inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of hexa­sodium hepta­molybdate(VI) 14-hydrate

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 22 March 2010; accepted 1 April 2010; online 10 April 2010)

The structure of the title compound, Na6(Mo7O24)·14H2O, has been redetermined [Sjöbom & Hedman (1973). Acta Chem. Scand. 27, 3673–3674] and the hydrogen atoms have been located. The Na+ cations adopt distorted octa­hedral geometries and the structure of the [Mo7O24]6− anion is consistent with those of other hepta­molbydates. In the crystal, numerous O—H⋯O hydrogen bonds help to establish the packing.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates reported by our group, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For the structures of other [Mo7O24]6− heteropolyanions, see: Evans et al. (1975[Evans, H. T., Gatehouse, B. M. & Leverett, P. (1975). J. Chem. Soc. Dalton. Trans. pp. 505-507.]); Yang et al. (2002[Yang, W. B., Lu, C. Z. & Zhuang, H. H. (2002). Chinese J. Struct. Chem. (Jiegou Huaxue) 21, 168-173.]). For the previous determination of the title compound, see: Sjöbom & Hedman (1973[Sjöbom, K. & Hedman, B. (1973). Acta Chem. Scand. 27, 3673-3674.]). For Na—O bond lengths, see: Turpeinen et al. (2001[Turpeinen, U., Mutikainen, I., Klinga, M. & Hamalainen, R. (2001). Z. Kristallogr. New Cryst. Struct. 216, 515-520.]); An et al. (2004[An, H., Guo, Y., Li, Y., Wang, E., Lu, J., Xu, L. & Hu, C. (2004). Inorg. Chem. Commun. 7, 521-522.]).

[Scheme 1]

Experimental

Crystal data
  • Na6(Mo7O24)·14H2O

  • Mr = 1445.74

  • Orthorhombic, P c a 21

  • a = 21.1304 (2) Å

  • b = 10.3733 (1) Å

  • c = 15.6094 (2) Å

  • V = 3421.46 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.68 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.814

  • 16564 measured reflections

  • 5831 independent reflections

  • 5748 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.044

  • S = 1.00

  • 5831 reflections

  • 545 parameters

  • 63 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.00 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2689 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6W—H12W⋯O3 0.83 (4) 2.04 (2) 2.804 (5) 156 (5)
O9W—H17W⋯O6 0.82 (1) 2.37 (1) 3.182 (6) 168 (6)
O12W—H23W⋯O8 0.82 (5) 2.10 (5) 2.920 (6) 176 (5)
O12W—H24W⋯O6 0.82 (4) 2.73 (7) 3.069 (6) 106 (6)
O1W—H1W⋯O11Wi 0.82 (1) 1.93 (1) 2.747 (7) 175 (7)
O2W—H3W⋯O14Wii 0.82 (3) 2.06 (1) 2.865 (7) 168 (5)
O2W—H4W⋯O24iii 0.82 (2) 2.37 (7) 3.018 (6) 136 (8)
O3W—H5W⋯O8Wiii 0.83 (4) 2.16 (6) 2.760 (6) 129 (6)
O4W—H7W⋯O14Wii 0.82 (3) 2.04 (3) 2.850 (6) 169 (5)
O4W—H8W⋯O7Wiii 0.82 (3) 2.06 (2) 2.872 (6) 168 (9)
O5W—H9W⋯O23iv 0.82 (2) 2.41 (6) 2.937 (6) 123 (6)
O5W—H10W⋯O12v 0.83 (6) 2.45 (4) 3.179 (6) 149 (8)
O6W—H11W⋯O14v 0.82 (3) 2.15 (3) 2.874 (5) 147 (4)
O7W—H13W⋯O12v 0.82 (3) 2.11 (3) 2.878 (5) 157 (6)
O7W—H13W⋯O11v 0.82 (3) 2.55 (5) 3.036 (5) 119 (5)
O7W—H14W⋯O5vi 0.82 (6) 2.00 (5) 2.812 (6) 168 (9)
O8W—H15W⋯O14Wi 0.82 (2) 2.13 (3) 2.868 (6) 149 (5)
O8W—H16W⋯O4vi 0.83 (5) 2.05 (4) 2.808 (5) 154 (10)
O9W—H18W⋯O15v 0.82 (3) 2.21 (3) 3.021 (6) 172 (6)
O10W—H19W⋯O13Wi 0.82 (3) 2.06 (3) 2.877 (7) 176 (6)
O10W—H20W⋯O7vi 0.82 (2) 2.10 (2) 2.862 (5) 154 (5)
O11W—H21W⋯O1vii 0.82 (2) 1.98 (3) 2.781 (5) 167 (5)
O11W—H22W⋯O23v 0.83 (4) 2.03 (3) 2.771 (5) 150 (6)
O13W—H25W⋯O20iv 0.82 (3) 2.55 (5) 2.918 (6) 109 (4)
O13W—H26W⋯O14v 0.81 (5) 2.23 (3) 2.935 (6) 144 (5)
O14W—H27W⋯O21viii 0.82 (1) 1.87 (2) 2.662 (5) 163 (6)
O14W—H28W⋯O8ix 0.82 (4) 1.96 (2) 2.761 (5) 167 (9)
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (v) [-x+1, -y+1, z-{\script{1\over 2}}]; (vi) x, y+1, z; (vii) [x+{\script{1\over 2}}, -y+1, z]; (viii) [-x+1, -y, z-{\script{1\over 2}}]; (ix) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, a series of polyoxomolybdate structures have been reported (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, consists of six sodium cations, one Mo7O24 anion, and fourteen water molecules. The Na+ cations are in a distorted octahedral environment, coordinated by six neighboring water molecules. Na—O bond lengths are in the normal range of 2.331 (4)—2.692 (4) Å, compared to the reported ones (Turpeinen et al., 2001; An et al., 2004).

The configuration of the heptamolybdate anion consisting of seven edge-sharing MoO6 octahedra is very similar to that reported for other heptamolybdates (Evans et al., 1975; Yang et al., 2002). The X-ray analysis shows the arrangement in terms of polyhedra, in which three octahedra are approximately in line in the central horizontal level and four are attached forward at a level above. In each heptamolybdate anion, six peripheral Mo atoms (Mo2, Mo3, Mo4 Mo5, Mo6 and Mo7) have two terminal oxygens (t—O), two bridging oxygens (β—O), one capping oxygen (β3—O), and one β4—O atom bonded to four Mo atoms, while the seventh Mo center (Mo1) has four capping oxygens and two β4—O atoms. Although Mo1 has no terminal oxygen atom, Mo=O characters are still obvious in those two very short Mo—O distances [Mo1—O11, 1.746 (3) Å and Mo1—O17, 1.727 (3) Å) opposed to two abnormally long Mo—O distances [Mo1—O10, 2.298 (3) Å and Mo1—O18, 2.238 (3) Å).

O—H···O hydrogen bonding between anionic moieties and water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates reported by our group, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structures of other [Mo7O24]6- heteropolyanions, see: Evans et al. (1975); Yang et al. (2002). For the previous determination of the title compound, see: Sjöbom & Hedman (1973). For Na—O bond lengths, see: Turpeinen et al. (2001); An et al. (2004).

Experimental top

A mixture of 2,4'-biphenyldicarboxylic acid (0.2 mmoL 0.05 g), 2-Pyridyl)pyrazole (0.3 mmoL 0.05 g), sodium molybdate (0.4 mmoL, 0.10 g), and copper(II) sulfate pentahydrate (0.2 mmol, 0.05 g) in 14 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Colourless blocks of (I) were obtained.

Refinement top

The water H atoms were located in difference maps and refined by using the 'DFIX' command with H···H = 1.38 Å, and O—H = 0.82 (2) Å and Uiso = 1.5Ueq(O).

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, a series of polyoxomolybdate structures have been reported (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, consists of six sodium cations, one Mo7O24 anion, and fourteen water molecules. The Na+ cations are in a distorted octahedral environment, coordinated by six neighboring water molecules. Na—O bond lengths are in the normal range of 2.331 (4)—2.692 (4) Å, compared to the reported ones (Turpeinen et al., 2001; An et al., 2004).

The configuration of the heptamolybdate anion consisting of seven edge-sharing MoO6 octahedra is very similar to that reported for other heptamolybdates (Evans et al., 1975; Yang et al., 2002). The X-ray analysis shows the arrangement in terms of polyhedra, in which three octahedra are approximately in line in the central horizontal level and four are attached forward at a level above. In each heptamolybdate anion, six peripheral Mo atoms (Mo2, Mo3, Mo4 Mo5, Mo6 and Mo7) have two terminal oxygens (t—O), two bridging oxygens (β—O), one capping oxygen (β3—O), and one β4—O atom bonded to four Mo atoms, while the seventh Mo center (Mo1) has four capping oxygens and two β4—O atoms. Although Mo1 has no terminal oxygen atom, Mo=O characters are still obvious in those two very short Mo—O distances [Mo1—O11, 1.746 (3) Å and Mo1—O17, 1.727 (3) Å) opposed to two abnormally long Mo—O distances [Mo1—O10, 2.298 (3) Å and Mo1—O18, 2.238 (3) Å).

O—H···O hydrogen bonding between anionic moieties and water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates reported by our group, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structures of other [Mo7O24]6- heteropolyanions, see: Evans et al. (1975); Yang et al. (2002). For the previous determination of the title compound, see: Sjöbom & Hedman (1973). For Na—O bond lengths, see: Turpeinen et al. (2001); An et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I), displayed with O—H···O hydrogen bonds as dashed lines.
Hexasodium heptamolybdate(VI) 14-hydrate top
Crystal data top
Na6(Mo7O24)·14H2OF(000) = 2768
Mr = 1445.74Dx = 2.807 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9872 reflections
a = 21.1304 (2) Åθ = 2.2–30.3°
b = 10.3733 (1) ŵ = 2.68 mm1
c = 15.6094 (2) ÅT = 296 K
V = 3421.46 (6) Å3Block, colourless
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5831 independent reflections
Radiation source: fine-focus sealed tube5748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2025
Tmin = 0.739, Tmax = 0.814k = 1211
16564 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.12 e Å3
5831 reflectionsΔρmin = 1.00 e Å3
545 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
63 restraintsExtinction coefficient: 0.00258 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2689 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (2)
Crystal data top
Na6(Mo7O24)·14H2OV = 3421.46 (6) Å3
Mr = 1445.74Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 21.1304 (2) ŵ = 2.68 mm1
b = 10.3733 (1) ÅT = 296 K
c = 15.6094 (2) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5748 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.814Rint = 0.021
16564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044Δρmax = 1.12 e Å3
S = 1.00Δρmin = 1.00 e Å3
5831 reflectionsAbsolute structure: Flack (1983), 2689 Friedel pairs
545 parametersAbsolute structure parameter: 0.02 (2)
63 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.441554 (16)0.17102 (3)0.95800 (3)0.01241 (9)
Mo20.519892 (17)0.17010 (4)0.76582 (3)0.01523 (10)
Mo30.364901 (18)0.18576 (4)0.76633 (3)0.01518 (10)
Mo40.528881 (18)0.44744 (4)0.95766 (3)0.01502 (9)
Mo50.374213 (18)0.47162 (4)0.95430 (3)0.01652 (10)
Mo60.603656 (18)0.18041 (4)0.93595 (3)0.01647 (10)
Mo70.282633 (18)0.22516 (4)0.93663 (3)0.01714 (10)
Na10.64293 (9)0.6312 (2)0.78932 (12)0.0257 (4)
Na20.27899 (10)0.0513 (2)0.60777 (14)0.0311 (5)
Na30.38753 (11)0.0891 (3)1.10058 (16)0.0458 (7)
Na40.48165 (9)0.66440 (19)0.79018 (13)0.0260 (5)
Na50.30429 (10)0.5433 (2)0.71744 (16)0.0364 (6)
Na60.44153 (9)0.0751 (2)0.57623 (13)0.0262 (5)
O10.31809 (17)0.3039 (4)0.7229 (2)0.0243 (8)
O20.36309 (17)0.0599 (3)0.6943 (2)0.0241 (8)
O30.44497 (14)0.2636 (3)0.7335 (2)0.0175 (7)
O40.43894 (15)0.0915 (3)0.8473 (2)0.0155 (7)
O50.51294 (17)0.0389 (3)0.6968 (2)0.0233 (8)
O60.57476 (17)0.2655 (4)0.7163 (2)0.0253 (8)
O70.57567 (17)0.0718 (3)0.8441 (2)0.0206 (7)
O80.66719 (17)0.2509 (4)0.8854 (3)0.0301 (9)
O90.63533 (17)0.0697 (3)1.0055 (2)0.0255 (8)
O100.52100 (14)0.2723 (3)0.8833 (2)0.0150 (7)
O110.50591 (16)0.0893 (3)1.0023 (2)0.0210 (7)
O120.58294 (17)0.3174 (3)1.0138 (2)0.0194 (7)
O130.58341 (16)0.5165 (4)0.8912 (2)0.0266 (8)
O140.52789 (18)0.5444 (3)1.0477 (2)0.0259 (8)
O150.44765 (14)0.3318 (3)1.0129 (2)0.0153 (7)
O160.45439 (14)0.5087 (3)0.9006 (2)0.0184 (7)
O170.37682 (17)0.1012 (3)1.0071 (2)0.0238 (8)
O180.37170 (14)0.2913 (3)0.8856 (2)0.0156 (7)
O190.22488 (17)0.3105 (4)0.8851 (2)0.0299 (9)
O200.24370 (17)0.1265 (4)1.0080 (2)0.0269 (8)
O210.30435 (16)0.1066 (3)0.8458 (2)0.0183 (7)
O220.32638 (17)0.5509 (4)0.8837 (2)0.0290 (9)
O230.31128 (15)0.3577 (3)1.0128 (2)0.0195 (7)
O240.37878 (19)0.5698 (4)1.0429 (3)0.0307 (9)
O1W0.3174 (2)0.0027 (5)1.1998 (3)0.0462 (11)
O2W0.2972 (3)0.1913 (5)1.0428 (3)0.0478 (12)
O3W0.4691 (2)0.1981 (4)1.0305 (2)0.0296 (9)
O4W0.3203 (2)0.2267 (4)0.6941 (3)0.0352 (9)
O5W0.2912 (3)0.5327 (7)0.5640 (4)0.086 (2)
O6W0.41466 (18)0.5240 (4)0.7083 (2)0.0288 (8)
O7W0.4549 (2)0.7974 (4)0.6737 (3)0.0344 (10)
O8W0.4210 (2)0.8248 (4)0.8668 (3)0.0302 (9)
O9W0.5612 (2)0.5692 (5)0.6945 (3)0.0376 (10)
O10W0.5724 (2)0.7960 (4)0.8444 (3)0.0366 (10)
O11W0.69267 (19)0.7408 (4)0.6777 (2)0.0323 (9)
O12W0.6942 (2)0.4283 (4)0.7449 (3)0.0491 (12)
O13W0.38065 (18)0.2485 (3)0.5149 (3)0.0421 (10)
O14W0.71393 (19)0.1461 (4)0.3624 (3)0.0348 (10)
H1W0.316 (3)0.0761 (6)1.196 (4)0.080*
H2W0.326 (3)0.029 (5)1.2479 (15)0.080*
H3W0.295 (3)0.167 (5)0.9929 (12)0.080*
H4W0.299 (4)0.2700 (9)1.049 (3)0.080*
H5W0.478 (3)0.170 (4)0.982 (2)0.080*
H6W0.467 (4)0.2784 (7)1.034 (4)0.080*
H7W0.306 (2)0.208 (6)0.7412 (14)0.080*
H8W0.3579 (12)0.209 (8)0.688 (4)0.080*
H9W0.287 (3)0.4546 (11)0.559 (4)0.080*
H10W0.318 (3)0.565 (5)0.532 (4)0.080*
H11W0.428 (2)0.537 (5)0.6599 (12)0.080*
H12W0.427 (2)0.456 (3)0.730 (3)0.080*
H13W0.455 (3)0.768 (5)0.6248 (14)0.080*
H14W0.477 (3)0.862 (5)0.680 (4)0.080*
H15W0.3839 (8)0.803 (5)0.861 (5)0.080*
H16W0.430 (3)0.895 (4)0.845 (6)0.080*
H17W0.562 (4)0.4902 (5)0.693 (4)0.080*
H18W0.559 (3)0.603 (5)0.6473 (17)0.080*
H19W0.584 (3)0.784 (6)0.8939 (13)0.080*
H20W0.564 (3)0.8712 (15)0.832 (4)0.080*
H21W0.7309 (5)0.731 (7)0.683 (4)0.080*
H22W0.679 (3)0.726 (9)0.629 (2)0.080*
H23W0.687 (3)0.376 (4)0.783 (3)0.080*
H24W0.684 (4)0.405 (6)0.6968 (18)0.080*
H25W0.374 (3)0.172 (2)0.526 (5)0.080*
H26W0.413 (2)0.278 (5)0.535 (5)0.080*
H27W0.716 (3)0.0671 (5)0.361 (6)0.080*
H28W0.7484 (13)0.182 (5)0.361 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0120 (2)0.01206 (19)0.0131 (2)0.00056 (13)0.00043 (16)0.00097 (16)
Mo20.0147 (2)0.0172 (2)0.01380 (19)0.00019 (14)0.00116 (17)0.00129 (16)
Mo30.0143 (2)0.0164 (2)0.01480 (19)0.00104 (15)0.00192 (17)0.00082 (16)
Mo40.01592 (19)0.01323 (19)0.01592 (19)0.00242 (14)0.00039 (17)0.00063 (16)
Mo50.01692 (19)0.01323 (19)0.0194 (2)0.00094 (14)0.00030 (17)0.00124 (16)
Mo60.01212 (19)0.0185 (2)0.0187 (2)0.00150 (14)0.00171 (16)0.00215 (16)
Mo70.01230 (19)0.0199 (2)0.0192 (2)0.00179 (15)0.00169 (16)0.00027 (17)
Na10.0219 (10)0.0308 (11)0.0244 (11)0.0043 (8)0.0011 (8)0.0013 (9)
Na20.0243 (11)0.0370 (13)0.0321 (11)0.0014 (9)0.0002 (9)0.0022 (10)
Na30.0321 (13)0.0686 (19)0.0366 (13)0.0158 (12)0.0011 (10)0.0072 (13)
Na40.0311 (12)0.0249 (11)0.0219 (10)0.0007 (8)0.0007 (8)0.0024 (8)
Na50.0246 (12)0.0302 (13)0.0543 (15)0.0009 (9)0.0001 (10)0.0007 (11)
Na60.0241 (11)0.0284 (12)0.0260 (11)0.0030 (8)0.0005 (8)0.0041 (9)
O10.0218 (19)0.025 (2)0.027 (2)0.0010 (15)0.0034 (15)0.0026 (15)
O20.0251 (19)0.0249 (19)0.0223 (19)0.0018 (15)0.0007 (15)0.0037 (15)
O30.0144 (17)0.0182 (18)0.0198 (18)0.0009 (13)0.0017 (12)0.0042 (14)
O40.0175 (18)0.0149 (17)0.0140 (17)0.0016 (13)0.0002 (12)0.0010 (13)
O50.026 (2)0.022 (2)0.0210 (18)0.0011 (14)0.0012 (15)0.0060 (15)
O60.0202 (18)0.029 (2)0.026 (2)0.0086 (15)0.0028 (15)0.0000 (15)
O70.0232 (19)0.0191 (18)0.0196 (18)0.0089 (15)0.0032 (14)0.0017 (14)
O80.0200 (19)0.032 (2)0.038 (2)0.0013 (16)0.0051 (17)0.0019 (17)
O90.0207 (19)0.027 (2)0.0284 (19)0.0035 (15)0.0036 (15)0.0043 (16)
O100.0129 (17)0.0169 (18)0.0152 (16)0.0006 (12)0.0004 (13)0.0015 (13)
O110.0217 (18)0.0199 (18)0.0215 (17)0.0038 (14)0.0044 (15)0.0019 (14)
O120.0197 (17)0.0209 (18)0.0178 (18)0.0015 (13)0.0056 (15)0.0011 (14)
O130.025 (2)0.028 (2)0.027 (2)0.0051 (15)0.0063 (15)0.0025 (16)
O140.034 (2)0.022 (2)0.0216 (19)0.0002 (15)0.0038 (16)0.0059 (15)
O150.0169 (17)0.0159 (17)0.0131 (17)0.0004 (12)0.0025 (13)0.0002 (13)
O160.0196 (17)0.0150 (17)0.0205 (17)0.0006 (13)0.0024 (13)0.0029 (14)
O170.0273 (19)0.0213 (18)0.0229 (18)0.0062 (14)0.0036 (15)0.0020 (14)
O180.0124 (16)0.0198 (17)0.0146 (17)0.0009 (13)0.0017 (13)0.0010 (14)
O190.0235 (19)0.034 (2)0.032 (2)0.0050 (16)0.0054 (17)0.0014 (17)
O200.0202 (19)0.031 (2)0.0292 (19)0.0080 (16)0.0041 (15)0.0039 (17)
O210.0182 (18)0.0191 (18)0.0176 (17)0.0076 (14)0.0002 (14)0.0005 (13)
O220.025 (2)0.027 (2)0.035 (2)0.0029 (16)0.0056 (17)0.0051 (17)
O230.0197 (17)0.0194 (17)0.0192 (17)0.0010 (14)0.0058 (14)0.0020 (14)
O240.039 (2)0.0199 (19)0.033 (2)0.0003 (16)0.0012 (18)0.0086 (16)
O1W0.051 (3)0.042 (3)0.046 (3)0.001 (2)0.006 (2)0.003 (2)
O2W0.066 (3)0.040 (3)0.038 (3)0.014 (2)0.004 (2)0.006 (2)
O3W0.032 (2)0.027 (2)0.030 (2)0.0028 (17)0.0004 (18)0.0008 (16)
O4W0.036 (2)0.030 (2)0.039 (2)0.0001 (18)0.0006 (19)0.0010 (19)
O5W0.096 (5)0.107 (5)0.054 (3)0.064 (4)0.009 (3)0.002 (3)
O6W0.029 (2)0.025 (2)0.032 (2)0.0035 (16)0.0051 (17)0.0035 (16)
O7W0.053 (3)0.025 (2)0.025 (2)0.0062 (19)0.0011 (18)0.0016 (17)
O8W0.034 (2)0.026 (2)0.031 (2)0.0006 (17)0.0015 (19)0.0023 (16)
O9W0.030 (2)0.047 (3)0.036 (2)0.002 (2)0.0058 (18)0.015 (2)
O10W0.046 (3)0.023 (2)0.041 (3)0.0031 (19)0.004 (2)0.0026 (18)
O11W0.024 (2)0.046 (3)0.026 (2)0.0014 (18)0.0036 (16)0.0077 (18)
O12W0.034 (2)0.041 (3)0.073 (3)0.0010 (19)0.013 (2)0.006 (2)
O13W0.035 (2)0.041 (3)0.051 (3)0.0027 (19)0.008 (2)0.010 (2)
O14W0.026 (2)0.031 (2)0.047 (2)0.0036 (18)0.0036 (19)0.005 (2)
Geometric parameters (Å, º) top
Mo1—O171.727 (3)Na4—O7W2.352 (5)
Mo1—O111.746 (3)Na4—O6W2.399 (4)
Mo1—O151.880 (3)Na4—O8W2.417 (5)
Mo1—O41.915 (3)Na4—O162.430 (4)
Mo1—O182.238 (3)Na4—O9W2.455 (5)
Mo1—O102.298 (3)Na4—O10W2.501 (5)
Mo2—O61.709 (3)Na5—O6W2.345 (4)
Mo2—O51.741 (3)Na5—O12Wv2.384 (5)
Mo2—O31.924 (3)Na5—O5W2.413 (7)
Mo2—O71.981 (3)Na5—O4Wvi2.437 (5)
Mo2—O102.119 (3)Na5—O12.503 (4)
Mo2—O42.283 (3)Na5—O222.638 (5)
Mo3—O11.715 (4)Na6—O13W2.410 (4)
Mo3—O21.723 (3)Na6—O11iii2.339 (4)
Mo3—O31.943 (3)Na6—O3Wiii2.388 (5)
Mo3—O211.962 (3)Na6—O52.442 (4)
Mo3—O182.164 (3)Na6—O9iii2.472 (4)
Mo3—O42.237 (3)Na6—O22.484 (4)
Mo4—O131.707 (3)O5—Na3iii2.637 (4)
Mo4—O141.729 (3)O6—Na3iii2.692 (4)
Mo4—O161.917 (3)O9—Na2iv2.421 (4)
Mo4—O121.973 (3)O9—Na6iv2.472 (4)
Mo4—O102.162 (3)O11—Na6iv2.339 (4)
Mo4—O152.264 (3)O19—Na1v2.366 (4)
Mo5—O221.706 (4)O20—Na2vii2.461 (4)
Mo5—O241.720 (4)O1W—Na2vii2.543 (5)
Mo5—O161.929 (3)O12W—Na5i2.384 (5)
Mo5—O232.000 (3)O1W—H1W0.821 (4)
Mo5—O182.157 (3)O1W—H2W0.82 (3)
Mo5—O152.312 (3)O2W—Na2vii2.395 (5)
Mo6—O91.717 (3)O2W—H3W0.82 (3)
Mo6—O81.720 (4)O2W—H4W0.823 (15)
Mo6—O71.917 (3)O3W—Na6iv2.388 (5)
Mo6—O121.920 (3)O3W—H5W0.83 (4)
Mo6—O102.153 (3)O3W—H6W0.835 (9)
Mo6—O112.497 (4)O4W—Na5viii2.437 (5)
Mo7—O191.709 (4)O4W—H7W0.82 (3)
Mo7—O201.722 (4)O4W—H8W0.82 (3)
Mo7—O231.915 (3)O5W—H9W0.819 (15)
Mo7—O211.932 (3)O5W—H10W0.83 (6)
Mo7—O182.156 (3)O6W—H11W0.82 (3)
Na1—O11W2.331 (4)O6W—H12W0.83 (4)
Na1—O132.352 (4)O7W—H13W0.82 (3)
Na1—O9W2.364 (5)O7W—H14W0.82 (6)
Na1—O19i2.366 (4)O8W—H15W0.82 (2)
Na1—O10W2.426 (5)O8W—H16W0.83 (5)
Na1—O12W2.467 (5)O9W—H17W0.820 (10)
Na2—O2Wii2.395 (5)O9W—H18W0.82 (3)
Na2—O9iii2.421 (4)O10W—H19W0.82 (3)
Na2—O4W2.427 (5)O10W—H20W0.82 (2)
Na2—O20ii2.461 (4)O11W—H21W0.818 (15)
Na2—O22.513 (4)O11W—H22W0.83 (4)
Na2—O1Wii2.543 (5)O12W—H23W0.82 (5)
Na3—O1W2.324 (5)O12W—H24W0.82 (4)
Na3—O3W2.334 (5)O13W—H25W0.82 (3)
Na3—O2W2.362 (6)O13W—H26W0.81 (5)
Na3—O172.466 (4)O14W—H27W0.821 (9)
Na3—O5iv2.637 (4)O14W—H28W0.82 (4)
Na3—O6iv2.692 (4)
O17—Mo1—O11103.74 (18)O2Wii—Na2—O1Wii79.69 (18)
O17—Mo1—O15102.93 (16)O9iii—Na2—O1Wii170.76 (17)
O11—Mo1—O15101.36 (15)O4W—Na2—O1Wii97.07 (17)
O17—Mo1—O4101.36 (15)O20ii—Na2—O1Wii93.04 (16)
O11—Mo1—O499.83 (15)O2—Na2—O1Wii99.87 (15)
O15—Mo1—O4142.70 (15)O1W—Na3—O3W166.03 (19)
O17—Mo1—O1886.29 (15)O1W—Na3—O2W84.99 (18)
O11—Mo1—O18169.87 (14)O3W—Na3—O2W101.55 (18)
O15—Mo1—O1877.34 (13)O1W—Na3—O1791.55 (17)
O4—Mo1—O1876.45 (13)O3W—Na3—O17100.28 (16)
O17—Mo1—O10174.48 (15)O2W—Na3—O1793.40 (17)
O11—Mo1—O1081.61 (14)O1W—Na3—O5iv93.01 (16)
O15—Mo1—O1077.03 (13)O3W—Na3—O5iv76.91 (14)
O4—Mo1—O1076.14 (13)O2W—Na3—O5iv161.95 (19)
O18—Mo1—O1088.33 (12)O17—Na3—O5iv104.60 (15)
O6—Mo2—O5103.31 (17)O1W—Na3—O6iv90.19 (17)
O6—Mo2—O398.51 (16)O3W—Na3—O6iv76.51 (14)
O5—Mo2—O399.36 (16)O2W—Na3—O6iv100.99 (18)
O6—Mo2—O799.99 (17)O17—Na3—O6iv165.60 (16)
O5—Mo2—O791.69 (16)O5iv—Na3—O6iv61.03 (12)
O3—Mo2—O7155.63 (14)O7W—Na4—O6W78.62 (15)
O6—Mo2—O1095.41 (15)O7W—Na4—O8W81.45 (16)
O5—Mo2—O10158.01 (15)O6W—Na4—O8W111.64 (16)
O3—Mo2—O1089.05 (13)O7W—Na4—O16151.77 (16)
O7—Mo2—O1073.56 (13)O6W—Na4—O1680.47 (13)
O6—Mo2—O4165.32 (15)O8W—Na4—O1688.92 (14)
O5—Mo2—O490.13 (14)O7W—Na4—O9W85.99 (17)
O3—Mo2—O473.11 (13)O6W—Na4—O9W80.55 (14)
O7—Mo2—O485.29 (13)O8W—Na4—O9W160.16 (18)
O10—Mo2—O472.81 (12)O16—Na4—O9W109.03 (16)
O1—Mo3—O2105.69 (17)O7W—Na4—O10W97.22 (17)
O1—Mo3—O395.81 (16)O6W—Na4—O10W164.52 (16)
O2—Mo3—O399.35 (16)O8W—Na4—O10W82.12 (15)
O1—Mo3—O2199.95 (16)O16—Na4—O10W107.71 (15)
O2—Mo3—O2194.63 (16)O9W—Na4—O10W84.31 (16)
O3—Mo3—O21155.25 (14)O6W—Na5—O12Wv172.8 (2)
O1—Mo3—O1891.01 (15)O6W—Na5—O5W92.9 (2)
O2—Mo3—O18161.01 (15)O12Wv—Na5—O5W94.1 (2)
O3—Mo3—O1887.63 (13)O6W—Na5—O4Wvi86.34 (15)
O21—Mo3—O1873.21 (12)O12Wv—Na5—O4Wvi92.41 (17)
O1—Mo3—O4160.00 (15)O5W—Na5—O4Wvi85.0 (2)
O2—Mo3—O493.03 (15)O6W—Na5—O178.54 (14)
O3—Mo3—O473.83 (13)O12Wv—Na5—O1103.31 (16)
O21—Mo3—O485.18 (13)O5W—Na5—O190.1 (2)
O18—Mo3—O471.84 (12)O4Wvi—Na5—O1163.84 (16)
O13—Mo4—O14104.96 (18)O6W—Na5—O2283.46 (14)
O13—Mo4—O1697.62 (16)O12Wv—Na5—O2289.57 (18)
O14—Mo4—O16100.09 (16)O5W—Na5—O22176.3 (2)
O13—Mo4—O1299.54 (16)O4Wvi—Na5—O2295.37 (15)
O14—Mo4—O1292.49 (16)O1—Na5—O2288.60 (13)
O16—Mo4—O12155.31 (14)O13W—Na6—O11iii126.98 (17)
O13—Mo4—O1094.50 (15)O13W—Na6—O3Wiii84.49 (15)
O14—Mo4—O10157.58 (15)O11iii—Na6—O3Wiii82.35 (14)
O16—Mo4—O1088.05 (13)O13W—Na6—O5138.66 (17)
O12—Mo4—O1073.06 (13)O11iii—Na6—O588.57 (13)
O13—Mo4—O15164.76 (15)O3Wiii—Na6—O579.87 (14)
O14—Mo4—O1589.38 (15)O13W—Na6—O9iii85.71 (15)
O16—Mo4—O1574.36 (13)O11iii—Na6—O9iii69.45 (13)
O12—Mo4—O1584.70 (13)O3Wiii—Na6—O9iii135.27 (15)
O10—Mo4—O1572.60 (12)O5—Na6—O9iii131.09 (15)
O22—Mo5—O24105.50 (19)O13W—Na6—O289.20 (15)
O22—Mo5—O1698.23 (16)O11iii—Na6—O2129.55 (15)
O24—Mo5—O16100.49 (17)O3Wiii—Na6—O2141.55 (15)
O22—Mo5—O23100.70 (16)O5—Na6—O280.23 (14)
O24—Mo5—O2391.18 (16)O9iii—Na6—O281.64 (13)
O16—Mo5—O23154.21 (14)Mo3—O1—Na5142.2 (2)
O22—Mo5—O1894.71 (15)Mo3—O2—Na6114.91 (18)
O24—Mo5—O18156.14 (16)Mo3—O2—Na2135.58 (19)
O16—Mo5—O1888.77 (13)Na6—O2—Na295.85 (14)
O23—Mo5—O1872.41 (13)Mo2—O3—Mo3115.98 (17)
O22—Mo5—O15162.75 (16)Mo1—O4—Mo3109.98 (15)
O24—Mo5—O1590.90 (16)Mo1—O4—Mo2109.10 (14)
O16—Mo5—O1573.01 (12)Mo3—O4—Mo293.03 (12)
O23—Mo5—O1583.97 (13)Mo2—O5—Na6114.14 (18)
O18—Mo5—O1570.68 (12)Mo2—O5—Na3iii97.50 (16)
O9—Mo6—O8105.68 (18)Na6—O5—Na3iii91.33 (14)
O9—Mo6—O7101.52 (16)Mo2—O6—Na3iii96.37 (17)
O8—Mo6—O798.49 (17)Mo6—O7—Mo2110.01 (17)
O9—Mo6—O12100.59 (16)Mo6—O9—Na2iv139.6 (2)
O8—Mo6—O1298.84 (17)Mo6—O9—Na6iv115.65 (18)
O7—Mo6—O12146.93 (15)Na2iv—O9—Na6iv98.57 (14)
O9—Mo6—O10148.66 (15)Mo2—O10—Mo696.77 (13)
O8—Mo6—O10105.66 (16)Mo2—O10—Mo4152.37 (17)
O7—Mo6—O1074.02 (13)Mo6—O10—Mo496.01 (12)
O12—Mo6—O1074.28 (13)Mo2—O10—Mo1101.67 (13)
O9—Mo6—O1178.85 (14)Mo6—O10—Mo1101.34 (13)
O8—Mo6—O11175.47 (15)Mo4—O10—Mo199.68 (12)
O7—Mo6—O1180.35 (13)Mo1—O11—Na6iv156.9 (2)
O12—Mo6—O1180.15 (13)Mo1—O11—Mo6107.22 (16)
O10—Mo6—O1169.81 (11)Na6iv—O11—Mo695.04 (13)
O19—Mo7—O20105.74 (19)Mo6—O12—Mo4110.89 (16)
O19—Mo7—O2398.41 (17)Mo4—O13—Na1169.7 (2)
O20—Mo7—O23100.14 (17)Mo1—O15—Mo4110.38 (15)
O19—Mo7—O2198.83 (17)Mo1—O15—Mo5109.28 (15)
O20—Mo7—O21102.13 (16)Mo4—O15—Mo591.48 (12)
O23—Mo7—O21146.83 (14)Mo4—O16—Mo5116.91 (17)
O19—Mo7—O18106.55 (16)Mo4—O16—Na4110.82 (15)
O20—Mo7—O18147.69 (15)Mo5—O16—Na4130.46 (16)
O23—Mo7—O1874.04 (13)Mo1—O17—Na3121.71 (19)
O21—Mo7—O1873.97 (13)Mo7—O18—Mo596.53 (12)
O11W—Na1—O13173.62 (16)Mo7—O18—Mo395.68 (12)
O11W—Na1—O9W89.69 (16)Mo5—O18—Mo3150.20 (16)
O13—Na1—O9W83.96 (16)Mo7—O18—Mo1102.24 (13)
O11W—Na1—O19i91.00 (15)Mo5—O18—Mo1102.48 (13)
O13—Na1—O19i95.36 (15)Mo3—O18—Mo1101.32 (13)
O9W—Na1—O19i178.99 (19)Mo7—O19—Na1v162.3 (2)
O11W—Na1—O10W101.45 (18)Mo7—O20—Na2vii161.4 (2)
O13—Na1—O10W77.76 (15)Mo7—O21—Mo3110.65 (16)
O9W—Na1—O10W87.96 (16)Mo5—O22—Na5136.5 (2)
O19i—Na1—O10W92.63 (16)Mo7—O23—Mo5110.56 (15)
O11W—Na1—O12W90.47 (17)H1W—O1W—H2W114 (6)
O13—Na1—O12W89.60 (16)H3W—O2W—H4W115 (5)
O9W—Na1—O12W84.97 (18)H5W—O3W—H6W115 (5)
O19i—Na1—O12W94.28 (17)H7W—O4W—H8W114 (6)
O10W—Na1—O12W166.11 (18)H9W—O5W—H10W115 (6)
O2Wii—Na2—O9iii100.14 (17)H11W—O6W—H12W114 (5)
O2Wii—Na2—O4W91.30 (17)H13W—O7W—H14W114 (6)
O9iii—Na2—O4W92.17 (15)H15W—O8W—H16W115 (6)
O2Wii—Na2—O20ii93.17 (17)H17W—O9W—H18W114 (5)
O9iii—Na2—O20ii77.72 (14)H19W—O10W—H20W116 (6)
O4W—Na2—O20ii169.53 (16)H21W—O11W—H22W115 (6)
O2Wii—Na2—O2169.12 (18)H23W—O12W—H24W115 (5)
O9iii—Na2—O282.06 (13)H25W—O13W—H26W115 (6)
O4W—Na2—O277.93 (14)H27W—O14W—H28W114 (5)
O20ii—Na2—O297.71 (14)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1/2, y, z1/2; (iii) x+1, y, z1/2; (iv) x+1, y, z+1/2; (v) x1/2, y+1, z; (vi) x, y+1, z; (vii) x+1/2, y, z+1/2; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6W—H12W···O30.83 (4)2.04 (2)2.804 (5)156 (5)
O9W—H17W···O60.82 (1)2.37 (1)3.182 (6)168 (6)
O12W—H23W···O80.82 (5)2.10 (5)2.920 (6)176 (5)
O12W—H24W···O60.82 (4)2.73 (7)3.069 (6)106 (6)
O1W—H1W···O11Wix0.82 (1)1.93 (1)2.747 (7)175 (7)
O2W—H3W···O14Wiv0.82 (3)2.06 (1)2.865 (7)168 (5)
O2W—H4W···O24viii0.82 (2)2.37 (7)3.018 (6)136 (8)
O3W—H5W···O8Wviii0.83 (4)2.16 (6)2.760 (6)129 (6)
O4W—H7W···O14Wiv0.82 (3)2.04 (3)2.850 (6)169 (5)
O4W—H8W···O7Wviii0.82 (3)2.06 (2)2.872 (6)168 (9)
O5W—H9W···O23ii0.82 (2)2.41 (6)2.937 (6)123 (6)
O5W—H10W···O12x0.83 (6)2.45 (4)3.179 (6)149 (8)
O6W—H11W···O14x0.82 (3)2.15 (3)2.874 (5)147 (4)
O7W—H13W···O12x0.82 (3)2.11 (3)2.878 (5)157 (6)
O7W—H13W···O11x0.82 (3)2.55 (5)3.036 (5)119 (5)
O7W—H14W···O5vi0.82 (6)2.00 (5)2.812 (6)168 (9)
O8W—H15W···O14Wix0.82 (2)2.13 (3)2.868 (6)149 (5)
O8W—H16W···O4vi0.83 (5)2.05 (4)2.808 (5)154 (10)
O9W—H18W···O15x0.82 (3)2.21 (3)3.021 (6)172 (6)
O10W—H19W···O13Wix0.82 (3)2.06 (3)2.877 (7)176 (6)
O10W—H20W···O7vi0.82 (2)2.10 (2)2.862 (5)154 (5)
O11W—H21W···O1i0.82 (2)1.98 (3)2.781 (5)167 (5)
O11W—H22W···O23x0.83 (4)2.03 (3)2.771 (5)150 (6)
O13W—H25W···O20ii0.82 (3)2.55 (5)2.918 (6)109 (4)
O13W—H26W···O14x0.81 (5)2.23 (3)2.935 (6)144 (5)
O14W—H27W···O21iii0.82 (1)1.87 (2)2.662 (5)163 (6)
O14W—H28W···O8xi0.82 (4)1.96 (2)2.761 (5)167 (9)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1/2, y, z1/2; (iii) x+1, y, z1/2; (iv) x+1, y, z+1/2; (vi) x, y+1, z; (viii) x, y1, z; (ix) x+1, y+1, z+1/2; (x) x+1, y+1, z1/2; (xi) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaNa6(Mo7O24)·14H2O
Mr1445.74
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)21.1304 (2), 10.3733 (1), 15.6094 (2)
V3)3421.46 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.739, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
16564, 5831, 5748
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.00
No. of reflections5831
No. of parameters545
No. of restraints63
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 1.00
Absolute structureFlack (1983), 2689 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6W—H12W···O30.83 (4)2.04 (2)2.804 (5)156 (5)
O9W—H17W···O60.820 (10)2.374 (14)3.182 (6)168 (6)
O12W—H23W···O80.82 (5)2.10 (5)2.920 (6)176 (5)
O12W—H24W···O60.82 (4)2.73 (7)3.069 (6)106 (6)
O1W—H1W···O11Wi0.821 (4)1.928 (10)2.747 (7)175 (7)
O2W—H3W···O14Wii0.82 (3)2.058 (13)2.865 (7)168 (5)
O2W—H4W···O24iii0.823 (15)2.37 (7)3.018 (6)136 (8)
O3W—H5W···O8Wiii0.83 (4)2.16 (6)2.760 (6)129 (6)
O4W—H7W···O14Wii0.82 (3)2.04 (3)2.850 (6)169 (5)
O4W—H8W···O7Wiii0.82 (3)2.06 (2)2.872 (6)168 (9)
O5W—H9W···O23iv0.819 (15)2.41 (6)2.937 (6)123 (6)
O5W—H10W···O12v0.83 (6)2.45 (4)3.179 (6)149 (8)
O6W—H11W···O14v0.82 (3)2.15 (3)2.874 (5)147 (4)
O7W—H13W···O12v0.82 (3)2.11 (3)2.878 (5)157 (6)
O7W—H13W···O11v0.82 (3)2.55 (5)3.036 (5)119 (5)
O7W—H14W···O5vi0.82 (6)2.00 (5)2.812 (6)168 (9)
O8W—H15W···O14Wi0.82 (2)2.13 (3)2.868 (6)149 (5)
O8W—H16W···O4vi0.83 (5)2.05 (4)2.808 (5)154 (10)
O9W—H18W···O15v0.82 (3)2.21 (3)3.021 (6)172 (6)
O10W—H19W···O13Wi0.82 (3)2.06 (3)2.877 (7)176 (6)
O10W—H20W···O7vi0.82 (2)2.10 (2)2.862 (5)154 (5)
O11W—H21W···O1vii0.818 (15)1.98 (3)2.781 (5)167 (5)
O11W—H22W···O23v0.83 (4)2.03 (3)2.771 (5)150 (6)
O13W—H25W···O20iv0.82 (3)2.55 (5)2.918 (6)109 (4)
O13W—H26W···O14v0.81 (5)2.23 (3)2.935 (6)144 (5)
O14W—H27W···O21viii0.821 (9)1.866 (17)2.662 (5)163 (6)
O14W—H28W···O8ix0.82 (4)1.96 (2)2.761 (5)167 (9)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y1, z; (iv) x+1/2, y, z1/2; (v) x+1, y+1, z1/2; (vi) x, y+1, z; (vii) x+1/2, y+1, z; (viii) x+1, y, z1/2; (ix) x+3/2, y, z1/2.
 

Acknowledgements

Financial support from the Inter­national Cooperation Program for Excellent Lecturers of 2008 from Shandong Provincial Education Department, the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (2008BS04022), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationAn, H., Guo, Y., Li, Y., Wang, E., Lu, J., Xu, L. & Hu, C. (2004). Inorg. Chem. Commun. 7, 521–522.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, H. T., Gatehouse, B. M. & Leverett, P. (1975). J. Chem. Soc. Dalton. Trans. pp. 505–507.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSjöbom, K. & Hedman, B. (1973). Acta Chem. Scand. 27, 3673–3674.  Google Scholar
First citationTurpeinen, U., Mutikainen, I., Klinga, M. & Hamalainen, R. (2001). Z. Kristallogr. New Cryst. Struct. 216, 515–520.  CAS Google Scholar
First citationYang, W. B., Lu, C. Z. & Zhuang, H. H. (2002). Chinese J. Struct. Chem. (Jiegou Huaxue) 21, 168–173.  CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds