Science Foundation of Guangdong Province, China (No. 5100430) and South China Normal University Grants (524002, 523467) for financial support.

References

First citationBabudri, F., Farinola, G. M., Naso, F. & Ragni, R. (2007). Chem. Commun. pp. 1003–1022  CrossRef Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds