organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(m-Phenyl­enedi­­oxy)diphthalo­nitrile

aDepartment of Chemistry, Shandong University, Jinan 250100, People's Republic of China, and bDepartment of Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: jianzhuang@ustb.edu.cn, zhangxiaomei@sdu.edu.cn

(Received 13 March 2010; accepted 26 March 2010; online 2 April 2010)

In the title compound, C22H10N4O2, the dihedral angles between the mean planes of the central benzene ring and the pendant rings are 79.20 (6) and 80.29 (6)°. The dihedral angle between the pendant rings is 10.27 (7)°.

Related literature

For background to `semi-rigid' mol­ecules as ligands, see: Wang et al. (2005[Wang, X., Qin, C., Wang, E., Li, Y., Su, Z., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824-5827], 2009[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. pp. 5273-5282]). For related structures, see: Huang et al. (2005[Huang, X., Zhao, F., Wang, R.-J., Zhang, F. & Tung, C.-H. (2005). Acta Cryst. E61, o4384-o4386.]); Zhang & Lu (2007[Zhang, X.-M. & Lu, J.-T. (2007). Acta Cryst. E63, o3861.]).

[Scheme 1]

Experimental

Crystal data
  • C22H10N4O2

  • Mr = 362.34

  • Monoclinic, C 2/c

  • a = 15.668 (3) Å

  • b = 12.722 (3) Å

  • c = 19.004 (5) Å

  • β = 109.911 (6)°

  • V = 3561.7 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.991

  • 10307 measured reflections

  • 3992 independent reflections

  • 3145 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.03

  • 3992 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, the semirigidity of molecules have been extensively employed for search of novel functional compounds. For example,a new family of multidentate O-donor ligands with a semirigid V-shaped molecular framework have been used to construct metal-organic coordination frameworks (Wang et al., 2009; Wang et al., 2005), in which some showed interesting properties. Here, we present the structure of a new semirigid organic ligand.

The crystal structure of the title compound is given in Fig. 1. As can be found, all the bond lengths and angles are normal and correspond to those observed in related compound (Huang et al., 2005; Zhang et al., 2007). The aromatic rings (C3—C8 and C15—C20) in sides of the molecule are in the same direction of the aromatic rings(C9—C14) with a cis configuration. The three dihedral angles in the title compound are 79.81Å for C3—C8 and C9—C14, 80.83Å for C15—C20 and C9—C14,and 10.54 Å for C3—C8 and C15—C20, respectively.

Related literature top

For background to `semi-rigid' molecules as ligands, see: Wang et al. (2005, 2009). For related structures, see: Huang et al. (2005); Zhang & Lu (2007).

Experimental top

Resorcinol (0.53 g, 5 mmol) and anhydrous K2CO3 was added to the solution of 2,3-dicyanophenyl nitrate (1.73 g, 10 mmol) in DMSO (25 ml). A kind of brown solution was generated after the solution was stirred for 48 hours at room temperature. The brown solution was added to 200 ml water, and was stirred for 30 min at room temperature. The precipitate formed was filtered, and washed by water. Yellow rods of (I) were obtained by solvent evaporation of the solution of the title compound in acetonitrile. Yield: 1.65 g, 91.2% Anal. for: C22H10N4O2 Calc. C, 72.92; H, 2.76; N, 15.47; Found: C, 72.85; H, 2.88; N, 15.44.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C(sp2 hybrid)-H distances of 0.93Å (Uiso(H)=1.2Ueq(C)).

Structure description top

In the past few years, the semirigidity of molecules have been extensively employed for search of novel functional compounds. For example,a new family of multidentate O-donor ligands with a semirigid V-shaped molecular framework have been used to construct metal-organic coordination frameworks (Wang et al., 2009; Wang et al., 2005), in which some showed interesting properties. Here, we present the structure of a new semirigid organic ligand.

The crystal structure of the title compound is given in Fig. 1. As can be found, all the bond lengths and angles are normal and correspond to those observed in related compound (Huang et al., 2005; Zhang et al., 2007). The aromatic rings (C3—C8 and C15—C20) in sides of the molecule are in the same direction of the aromatic rings(C9—C14) with a cis configuration. The three dihedral angles in the title compound are 79.81Å for C3—C8 and C9—C14, 80.83Å for C15—C20 and C9—C14,and 10.54 Å for C3—C8 and C15—C20, respectively.

For background to `semi-rigid' molecules as ligands, see: Wang et al. (2005, 2009). For related structures, see: Huang et al. (2005); Zhang & Lu (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at 30% probability level.
3,3'-(m-Phenylenedioxy)diphthalonitrile top
Crystal data top
C22H10N4O2F(000) = 1488
Mr = 362.34Dx = 1.351 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4716 reflections
a = 15.668 (3) Åθ = 2.6–27.4°
b = 12.722 (3) ŵ = 0.09 mm1
c = 19.004 (5) ÅT = 298 K
β = 109.911 (6)°Rod, yellow
V = 3561.7 (14) Å30.20 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
3992 independent reflections
Radiation source: fine-focus sealed tube3145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1420
Tmin = 0.982, Tmax = 0.991k = 1515
10307 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0506P)2 + 1.0114P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3992 reflectionsΔρmax = 0.20 e Å3
254 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (4)
Crystal data top
C22H10N4O2V = 3561.7 (14) Å3
Mr = 362.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.668 (3) ŵ = 0.09 mm1
b = 12.722 (3) ÅT = 298 K
c = 19.004 (5) Å0.20 × 0.15 × 0.10 mm
β = 109.911 (6)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3992 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
3145 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.034
10307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3992 reflectionsΔρmin = 0.16 e Å3
254 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.24878 (8)0.23670 (11)0.58469 (7)0.0496 (3)
O10.41988 (6)0.16069 (8)0.64684 (5)0.0597 (3)
O20.73624 (5)0.20407 (7)0.70914 (6)0.0582 (3)
C90.49526 (7)0.15184 (9)0.62398 (7)0.0425 (3)
C100.57791 (7)0.17608 (9)0.67719 (7)0.0437 (3)
H100.58260.19260.72600.052*
C200.88271 (8)0.16165 (10)0.78616 (7)0.0438 (3)
C110.65301 (7)0.17492 (9)0.65542 (7)0.0459 (3)
C140.48704 (8)0.12738 (10)0.55183 (7)0.0474 (3)
H140.43080.11100.51680.057*
C30.26451 (7)0.12567 (10)0.58820 (6)0.0420 (3)
C40.19286 (7)0.05388 (10)0.56020 (6)0.0443 (3)
C150.79734 (7)0.12689 (9)0.74065 (7)0.0448 (3)
C120.64815 (9)0.15132 (11)0.58405 (8)0.0554 (3)
H120.70000.15120.57070.067*
N30.23572 (10)0.32515 (11)0.58276 (8)0.0727 (4)
C210.90124 (8)0.27171 (11)0.79679 (8)0.0535 (3)
C80.35196 (8)0.08751 (11)0.61986 (7)0.0466 (3)
C160.77924 (9)0.02090 (10)0.73059 (8)0.0558 (3)
H160.72220.00220.70050.067*
C50.20892 (9)0.05263 (11)0.56674 (8)0.0528 (3)
H50.16120.10000.54850.063*
C190.95031 (8)0.08725 (11)0.82021 (7)0.0499 (3)
C130.56427 (9)0.12762 (11)0.53235 (8)0.0543 (3)
H130.55970.11150.48350.065*
N21.11044 (8)0.15377 (13)0.89675 (8)0.0774 (4)
C10.10262 (8)0.09249 (11)0.52163 (8)0.0524 (3)
C60.29672 (9)0.08846 (11)0.60074 (8)0.0585 (3)
H60.30770.16040.60610.070*
C180.93170 (10)0.01859 (12)0.80996 (8)0.0630 (4)
H180.97620.06810.83280.076*
C170.84594 (11)0.05017 (12)0.76525 (9)0.0661 (4)
H170.83320.12160.75850.079*
C221.03960 (9)0.12385 (12)0.86413 (8)0.0577 (4)
N40.03136 (8)0.12171 (11)0.48961 (8)0.0725 (4)
C70.36803 (9)0.01905 (12)0.62679 (8)0.0564 (3)
H70.42690.04410.64900.068*
N10.91780 (9)0.35902 (11)0.80612 (9)0.0809 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0399 (6)0.0575 (8)0.0501 (7)0.0042 (6)0.0137 (5)0.0057 (6)
O10.0322 (4)0.0797 (7)0.0681 (6)0.0119 (4)0.0181 (4)0.0269 (5)
O20.0293 (4)0.0448 (5)0.0869 (7)0.0052 (3)0.0020 (4)0.0088 (4)
C90.0287 (5)0.0456 (6)0.0512 (7)0.0002 (4)0.0111 (5)0.0022 (5)
C100.0347 (6)0.0455 (6)0.0463 (6)0.0043 (5)0.0080 (5)0.0018 (5)
C200.0333 (6)0.0515 (7)0.0468 (6)0.0069 (5)0.0137 (5)0.0004 (5)
C110.0286 (5)0.0389 (6)0.0635 (8)0.0048 (4)0.0071 (5)0.0023 (5)
C140.0357 (6)0.0514 (7)0.0482 (7)0.0012 (5)0.0056 (5)0.0031 (5)
C30.0334 (5)0.0526 (7)0.0406 (6)0.0027 (5)0.0134 (5)0.0007 (5)
C40.0323 (6)0.0554 (7)0.0442 (6)0.0035 (5)0.0117 (5)0.0026 (5)
C150.0326 (5)0.0463 (7)0.0540 (7)0.0043 (5)0.0129 (5)0.0004 (5)
C120.0422 (7)0.0545 (7)0.0764 (9)0.0084 (6)0.0290 (6)0.0085 (7)
N30.0745 (9)0.0599 (8)0.0802 (9)0.0003 (7)0.0219 (7)0.0093 (6)
C210.0306 (6)0.0589 (8)0.0642 (8)0.0086 (5)0.0076 (5)0.0030 (6)
C80.0313 (5)0.0621 (8)0.0462 (6)0.0049 (5)0.0128 (5)0.0072 (5)
C160.0443 (7)0.0484 (7)0.0661 (8)0.0098 (6)0.0077 (6)0.0010 (6)
C50.0432 (7)0.0544 (8)0.0602 (8)0.0089 (6)0.0168 (6)0.0020 (6)
C190.0383 (6)0.0640 (8)0.0453 (6)0.0011 (6)0.0116 (5)0.0054 (6)
C130.0537 (7)0.0589 (8)0.0534 (7)0.0065 (6)0.0223 (6)0.0070 (6)
N20.0416 (7)0.1071 (11)0.0731 (8)0.0068 (7)0.0059 (6)0.0123 (8)
C10.0369 (6)0.0569 (8)0.0581 (7)0.0078 (6)0.0094 (6)0.0031 (6)
C60.0523 (8)0.0527 (8)0.0718 (9)0.0046 (6)0.0229 (7)0.0087 (7)
C180.0578 (8)0.0600 (9)0.0630 (8)0.0099 (7)0.0098 (7)0.0136 (7)
C170.0674 (9)0.0459 (7)0.0737 (9)0.0043 (6)0.0093 (8)0.0075 (7)
C220.0395 (7)0.0768 (10)0.0532 (7)0.0029 (6)0.0111 (6)0.0111 (7)
N40.0399 (6)0.0705 (8)0.0914 (10)0.0021 (6)0.0018 (6)0.0083 (7)
C70.0360 (6)0.0694 (9)0.0617 (8)0.0092 (6)0.0140 (6)0.0056 (7)
N10.0538 (7)0.0594 (8)0.1145 (12)0.0151 (6)0.0094 (8)0.0088 (8)
Geometric parameters (Å, º) top
C2—N31.1421 (19)C15—C161.3777 (18)
C2—C31.4315 (19)C12—C131.3798 (19)
O1—C81.3750 (15)C12—H120.9300
O1—C91.3949 (14)C21—N11.1406 (19)
O2—C151.3596 (15)C8—C71.377 (2)
O2—C111.4048 (14)C16—C171.369 (2)
C9—C141.3686 (17)C16—H160.9300
C9—C101.3795 (16)C5—C61.3828 (19)
C10—C111.3740 (16)C5—H50.9300
C10—H100.9300C19—C181.377 (2)
C20—C151.3946 (16)C19—C221.4406 (18)
C20—C191.4035 (18)C13—H130.9300
C20—C211.4303 (19)N2—C221.1369 (18)
C11—C121.3657 (19)C1—N41.1368 (16)
C14—C131.3808 (18)C6—C71.377 (2)
C14—H140.9300C6—H60.9300
C3—C81.3834 (16)C18—C171.382 (2)
C3—C41.4038 (16)C18—H180.9300
C4—C51.3761 (19)C17—H170.9300
C4—C11.4393 (17)C7—H70.9300
N3—C2—C3178.96 (15)N1—C21—C20178.61 (16)
C8—O1—C9117.33 (9)O1—C8—C7122.54 (11)
C15—O2—C11118.00 (9)O1—C8—C3116.79 (12)
C14—C9—C10121.99 (11)C7—C8—C3120.59 (11)
C14—C9—O1121.98 (10)C17—C16—C15119.49 (12)
C10—C9—O1115.89 (11)C17—C16—H16120.3
C11—C10—C9117.60 (11)C15—C16—H16120.3
C11—C10—H10121.2C4—C5—C6119.28 (12)
C9—C10—H10121.2C4—C5—H5120.4
C15—C20—C19119.07 (12)C6—C5—H5120.4
C15—C20—C21120.25 (11)C18—C19—C20120.26 (12)
C19—C20—C21120.67 (11)C18—C19—C22121.00 (13)
C12—C11—C10122.52 (11)C20—C19—C22118.73 (13)
C12—C11—O2120.25 (11)C12—C13—C14121.25 (12)
C10—C11—O2117.16 (11)C12—C13—H13119.4
C9—C14—C13118.43 (11)C14—C13—H13119.4
C9—C14—H14120.8N4—C1—C4178.29 (16)
C13—C14—H14120.8C7—C6—C5120.85 (13)
C8—C3—C4118.83 (12)C7—C6—H6119.6
C8—C3—C2119.73 (11)C5—C6—H6119.6
C4—C3—C2121.43 (10)C19—C18—C17119.06 (13)
C5—C4—C3120.56 (11)C19—C18—H18120.5
C5—C4—C1119.98 (11)C17—C18—H18120.5
C3—C4—C1119.41 (12)C16—C17—C18121.77 (14)
O2—C15—C16124.39 (11)C16—C17—H17119.1
O2—C15—C20115.27 (10)C18—C17—H17119.1
C16—C15—C20120.34 (11)N2—C22—C19177.82 (15)
C11—C12—C13118.21 (12)C8—C7—C6119.83 (12)
C11—C12—H12120.9C8—C7—H7120.1
C13—C12—H12120.9C6—C7—H7120.1
C8—O1—C9—C1441.14 (17)C9—O1—C8—C3129.48 (12)
C8—O1—C9—C10143.02 (12)C4—C3—C8—O1179.70 (10)
C14—C9—C10—C110.04 (18)C2—C3—C8—O10.21 (16)
O1—C9—C10—C11175.87 (11)C4—C3—C8—C72.83 (18)
C9—C10—C11—C120.24 (18)C2—C3—C8—C7177.08 (12)
C9—C10—C11—O2177.36 (10)O2—C15—C16—C17179.83 (13)
C15—O2—C11—C1277.49 (16)C20—C15—C16—C170.4 (2)
C15—O2—C11—C10105.33 (13)C3—C4—C5—C60.51 (19)
C10—C9—C14—C130.24 (19)C1—C4—C5—C6176.87 (12)
O1—C9—C14—C13175.35 (12)C15—C20—C19—C181.39 (19)
C8—C3—C4—C52.48 (17)C21—C20—C19—C18179.66 (13)
C2—C3—C4—C5177.43 (11)C15—C20—C19—C22176.97 (12)
C8—C3—C4—C1174.92 (11)C21—C20—C19—C221.98 (18)
C2—C3—C4—C15.17 (17)C11—C12—C13—C140.1 (2)
C11—O2—C15—C168.46 (19)C9—C14—C13—C120.3 (2)
C11—O2—C15—C20172.12 (11)C4—C5—C6—C71.1 (2)
C19—C20—C15—O2179.22 (11)C20—C19—C18—C170.6 (2)
C21—C20—C15—O20.27 (17)C22—C19—C18—C17177.77 (14)
C19—C20—C15—C161.32 (19)C15—C16—C17—C180.4 (2)
C21—C20—C15—C16179.72 (13)C19—C18—C17—C160.4 (2)
C10—C11—C12—C130.2 (2)O1—C8—C7—C6177.91 (12)
O2—C11—C12—C13177.18 (11)C3—C8—C7—C61.2 (2)
C9—O1—C8—C753.72 (17)C5—C6—C7—C80.8 (2)

Experimental details

Crystal data
Chemical formulaC22H10N4O2
Mr362.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.668 (3), 12.722 (3), 19.004 (5)
β (°) 109.911 (6)
V3)3561.7 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10307, 3992, 3145
Rint0.034
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.03
No. of reflections3992
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Professor Yongzhong Bian, the Doctoral Foundation of Shandong (grant No. 2007BS04027) and Postdoctoral Scientific Foundation of China and Shandong (grant Nos. 200603070 and 20070411093).

References

First citationHuang, X., Zhao, F., Wang, R.-J., Zhang, F. & Tung, C.-H. (2005). Acta Cryst. E61, o4384–o4386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, X., Qin, C., Wang, E., Li, Y., Su, Z., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824–5827  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L., Tian, L., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. pp. 5273–5282  CrossRef Google Scholar
First citationZhang, X.-M. & Lu, J.-T. (2007). Acta Cryst. E63, o3861.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds