metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(1H-imidazol-2-yl)imidazol-1-ido]cobalt(III)

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn

(Received 25 March 2010; accepted 29 March 2010; online 10 April 2010)

In the title compound, [Co(C6H5N4)3], the CoIII atom adopts a distorted octa­hedral CoN6 coordination geometry, arising from three N,N′-bidentate deprotonated 2,2′-biimidazole ligands. The dihedral angles between the five-membered rings of the ligands are 4.1 (2), 9.4 (2) and 10.5 (2)°. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, generating a layered network lying in (11[\overline{1}]).

Related literature

For related structures, see: Tadokoro & Nakasuji (2000[Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205-218.]); Ye et al. (2005[Ye, B. H., Ding, B. B., Weng, Y. Q. & Chen, X. M. (2005). Cryst. Growth Des. 5, 801-806.]); Zhang et al. (2008[Zhang, L.-C., Zhu, Z.-M., You, W.-S., Chang, S. & Wang, E.-B. (2008). Acta Cryst. E64, m308.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H5N4)3]

  • Mr = 458.35

  • Monoclinic, P 21 /n

  • a = 12.299 (3) Å

  • b = 12.524 (3) Å

  • c = 12.932 (3) Å

  • β = 97.773 (4)°

  • V = 1973.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.762

  • 10212 measured reflections

  • 3728 independent reflections

  • 2358 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.138

  • S = 0.98

  • 3728 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N4 1.917 (3)
Co1—N3 1.922 (3)
Co1—N6 1.926 (3)
Co1—N1 1.929 (3)
Co1—N5 1.941 (3)
Co1—N2 1.944 (3)
N4—Co1—N3 82.54 (12)
N6—Co1—N5 81.67 (13)
N1—Co1—N2 82.18 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H6⋯N12i 0.86 1.95 2.808 (4) 172
N7—H11⋯N8ii 0.86 1.99 2.814 (4) 159
N9—H19⋯N10iii 0.86 1.95 2.796 (4) 169
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative(Hbiim-) is a particular organic target for construction of hybrid materials. Its molecular moieties possess a double property. Namely they can be coordinated to metal centres and can act as a donor in hydrogen bonding interactions (Tadokoro & Nakasuji, 2000). The crystal structure of (I) is reported here.

The X-ray crystallographic analysis shows that the molecule of the compound (I) consists of three Hbiim- and one Co3+ (Fig. 1). The Co3+ ion adopted octahedron coordination geometry, and coordinated with three Hbiim- anion. Average bond distance Co—N is 1.93 (3) Å, shorter than Co—N bond distance found in related structures, i.e. 2.116 (2)-2.118Å in [Co(H2biim)2(1,2-bdc)] (Ye et al., 2005), 2.1563 (18)Å , in diaquabis(2,2'-biimidazole)cobalt(II) dichloride (Zhang et al., 2008). In the crystalline state, the neighboring molecules are linked furtherly by N—H···N hydrogen bonding forming supermolecular structure(Fig. 2).

Related literature top

For related structures, see: Tadokoro & Nakasuji (2000); Ye et al. (2005); Zhang et al. (2008).

Experimental top

CoCl2.6H2O (0.1904 g, 0.8 mmol), biimidazole (0.107 g, 1 mmol), and water (10 ml) were added to an aqueous solution (5 ml) containing NaN3 (0.028 g,0.4 mmol). The resulting mixture was further stirred for 15 min in air, and then transferred and sealed in a 20 ml Teflon-lined reactor, which was heated at 423 K for 4 days and then cooled to room temperature at a rate of 5 K h-1. Red blocks of (I) were obtained and washed with water.

Refinement top

H atoms attached to C and N atoms of (I) were placed in geometrically idealized positions (C—H = 0.93Å, N—H = 0.86Å and constrained to ride on their parent atoms.

Structure description top

The neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative(Hbiim-) is a particular organic target for construction of hybrid materials. Its molecular moieties possess a double property. Namely they can be coordinated to metal centres and can act as a donor in hydrogen bonding interactions (Tadokoro & Nakasuji, 2000). The crystal structure of (I) is reported here.

The X-ray crystallographic analysis shows that the molecule of the compound (I) consists of three Hbiim- and one Co3+ (Fig. 1). The Co3+ ion adopted octahedron coordination geometry, and coordinated with three Hbiim- anion. Average bond distance Co—N is 1.93 (3) Å, shorter than Co—N bond distance found in related structures, i.e. 2.116 (2)-2.118Å in [Co(H2biim)2(1,2-bdc)] (Ye et al., 2005), 2.1563 (18)Å , in diaquabis(2,2'-biimidazole)cobalt(II) dichloride (Zhang et al., 2008). In the crystalline state, the neighboring molecules are linked furtherly by N—H···N hydrogen bonding forming supermolecular structure(Fig. 2).

For related structures, see: Tadokoro & Nakasuji (2000); Ye et al. (2005); Zhang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. hydrogen bond interaction in neighboring molecules.
Tris[2-(1H-imidazol-2-yl)imidazol-1-ido]cobalt(III) top
Crystal data top
[Co(C6H5N4)3]F(000) = 936
Mr = 458.35Dx = 1.543 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10212 reflections
a = 12.299 (3) Åθ = 2.3–20.5°
b = 12.524 (3) ŵ = 0.90 mm1
c = 12.932 (3) ÅT = 293 K
β = 97.773 (4)°Block, red
V = 1973.6 (8) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1415
Tmin = 0.654, Tmax = 0.762k = 1513
10212 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0798P)2]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Co(C6H5N4)3]V = 1973.6 (8) Å3
Mr = 458.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.299 (3) ŵ = 0.90 mm1
b = 12.524 (3) ÅT = 293 K
c = 12.932 (3) Å0.5 × 0.4 × 0.3 mm
β = 97.773 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2358 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.762Rint = 0.046
10212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.98Δρmax = 0.48 e Å3
3728 reflectionsΔρmin = 0.49 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.14643 (4)0.83171 (4)0.84581 (4)0.03246 (19)
N10.1905 (2)0.8669 (2)0.7123 (2)0.0325 (7)
N20.0080 (2)0.8920 (2)0.7814 (2)0.0348 (7)
N30.2012 (2)0.9650 (2)0.9055 (2)0.0324 (7)
N40.2936 (2)0.7858 (2)0.8922 (2)0.0344 (7)
N50.1019 (2)0.7861 (2)0.9773 (2)0.0348 (8)
N60.0917 (2)0.6922 (2)0.8032 (3)0.0365 (8)
C50.2563 (3)0.9108 (3)0.5682 (3)0.0400 (10)
H20.30510.91910.51970.048*
C60.2817 (3)0.8656 (3)0.6656 (3)0.0396 (10)
H10.34980.83880.69390.048*
N120.1482 (2)0.9419 (2)0.5534 (2)0.0360 (8)
C40.1135 (3)0.9131 (3)0.6429 (3)0.0308 (8)
C30.0105 (3)0.9241 (3)0.6834 (3)0.0343 (9)
N110.0888 (2)0.9582 (2)0.6405 (3)0.0433 (9)
H60.10590.98290.57830.052*
C20.1578 (3)0.9462 (4)0.7141 (4)0.0516 (12)
H70.23220.96270.70600.062*
C10.0984 (3)0.9061 (3)0.8007 (3)0.0435 (10)
H80.12490.89050.86300.052*
C180.0637 (4)0.6367 (3)0.7131 (3)0.0477 (11)
H90.07820.65780.64730.057*
C170.0115 (4)0.5462 (3)0.7345 (3)0.0493 (11)
H100.01530.49390.68660.059*
N70.0051 (3)0.5451 (2)0.8392 (3)0.0397 (8)
H110.02430.49630.87310.048*
C160.0534 (3)0.6349 (3)0.8788 (3)0.0322 (9)
C150.0665 (3)0.6837 (3)0.9789 (3)0.0306 (8)
N80.0546 (3)0.6485 (2)1.0734 (2)0.0412 (8)
C140.0858 (3)0.7350 (3)1.1374 (3)0.0477 (11)
H150.08680.73611.20940.057*
C130.1150 (3)0.8185 (3)1.0787 (3)0.0392 (10)
H160.13930.88521.10360.047*
C120.3600 (3)0.7001 (3)0.8784 (3)0.0429 (10)
H170.33680.63450.84960.051*
C110.4643 (3)0.7274 (3)0.9139 (3)0.0469 (11)
H180.52560.68360.91510.056*
N90.4642 (3)0.8312 (2)0.9480 (3)0.0413 (8)
H190.52040.86830.97340.050*
C100.3598 (3)0.8634 (3)0.9339 (3)0.0331 (9)
C90.3067 (3)0.9641 (3)0.9483 (3)0.0333 (9)
N100.3413 (2)1.0555 (2)0.9935 (3)0.0368 (8)
C80.2507 (3)1.1201 (3)0.9770 (3)0.0419 (10)
H230.24821.19070.99880.050*
C70.1643 (3)1.0652 (3)0.9236 (3)0.0394 (9)
H240.09391.09130.90340.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0365 (3)0.0314 (3)0.0284 (3)0.0033 (2)0.0010 (2)0.0038 (2)
N10.0327 (16)0.0320 (16)0.0321 (19)0.0013 (13)0.0023 (14)0.0052 (14)
N20.0354 (17)0.0352 (18)0.033 (2)0.0026 (14)0.0028 (14)0.0041 (15)
N30.0359 (17)0.0304 (17)0.030 (2)0.0012 (13)0.0013 (14)0.0040 (13)
N40.0396 (17)0.0262 (16)0.036 (2)0.0012 (14)0.0009 (15)0.0041 (14)
N50.0377 (17)0.0316 (17)0.035 (2)0.0041 (14)0.0021 (15)0.0008 (14)
N60.0437 (18)0.0348 (17)0.030 (2)0.0040 (14)0.0017 (15)0.0001 (14)
C50.040 (2)0.046 (2)0.035 (3)0.0064 (18)0.0082 (19)0.0010 (19)
C60.034 (2)0.042 (2)0.041 (3)0.0004 (17)0.0028 (19)0.0017 (19)
N120.0379 (18)0.0370 (18)0.032 (2)0.0054 (14)0.0008 (15)0.0026 (14)
C40.0361 (19)0.0306 (19)0.025 (2)0.0051 (16)0.0013 (16)0.0005 (16)
C30.038 (2)0.033 (2)0.031 (2)0.0034 (17)0.0056 (18)0.0003 (17)
N110.0374 (18)0.055 (2)0.036 (2)0.0019 (15)0.0008 (16)0.0097 (16)
C20.034 (2)0.071 (3)0.051 (3)0.004 (2)0.009 (2)0.010 (2)
C10.039 (2)0.057 (3)0.037 (3)0.0025 (19)0.0129 (19)0.006 (2)
C180.074 (3)0.046 (2)0.024 (2)0.006 (2)0.010 (2)0.0032 (19)
C170.072 (3)0.046 (3)0.029 (3)0.013 (2)0.003 (2)0.0085 (19)
N70.051 (2)0.0336 (18)0.034 (2)0.0088 (15)0.0043 (16)0.0024 (15)
C160.040 (2)0.033 (2)0.024 (2)0.0040 (16)0.0040 (17)0.0020 (16)
C150.0329 (19)0.030 (2)0.028 (2)0.0031 (15)0.0023 (16)0.0038 (16)
N80.056 (2)0.0400 (19)0.027 (2)0.0081 (15)0.0056 (17)0.0011 (15)
C140.069 (3)0.051 (3)0.024 (2)0.007 (2)0.010 (2)0.004 (2)
C130.051 (2)0.037 (2)0.029 (2)0.0044 (18)0.0035 (19)0.0078 (18)
C120.056 (3)0.030 (2)0.041 (3)0.0033 (18)0.000 (2)0.0027 (18)
C110.050 (2)0.042 (3)0.046 (3)0.014 (2)0.003 (2)0.006 (2)
N90.0407 (18)0.0404 (19)0.039 (2)0.0016 (15)0.0083 (16)0.0009 (15)
C100.033 (2)0.034 (2)0.030 (2)0.0009 (16)0.0031 (17)0.0073 (17)
C90.038 (2)0.031 (2)0.030 (2)0.0019 (16)0.0032 (18)0.0034 (16)
N100.0440 (18)0.0334 (18)0.034 (2)0.0023 (14)0.0071 (15)0.0058 (14)
C80.053 (2)0.033 (2)0.043 (3)0.0008 (19)0.016 (2)0.0025 (19)
C70.043 (2)0.036 (2)0.041 (3)0.0060 (18)0.0120 (19)0.0044 (18)
Geometric parameters (Å, º) top
Co1—N41.917 (3)C2—C11.348 (5)
Co1—N31.922 (3)C2—H70.9300
Co1—N61.926 (3)C1—H80.9300
Co1—N11.929 (3)C18—C171.350 (5)
Co1—N51.941 (3)C18—H90.9300
Co1—N21.944 (3)C17—N71.367 (5)
N1—C61.344 (4)C17—H100.9300
N1—C41.345 (4)N7—C161.341 (4)
N2—C31.333 (5)N7—H110.8600
N2—C11.376 (4)C16—C151.420 (5)
N3—C91.340 (4)C15—N81.326 (5)
N3—C71.365 (4)N8—C141.386 (5)
N4—C101.335 (5)C14—C131.369 (5)
N4—C121.374 (4)C14—H150.9300
N5—C151.356 (4)C13—H160.9300
N5—C131.361 (5)C12—C111.347 (5)
N6—C161.349 (5)C12—H170.9300
N6—C181.361 (5)C11—N91.373 (5)
C5—N121.373 (4)C11—H180.9300
C5—C61.378 (5)N9—C101.334 (5)
C5—H20.9300N9—H190.8600
C6—H10.9300C10—C91.443 (5)
N12—C41.336 (5)C9—N101.329 (4)
C4—C31.442 (5)N10—C81.370 (5)
C3—N111.341 (5)C8—C71.372 (5)
N11—C21.367 (5)C8—H230.9300
N11—H60.8600C7—H240.9300
N4—Co1—N382.54 (12)C1—C2—H7126.2
N4—Co1—N695.52 (13)N11—C2—H7126.2
N3—Co1—N6173.01 (13)C2—C1—N2108.6 (4)
N4—Co1—N188.88 (12)C2—C1—H8125.7
N3—Co1—N192.05 (13)N2—C1—H8125.7
N6—Co1—N194.62 (13)C17—C18—N6109.0 (4)
N4—Co1—N590.23 (13)C17—C18—H9125.5
N3—Co1—N591.61 (13)N6—C18—H9125.5
N6—Co1—N581.67 (13)C18—C17—N7107.7 (4)
N1—Co1—N5176.08 (12)C18—C17—H10126.2
N4—Co1—N2170.39 (13)N7—C17—H10126.2
N3—Co1—N294.22 (12)C16—N7—C17106.8 (3)
N6—Co1—N288.73 (13)C16—N7—H11126.6
N1—Co1—N282.18 (12)C17—N7—H11126.6
N5—Co1—N298.93 (12)N7—C16—N6110.4 (3)
C6—N1—C4105.1 (3)N7—C16—C15134.4 (3)
C6—N1—Co1138.8 (3)N6—C16—C15115.1 (3)
C4—N1—Co1116.0 (2)N8—C15—N5113.9 (3)
C3—N2—C1106.1 (3)N8—C15—C16133.1 (3)
C3—N2—Co1113.1 (2)N5—C15—C16113.0 (3)
C1—N2—Co1140.5 (3)C15—N8—C14103.5 (3)
C9—N3—C7105.2 (3)C13—C14—N8109.8 (4)
C9—N3—Co1115.2 (2)C13—C14—H15125.1
C7—N3—Co1139.5 (3)N8—C14—H15125.1
C10—N4—C12106.3 (3)N5—C13—C14107.5 (3)
C10—N4—Co1114.0 (2)N5—C13—H16126.2
C12—N4—Co1138.2 (3)C14—C13—H16126.2
C15—N5—C13105.3 (3)C11—C12—N4108.2 (3)
C15—N5—Co1114.9 (3)C11—C12—H17125.9
C13—N5—Co1138.2 (3)N4—C12—H17125.9
C16—N6—C18106.1 (3)C12—C11—N9107.9 (3)
C16—N6—Co1114.7 (3)C12—C11—H18126.1
C18—N6—Co1138.3 (3)N9—C11—H18126.1
N12—C5—C6109.9 (3)C10—N9—C11106.6 (3)
N12—C5—H2125.1C10—N9—H19126.7
C6—C5—H2125.1C11—N9—H19126.7
N1—C6—C5107.8 (3)N9—C10—N4111.0 (3)
N1—C6—H1126.1N9—C10—C9133.7 (3)
C5—C6—H1126.1N4—C10—C9115.2 (3)
C4—N12—C5102.7 (3)N10—C9—N3114.1 (3)
N12—C4—N1114.6 (3)N10—C9—C10133.3 (3)
N12—C4—C3133.6 (3)N3—C9—C10112.6 (3)
N1—C4—C3111.8 (3)C9—N10—C8103.6 (3)
N2—C3—N11110.7 (3)N10—C8—C7109.9 (3)
N2—C3—C4116.8 (3)N10—C8—H23125.0
N11—C3—C4132.5 (4)C7—C8—H23125.0
C3—N11—C2107.0 (3)N3—C7—C8107.1 (3)
C3—N11—H6126.5N3—C7—H24126.4
C2—N11—H6126.5C8—C7—H24126.4
C1—C2—N11107.6 (3)
N4—Co1—N1—C61.6 (4)C1—N2—C3—C4177.6 (3)
N3—Co1—N1—C680.9 (4)Co1—N2—C3—C42.2 (4)
N6—Co1—N1—C697.0 (4)N12—C4—C3—N2175.1 (4)
N2—Co1—N1—C6174.9 (4)N1—C4—C3—N22.5 (5)
N4—Co1—N1—C4176.0 (3)N12—C4—C3—N117.4 (7)
N3—Co1—N1—C493.5 (3)N1—C4—C3—N11174.9 (4)
N6—Co1—N1—C488.5 (3)N2—C3—N11—C20.7 (4)
N2—Co1—N1—C40.4 (2)C4—C3—N11—C2176.9 (4)
N3—Co1—N2—C392.5 (3)C3—N11—C2—C10.7 (5)
N6—Co1—N2—C393.8 (3)N11—C2—C1—N20.4 (5)
N1—Co1—N2—C31.0 (2)C3—N2—C1—C20.0 (5)
N5—Co1—N2—C3175.2 (2)Co1—N2—C1—C2173.3 (3)
N3—Co1—N2—C194.5 (4)C16—N6—C18—C171.3 (5)
N6—Co1—N2—C179.2 (4)Co1—N6—C18—C17169.1 (3)
N1—Co1—N2—C1174.0 (4)N6—C18—C17—N70.8 (5)
N5—Co1—N2—C12.2 (4)C18—C17—N7—C160.1 (5)
N4—Co1—N3—C90.3 (3)C17—N7—C16—N60.9 (4)
N1—Co1—N3—C988.9 (3)C17—N7—C16—C15174.7 (4)
N5—Co1—N3—C989.8 (3)C18—N6—C16—N71.3 (4)
N2—Co1—N3—C9171.2 (3)Co1—N6—C16—N7172.5 (2)
N4—Co1—N3—C7176.5 (4)C18—N6—C16—C15175.2 (3)
N1—Co1—N3—C794.9 (4)Co1—N6—C16—C154.0 (4)
N5—Co1—N3—C786.5 (4)C13—N5—C15—N80.8 (4)
N2—Co1—N3—C712.6 (4)Co1—N5—C15—N8169.0 (2)
N3—Co1—N4—C103.9 (3)C13—N5—C15—C16177.1 (3)
N6—Co1—N4—C10177.1 (3)Co1—N5—C15—C168.9 (4)
N1—Co1—N4—C1088.3 (3)N7—C16—C15—N815.6 (7)
N5—Co1—N4—C1095.5 (3)N6—C16—C15—N8169.0 (4)
N3—Co1—N4—C12167.7 (4)N7—C16—C15—N5167.0 (4)
N6—Co1—N4—C1219.0 (4)N6—C16—C15—N58.5 (5)
N1—Co1—N4—C1275.5 (4)N5—C15—N8—C140.6 (4)
N5—Co1—N4—C12100.7 (4)C16—C15—N8—C14176.8 (4)
N4—Co1—N5—C1590.1 (3)C15—N8—C14—C130.1 (5)
N3—Co1—N5—C15172.6 (3)C15—N5—C13—C140.7 (4)
N6—Co1—N5—C155.5 (2)Co1—N5—C13—C14164.5 (3)
N2—Co1—N5—C1592.8 (3)N8—C14—C13—N50.4 (5)
N4—Co1—N5—C1372.7 (4)C10—N4—C12—C111.1 (4)
N3—Co1—N5—C139.9 (4)Co1—N4—C12—C11165.8 (3)
N6—Co1—N5—C13168.2 (4)N4—C12—C11—N91.3 (5)
N2—Co1—N5—C13104.4 (4)C12—C11—N9—C101.0 (4)
N4—Co1—N6—C1688.8 (3)C11—N9—C10—N40.3 (4)
N1—Co1—N6—C16178.1 (3)C11—N9—C10—C9175.9 (4)
N5—Co1—N6—C160.7 (3)C12—N4—C10—N90.5 (4)
N2—Co1—N6—C1699.9 (3)Co1—N4—C10—N9169.3 (3)
N4—Co1—N6—C18104.1 (4)C12—N4—C10—C9176.0 (3)
N1—Co1—N6—C1814.8 (4)Co1—N4—C10—C97.1 (4)
N5—Co1—N6—C18166.5 (4)C7—N3—C9—N100.6 (4)
N2—Co1—N6—C1867.3 (4)Co1—N3—C9—N10176.9 (2)
C4—N1—C6—C50.4 (4)C7—N3—C9—C10178.5 (3)
Co1—N1—C6—C5175.3 (3)Co1—N3—C9—C104.0 (4)
N12—C5—C6—N10.5 (4)N9—C10—C9—N1010.7 (8)
C6—C5—N12—C40.3 (4)N4—C10—C9—N10173.8 (4)
C5—N12—C4—N10.1 (4)N9—C10—C9—N3168.2 (4)
C5—N12—C4—C3177.6 (4)N4—C10—C9—N37.3 (5)
C6—N1—C4—N120.2 (4)N3—C9—N10—C80.8 (4)
Co1—N1—C4—N12176.4 (2)C10—C9—N10—C8178.1 (4)
C6—N1—C4—C3177.9 (3)C9—N10—C8—C70.7 (4)
Co1—N1—C4—C31.7 (4)C9—N3—C7—C80.1 (4)
C1—N2—C3—N110.4 (4)Co1—N3—C7—C8176.4 (3)
Co1—N2—C3—N11175.8 (2)N10—C8—C7—N30.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H6···N12i0.861.952.808 (4)172
N7—H11···N8ii0.861.992.814 (4)159
N9—H19···N10iii0.861.952.796 (4)169
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C6H5N4)3]
Mr458.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.299 (3), 12.524 (3), 12.932 (3)
β (°) 97.773 (4)
V3)1973.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.654, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
10212, 3728, 2358
Rint0.046
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.138, 0.98
No. of reflections3728
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N41.917 (3)Co1—N11.929 (3)
Co1—N31.922 (3)Co1—N51.941 (3)
Co1—N61.926 (3)Co1—N21.944 (3)
N4—Co1—N382.54 (12)N1—Co1—N282.18 (12)
N6—Co1—N581.67 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H6···N12i0.861.952.808 (4)172
N7—H11···N8ii0.861.992.814 (4)159
N9—H19···N10iii0.861.952.796 (4)169
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+2; (iii) x+1, y+2, z+2.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Province Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2008, as well as Doctor Startup Foundation of Shanxi University of China.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205–218.  Web of Science CrossRef CAS Google Scholar
First citationYe, B. H., Ding, B. B., Weng, Y. Q. & Chen, X. M. (2005). Cryst. Growth Des. 5, 801–806.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L.-C., Zhu, Z.-M., You, W.-S., Chang, S. & Wang, E.-B. (2008). Acta Cryst. E64, m308.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds