organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Fluoro­phen­yl)-1-(2-oxoindolin-3-yl­­idene)thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 March 2010; accepted 28 March 2010; online 2 April 2010)

The title compound, C15H11FN4OS, is almost planar, the dihedral angle between the aromatic ring systems being 5.00 (13)°. The conformation is stabilized by intra­molecular N—H⋯N and N—H⋯O hydrogen bonds, which generate S(5) and S(6) rings, respectively. N—H⋯F and C—H⋯S inter­actions also occur. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur, generating R22(8) loops.

Related literature

For related structures and medicinal background, see: Pervez et al. (2009[Pervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.], 2010[Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010). Lett. Drug Des. Discov. 7, 102-108.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FN4OS

  • Mr = 314.34

  • Monoclinic, P 21 /c

  • a = 5.7646 (3) Å

  • b = 18.4939 (12) Å

  • c = 13.6772 (8) Å

  • β = 91.212 (3)°

  • V = 1457.80 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.971

  • 11407 measured reflections

  • 2626 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 0.96

  • 2626 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.07 2.912 (3) 164
N3—H3⋯O1 0.86 2.08 2.762 (3) 135
N4—H4A⋯F1 0.86 2.21 2.613 (2) 109
N4—H4A⋯N2 0.86 2.13 2.585 (3) 113
C15—H15⋯S1 0.93 2.56 3.216 (3) 128
Symmetry code: (i) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing studies of N4-arylsubstituted isatins-3-thiosemecarbazones with certain medicinal applications (Pervez et al., 2009, 2010), we now report the synthesis and crystal structure of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 1-(5-nitro-2-oxoindolino-3-ylidene)- 4-o-tolylthiosemicarbazide methanol monosolvate (Pervez et al., 2009) has been published. The title compound (I) differs from (II) due to the absence of nitro function at position-5 of the isatin scaffold and presence of fluoro instead of methyl group at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. In (I), the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 2-fluorophenyl C (C10—C15/F1) are planar with maximum r. m. s. deviations of 0.0289, 0.0261 and 0.0056 Å, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerised due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs.

Related literature top

For related structures and medicinal background, see: Pervez et al. (2009, 2010). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-o -fluorophenylthiosemicarbazide (0.93 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during refluxing was collected by suction filtration. Thorough washing with hot ethanol followed by ether furnished the target compound (I) in pure form (1.20 g, 76 %), m.p. 505-507 K (d). The dark yellow needles of (I) were grown in ethyl acetate-petroleum ether (1:5) system by diffusion method at room temperature.

Structure description top

As part of our ongoing studies of N4-arylsubstituted isatins-3-thiosemecarbazones with certain medicinal applications (Pervez et al., 2009, 2010), we now report the synthesis and crystal structure of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 1-(5-nitro-2-oxoindolino-3-ylidene)- 4-o-tolylthiosemicarbazide methanol monosolvate (Pervez et al., 2009) has been published. The title compound (I) differs from (II) due to the absence of nitro function at position-5 of the isatin scaffold and presence of fluoro instead of methyl group at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. In (I), the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 2-fluorophenyl C (C10—C15/F1) are planar with maximum r. m. s. deviations of 0.0289, 0.0261 and 0.0056 Å, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerised due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs.

For related structures and medicinal background, see: Pervez et al. (2009, 2010). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with ellipsoids drawn at the 50% probability level. The dotted lines indicate the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form inversion dimers.
4-(2-Fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide top
Crystal data top
C15H11FN4OSF(000) = 648
Mr = 314.34Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2626 reflections
a = 5.7646 (3) Åθ = 3.5–25.3°
b = 18.4939 (12) ŵ = 0.24 mm1
c = 13.6772 (8) ÅT = 296 K
β = 91.212 (3)°Needle, dark yellow
V = 1457.80 (15) Å30.30 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2626 independent reflections
Radiation source: fine-focus sealed tube1437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 7.80 pixels mm-1θmax = 25.3°, θmin = 3.5°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2122
Tmin = 0.963, Tmax = 0.971l = 1616
11407 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
2626 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H11FN4OSV = 1457.80 (15) Å3
Mr = 314.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7646 (3) ŵ = 0.24 mm1
b = 18.4939 (12) ÅT = 296 K
c = 13.6772 (8) Å0.30 × 0.14 × 0.12 mm
β = 91.212 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1437 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.068
11407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.96Δρmax = 0.15 e Å3
2626 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09191 (15)0.20047 (5)0.00689 (6)0.0742 (3)
F10.0601 (3)0.14317 (12)0.37578 (11)0.0911 (9)
O10.7157 (3)0.04818 (11)0.01234 (13)0.0575 (8)
N10.9081 (4)0.02584 (13)0.12316 (16)0.0547 (9)
N20.4000 (4)0.06836 (12)0.18384 (15)0.0489 (8)
N30.3340 (4)0.10541 (12)0.10344 (15)0.0510 (8)
N40.0393 (3)0.15113 (12)0.19057 (14)0.0499 (8)
C10.5848 (5)0.02916 (15)0.17922 (19)0.0474 (10)
C20.7385 (5)0.01971 (16)0.0932 (2)0.0494 (11)
C30.8851 (5)0.04562 (15)0.2217 (2)0.0513 (10)
C41.0273 (5)0.08819 (17)0.2785 (2)0.0696 (12)
C50.9689 (6)0.09758 (19)0.3747 (3)0.0803 (14)
C60.7757 (6)0.06518 (19)0.4128 (2)0.0774 (15)
C70.6305 (5)0.02238 (17)0.3550 (2)0.0658 (11)
C80.6871 (4)0.01264 (15)0.25825 (19)0.0494 (10)
C90.1480 (5)0.15218 (15)0.10471 (18)0.0486 (10)
C100.1520 (4)0.19126 (15)0.22268 (19)0.0479 (10)
C110.2029 (5)0.18597 (18)0.3198 (2)0.0626 (11)
C120.3861 (6)0.2210 (2)0.3614 (3)0.0864 (14)
C130.5248 (6)0.2633 (2)0.3026 (3)0.0849 (16)
C140.4818 (5)0.26920 (18)0.2062 (3)0.0743 (14)
C150.2977 (5)0.23337 (16)0.1658 (2)0.0623 (11)
H11.017260.040970.086430.0657*
H30.409140.099840.050300.0611*
H41.158400.109960.253130.0834*
H4A0.095730.121070.232750.0598*
H51.062180.126470.414990.0960*
H60.741930.072120.478280.0929*
H70.499110.000910.380650.0791*
H120.414960.216190.427760.1037*
H130.649120.288090.329020.1015*
H140.577700.297790.166680.0892*
H150.271610.237710.099190.0747*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0779 (6)0.0878 (7)0.0577 (5)0.0167 (5)0.0193 (4)0.0148 (5)
F10.0833 (14)0.1408 (19)0.0495 (10)0.0171 (13)0.0103 (9)0.0024 (11)
O10.0453 (12)0.0735 (15)0.0543 (12)0.0021 (10)0.0167 (9)0.0014 (11)
N10.0398 (14)0.0640 (17)0.0610 (15)0.0076 (12)0.0148 (11)0.0042 (13)
N20.0410 (14)0.0541 (15)0.0519 (14)0.0019 (12)0.0100 (11)0.0051 (12)
N30.0481 (14)0.0577 (16)0.0477 (14)0.0049 (12)0.0153 (11)0.0039 (12)
N40.0460 (14)0.0585 (16)0.0455 (13)0.0098 (12)0.0118 (11)0.0016 (11)
C10.0397 (16)0.0486 (18)0.0544 (17)0.0033 (14)0.0127 (13)0.0092 (14)
C20.0399 (17)0.055 (2)0.0537 (18)0.0072 (15)0.0124 (13)0.0104 (15)
C30.0417 (17)0.0550 (19)0.0574 (18)0.0009 (15)0.0072 (14)0.0036 (16)
C40.054 (2)0.076 (2)0.079 (2)0.0149 (18)0.0073 (17)0.0046 (19)
C50.075 (2)0.089 (3)0.077 (2)0.017 (2)0.0008 (19)0.012 (2)
C60.086 (3)0.090 (3)0.0564 (19)0.010 (2)0.0068 (18)0.0090 (19)
C70.065 (2)0.077 (2)0.0558 (19)0.0075 (19)0.0142 (16)0.0024 (17)
C80.0425 (17)0.0527 (19)0.0532 (17)0.0001 (14)0.0055 (13)0.0062 (15)
C90.0448 (17)0.0512 (18)0.0504 (16)0.0002 (15)0.0124 (13)0.0052 (14)
C100.0404 (16)0.0517 (19)0.0518 (17)0.0038 (15)0.0073 (13)0.0137 (14)
C110.0508 (19)0.085 (2)0.0519 (18)0.0027 (18)0.0005 (15)0.0134 (17)
C120.065 (2)0.131 (3)0.064 (2)0.001 (2)0.0214 (18)0.036 (2)
C130.049 (2)0.106 (3)0.100 (3)0.008 (2)0.010 (2)0.044 (2)
C140.053 (2)0.075 (2)0.095 (3)0.0098 (18)0.0041 (18)0.016 (2)
C150.0504 (18)0.069 (2)0.068 (2)0.0058 (17)0.0099 (15)0.0038 (17)
Geometric parameters (Å, º) top
S1—C91.635 (3)C5—C61.377 (5)
F1—C111.365 (4)C6—C71.387 (4)
O1—C21.229 (3)C7—C81.381 (4)
N1—C21.348 (4)C10—C151.375 (4)
N1—C31.406 (4)C10—C111.370 (4)
N2—N31.344 (3)C11—C121.373 (5)
N2—C11.291 (4)C12—C131.368 (5)
N3—C91.378 (4)C13—C141.351 (6)
N4—C91.343 (3)C14—C151.377 (4)
N4—C101.407 (3)C4—H40.9300
N1—H10.8600C5—H50.9300
N3—H30.8600C6—H60.9300
N4—H4A0.8600C7—H70.9300
C1—C81.445 (4)C12—H120.9300
C1—C21.498 (4)C13—H130.9300
C3—C81.396 (4)C14—H140.9300
C3—C41.367 (4)C15—H150.9300
C4—C51.376 (5)
S1···C153.216 (3)C9···C2vi3.403 (4)
S1···C13i3.661 (4)C9···C14iii3.323 (4)
S1···C11ii3.696 (3)C9···O1vi3.372 (3)
S1···C12ii3.665 (4)C10···C1vi3.407 (4)
S1···H152.5600C11···S1vii3.696 (3)
S1···H13i2.8900C12···S1vii3.665 (4)
F1···N42.613 (2)C13···S1viii3.661 (4)
F1···H4A2.2100C14···C9vi3.323 (4)
O1···N23.022 (3)C15···N3vi3.280 (4)
O1···N32.762 (3)C15···S13.216 (3)
O1···C9iii3.372 (3)C2···H32.4700
O1···N3iv3.262 (3)C2···H3iv3.0600
O1···O1iv3.072 (3)C2···H1v2.8800
O1···N1v2.912 (3)C5···H14ix3.0200
O1···C2iv3.218 (3)C6···H14ix2.9800
O1···H32.0800C9···H152.8900
O1···H1v2.0700C14···H4x2.9600
N1···O1v2.912 (3)H1···O1v2.0700
N2···O13.022 (3)H1···C2v2.8800
N2···N42.585 (3)H3···O12.0800
N3···O1iv3.262 (3)H3···C22.4700
N3···O12.762 (3)H3···C2iv3.0600
N3···C15iii3.280 (4)H4···C14xi2.9600
N4···C2vi3.254 (4)H4A···F12.2100
N4···F12.613 (2)H4A···N22.1300
N4···N22.585 (3)H13···S1viii2.8900
N2···H4A2.1300H14···C5xii3.0200
C1···C10iii3.407 (4)H14···C6xii2.9800
C2···N4iii3.254 (4)H15···S12.5600
C2···C9iii3.403 (4)H15···C92.8900
C2···O1iv3.218 (3)
C2—N1—C3111.8 (2)S1—C9—N4129.5 (2)
N3—N2—C1117.8 (2)C11—C10—C15116.6 (2)
N2—N3—C9121.1 (2)N4—C10—C15126.6 (2)
C9—N4—C10130.4 (2)N4—C10—C11116.8 (2)
C3—N1—H1124.00C10—C11—C12123.4 (3)
C2—N1—H1124.00F1—C11—C10116.5 (2)
N2—N3—H3119.00F1—C11—C12120.1 (3)
C9—N3—H3119.00C11—C12—C13118.1 (4)
C10—N4—H4A115.00C12—C13—C14120.2 (3)
C9—N4—H4A115.00C13—C14—C15120.8 (3)
N2—C1—C2127.3 (2)C10—C15—C14120.8 (3)
C2—C1—C8106.6 (2)C3—C4—H4121.00
N2—C1—C8126.0 (2)C5—C4—H4121.00
N1—C2—C1105.8 (2)C4—C5—H5119.00
O1—C2—N1127.2 (3)C6—C5—H5119.00
O1—C2—C1127.1 (3)C5—C6—H6119.00
N1—C3—C4128.9 (3)C7—C6—H6119.00
N1—C3—C8108.9 (2)C6—C7—H7121.00
C4—C3—C8122.2 (3)C8—C7—H7121.00
C3—C4—C5117.4 (3)C11—C12—H12121.00
C4—C5—C6121.6 (3)C13—C12—H12121.00
C5—C6—C7121.1 (3)C12—C13—H13120.00
C6—C7—C8117.9 (3)C14—C13—H13120.00
C1—C8—C3106.9 (2)C13—C14—H14120.00
C3—C8—C7119.8 (2)C15—C14—H14120.00
C1—C8—C7133.3 (2)C10—C15—H15120.00
S1—C9—N3118.23 (19)C14—C15—H15120.00
N3—C9—N4112.3 (2)
C3—N1—C2—O1177.5 (3)C8—C3—C4—C50.2 (5)
C3—N1—C2—C11.8 (3)N1—C3—C8—C10.2 (3)
C2—N1—C3—C4177.2 (3)N1—C3—C8—C7178.3 (3)
C2—N1—C3—C81.3 (3)C4—C3—C8—C1178.5 (3)
C1—N2—N3—C9175.5 (3)C4—C3—C8—C70.3 (4)
N3—N2—C1—C20.0 (4)C3—C4—C5—C60.4 (5)
N3—N2—C1—C8178.0 (2)C4—C5—C6—C70.8 (5)
N2—N3—C9—S1174.9 (2)C5—C6—C7—C80.7 (5)
N2—N3—C9—N44.4 (4)C6—C7—C8—C1177.4 (3)
C10—N4—C9—S10.8 (4)C6—C7—C8—C30.1 (4)
C10—N4—C9—N3178.3 (2)N4—C10—C11—F11.1 (4)
C9—N4—C10—C11170.6 (3)N4—C10—C11—C12179.0 (3)
C9—N4—C10—C1511.8 (4)C15—C10—C11—F1179.0 (3)
N2—C1—C2—O10.6 (5)C15—C10—C11—C121.1 (5)
N2—C1—C2—N1180.0 (3)N4—C10—C15—C14179.0 (3)
C8—C1—C2—O1177.7 (3)C11—C10—C15—C141.3 (4)
C8—C1—C2—N11.7 (3)F1—C11—C12—C13180.0 (3)
N2—C1—C8—C3179.2 (3)C10—C11—C12—C130.1 (5)
N2—C1—C8—C71.5 (5)C11—C12—C13—C140.7 (5)
C2—C1—C8—C30.9 (3)C12—C13—C14—C150.5 (5)
C2—C1—C8—C7176.9 (3)C13—C14—C15—C100.6 (5)
N1—C3—C4—C5178.1 (3)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+2, y, z; (vi) x1, y, z; (vii) x, y+1/2, z+1/2; (viii) x1, y+1/2, z+1/2; (ix) x, y1/2, z+1/2; (x) x+1, y+1/2, z+1/2; (xi) x+1, y1/2, z+1/2; (xii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1v0.862.072.912 (3)164
N3—H3···O10.862.082.762 (3)135
N4—H4A···F10.862.212.613 (2)109
N4—H4A···N20.862.132.585 (3)113
C15—H15···S10.932.563.216 (3)128
Symmetry code: (v) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC15H11FN4OS
Mr314.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.7646 (3), 18.4939 (12), 13.6772 (8)
β (°) 91.212 (3)
V3)1457.80 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
11407, 2626, 1437
Rint0.068
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 0.96
No. of reflections2626
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.072.912 (3)164
N3—H3···O10.862.082.762 (3)135
N4—H4A···F10.862.212.613 (2)109
N4—H4A···N20.862.132.585 (3)113
C15—H15···S10.932.563.216 (3)128
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

HP, MY and MR wish to acknowledge partial financial assistance given by the MoST, Government of Pakistan, under Projects for the Strengthening of S&T Education in Universities (Project No. P&D/S&T/2001/231).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010). Lett. Drug Des. Discov. 7, 102-108.  CrossRef CAS Google Scholar
First citationPervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds