organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­phen­yl)[1-(4-meth­oxy­phen­yl)-3-(5-nitro-2-fur­yl)-1H-pyrazol-4-yl]methanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 March 2010; accepted 30 March 2010; online 14 April 2010)

In the title compound, C21H14ClN3O5, an intra­molecular C—H⋯O hydrogen bond generates an S(7) ring motif and the furan and pyrazole rings are almost coplanar, making a dihedral angle of 1.98 (5)°. The pyrazole ring is inclined at dihedral angles of 47.59 (4) and 7.27 (4)° to the chloro­phenyl and methoxy­phenyl groups, respectively. The nitro group is almost coplanar to its attached furan ring [dihedral angle = 2.03 (12)°]. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal structure also features short inter­molecular O⋯N [2.8546 (12) Å] and Cl⋯O [3.0844 (9) Å] contacts as well as aromatic ππ stacking inter­actions [centroid–centroid distance = 3.4367 (6) Å].

Related literature

For general background to and applications of the title compound, see: Hedge et al. (2006[Hedge, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285-1290.]); Kalluraya et al. (1994[Kalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017-1022.]); Rai & Kalluraya (2006[Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375-378.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Goh et al. (2009a[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088-o3089.],b[Goh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099-o3100.], 2010[Goh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B & Rai, N. S. (2010). Acta Cryst. E66, o1229-o1230.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14ClN3O5

  • Mr = 423.80

  • Triclinic, [P \overline 1]

  • a = 9.5589 (8) Å

  • b = 9.6603 (8) Å

  • c = 10.6401 (9) Å

  • α = 95.523 (2)°

  • β = 91.074 (2)°

  • γ = 107.706 (2)°

  • V = 930.44 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.963

  • 31674 measured reflections

  • 8076 independent reflections

  • 7107 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.146

  • S = 1.13

  • 8076 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2 0.93 2.27 2.9153 (12) 126
C2—H2A⋯O5i 0.93 2.48 3.2820 (13) 145
C14—H14A⋯O4ii 0.93 2.46 3.3846 (12) 175
C21—H21A⋯O2iii 0.96 2.55 3.5064 (14) 173
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazole nucleus constitutes an interesting class of organic compound with diverse chemical applications. They possess anti-pyretic, anti-tumor, tranquilizing and herbicidal activities. Sydnones are easily accessible aromatic compounds and versatile synthetic intermediates with a masked azomethine imine unit. The 1,3-dipolar cycloaddition reaction with various dipolarophiles offers a convenient synthetic route for the preparation of pyrazole derivatives and has been studied extensively (Rai & Kalluraya, 2006; Rai et al., 2008). The incorporation of 5-nitrofuran moiety into various heterocyclic systems has found to increase their biological activities. We have reported a few heterocyclic systems carrying 5-nitrofuran moiety as potent anti-microbial agents (Hedge et al., 2006). In continuation of our studies on 1,3-dipolar cycloaddition reactions of sydnones with dipolarphiles carrying nitrofuran moiety (Kalluraya et al., 1994), we herein report the crystal structure of the above pyrazole compound.

In the title pyrazole compound, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.003 (1) and 0.004 (1) Å, respectively, at atoms O1 and N2. These two rings are coplanar to one another, making a dihedral angle of 3.06 (10)° between them. The pyrazole ring is inclined at dihedral angles of 47.59 (4) and 7.27 (4)°, respectively, with the mean planes through 4-chlorophenyl (C1-C6/Cl1) and 4-methoxyphenyl (C15-C20/O3/C21) groups. The nitro group is coplanar with the attached furan ring, as indicated by the dihedral angle formed of 2.03 (12)°. The bond lengths and angles are comparable to those observed in closely related pyrazole structures (Goh et al., 2009a,b, 2010).

In the crystal structure, intermolecular C2—H2A···O5, C14—H14A···O4 and C21—H21A···O2 hydrogen bonds (Table 1) link neighbouring molecules into a three-dimensional extended network. The interesting feature of the crystal structure is the short intermolecular Cl1···O3 [3.0844 (9) Å, symmetry code: -x+3, -y+2, -z+1] and O2···N3 [2.8546 (12) Å, symmetry code: -x+1, -y+1, -z+1] interactions which are shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by the weak intermolecular ππ interactions involving the pyrazole ring [Cg1···Cg1 = 3.4367 (6) Å; symmetry code: -x+2, -y+1, -z+1].

Related literature top

For general background to and applications of the title compound, see: Hedge et al. (2006); Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008). For graph-set theory, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2009a,b, 2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-(p-Anisyl)sydnone (0.01 mol) and 1-(p-chlorophenyl)-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in dry xylene (10 ml) and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from a mixture of ethanol and DMF. The solid obtained was collected by filtration, washed with ethanol and dried. Orange blocks of (I) were obtained from a 1:2 mixture of ethanol and DMF by slow evaporation.

Refinement top

All the hydrogen atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Structure description top

The pyrazole nucleus constitutes an interesting class of organic compound with diverse chemical applications. They possess anti-pyretic, anti-tumor, tranquilizing and herbicidal activities. Sydnones are easily accessible aromatic compounds and versatile synthetic intermediates with a masked azomethine imine unit. The 1,3-dipolar cycloaddition reaction with various dipolarophiles offers a convenient synthetic route for the preparation of pyrazole derivatives and has been studied extensively (Rai & Kalluraya, 2006; Rai et al., 2008). The incorporation of 5-nitrofuran moiety into various heterocyclic systems has found to increase their biological activities. We have reported a few heterocyclic systems carrying 5-nitrofuran moiety as potent anti-microbial agents (Hedge et al., 2006). In continuation of our studies on 1,3-dipolar cycloaddition reactions of sydnones with dipolarphiles carrying nitrofuran moiety (Kalluraya et al., 1994), we herein report the crystal structure of the above pyrazole compound.

In the title pyrazole compound, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.003 (1) and 0.004 (1) Å, respectively, at atoms O1 and N2. These two rings are coplanar to one another, making a dihedral angle of 3.06 (10)° between them. The pyrazole ring is inclined at dihedral angles of 47.59 (4) and 7.27 (4)°, respectively, with the mean planes through 4-chlorophenyl (C1-C6/Cl1) and 4-methoxyphenyl (C15-C20/O3/C21) groups. The nitro group is coplanar with the attached furan ring, as indicated by the dihedral angle formed of 2.03 (12)°. The bond lengths and angles are comparable to those observed in closely related pyrazole structures (Goh et al., 2009a,b, 2010).

In the crystal structure, intermolecular C2—H2A···O5, C14—H14A···O4 and C21—H21A···O2 hydrogen bonds (Table 1) link neighbouring molecules into a three-dimensional extended network. The interesting feature of the crystal structure is the short intermolecular Cl1···O3 [3.0844 (9) Å, symmetry code: -x+3, -y+2, -z+1] and O2···N3 [2.8546 (12) Å, symmetry code: -x+1, -y+1, -z+1] interactions which are shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by the weak intermolecular ππ interactions involving the pyrazole ring [Cg1···Cg1 = 3.4367 (6) Å; symmetry code: -x+2, -y+1, -z+1].

For general background to and applications of the title compound, see: Hedge et al. (2006); Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008). For graph-set theory, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2009a,b, 2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis, showing the three-dimensional extended network. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
(4-Chlorophenyl)[1-(4-methoxyphenyl)-3-(5-nitro-2-furyl)-1H- pyrazol-4-yl]methanone top
Crystal data top
C21H14ClN3O5Z = 2
Mr = 423.80F(000) = 436
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5589 (8) ÅCell parameters from 9944 reflections
b = 9.6603 (8) Åθ = 2.6–37.6°
c = 10.6401 (9) ŵ = 0.25 mm1
α = 95.523 (2)°T = 100 K
β = 91.074 (2)°Block, orange
γ = 107.706 (2)°0.35 × 0.30 × 0.15 mm
V = 930.44 (13) Å3
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
8076 independent reflections
Radiation source: fine-focus sealed tube7107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.919, Tmax = 0.963k = 1315
31674 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.095P)2 + 0.1254P]
where P = (Fo2 + 2Fc2)/3
8076 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C21H14ClN3O5γ = 107.706 (2)°
Mr = 423.80V = 930.44 (13) Å3
Triclinic, P1Z = 2
a = 9.5589 (8) ÅMo Kα radiation
b = 9.6603 (8) ŵ = 0.25 mm1
c = 10.6401 (9) ÅT = 100 K
α = 95.523 (2)°0.35 × 0.30 × 0.15 mm
β = 91.074 (2)°
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
8076 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7107 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.963Rint = 0.026
31674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.13Δρmax = 0.87 e Å3
8076 reflectionsΔρmin = 0.70 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.29464 (2)1.14454 (3)0.06814 (2)0.02139 (7)
O10.61940 (7)0.32154 (7)0.56102 (7)0.01521 (12)
O20.71984 (7)0.69219 (8)0.30892 (7)0.01788 (13)
O31.40488 (8)0.71448 (9)1.04135 (7)0.02060 (14)
O40.30019 (9)0.02849 (9)0.52238 (8)0.02777 (17)
O50.47299 (9)0.09317 (9)0.67232 (9)0.02794 (18)
N10.99713 (8)0.64428 (8)0.64105 (7)0.01227 (12)
N20.87287 (8)0.52812 (8)0.62820 (7)0.01314 (12)
N30.41817 (9)0.10960 (9)0.57182 (8)0.01796 (14)
C11.11008 (9)0.82550 (10)0.28130 (8)0.01484 (14)
H1A1.13860.75820.32410.018*
C21.21148 (9)0.92103 (10)0.21216 (9)0.01643 (15)
H2A1.30690.91610.20640.020*
C31.16768 (9)1.02368 (10)0.15196 (8)0.01521 (14)
C41.02482 (10)1.03149 (10)0.15658 (9)0.01617 (15)
H4A0.99771.10170.11670.019*
C50.92349 (9)0.93211 (10)0.22196 (8)0.01508 (14)
H5A0.82660.93320.22280.018*
C60.96547 (9)0.83057 (9)0.28646 (8)0.01292 (13)
C70.84764 (9)0.72576 (9)0.35099 (8)0.01295 (13)
C80.88513 (9)0.66693 (9)0.46450 (8)0.01251 (13)
C90.80310 (8)0.54115 (9)0.52175 (8)0.01230 (13)
C100.66580 (9)0.42891 (9)0.48123 (8)0.01289 (13)
C110.56829 (10)0.40179 (10)0.37915 (8)0.01690 (15)
H11A0.57530.45800.31190.020*
C120.45459 (10)0.27164 (11)0.39557 (9)0.01852 (16)
H12A0.37220.22500.34210.022*
C130.49222 (9)0.23009 (9)0.50622 (9)0.01568 (15)
C141.00849 (9)0.72922 (9)0.54574 (8)0.01321 (14)
H14A1.08480.81370.53630.016*
C151.09929 (9)0.66115 (9)0.74528 (8)0.01229 (13)
C161.07607 (9)0.55323 (10)0.82671 (8)0.01586 (15)
H16A0.99300.47160.81430.019*
C171.17703 (10)0.56696 (11)0.92700 (9)0.01755 (15)
H17A1.16240.49360.98050.021*
C181.29982 (9)0.69077 (10)0.94696 (8)0.01540 (14)
C191.32113 (9)0.80016 (10)0.86573 (9)0.01607 (15)
H19A1.40190.88390.88000.019*
C201.22302 (9)0.78476 (9)0.76433 (8)0.01446 (14)
H20A1.23930.85640.70910.017*
C211.39244 (12)0.60104 (13)1.12158 (10)0.0247 (2)
H21A1.47700.62761.17930.037*
H21B1.38670.51151.07090.037*
H21C1.30530.58791.16840.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01544 (10)0.02511 (12)0.01991 (12)0.00141 (8)0.00097 (7)0.00950 (8)
O10.0108 (2)0.0127 (3)0.0197 (3)0.0006 (2)0.0000 (2)0.0044 (2)
O20.0113 (2)0.0195 (3)0.0219 (3)0.0026 (2)0.0025 (2)0.0051 (2)
O30.0142 (3)0.0274 (4)0.0167 (3)0.0004 (3)0.0036 (2)0.0065 (3)
O40.0233 (3)0.0221 (3)0.0248 (4)0.0114 (3)0.0003 (3)0.0004 (3)
O50.0186 (3)0.0246 (4)0.0393 (5)0.0009 (3)0.0044 (3)0.0172 (3)
N10.0098 (3)0.0114 (3)0.0141 (3)0.0005 (2)0.0005 (2)0.0027 (2)
N20.0099 (3)0.0119 (3)0.0157 (3)0.0003 (2)0.0003 (2)0.0025 (2)
N30.0147 (3)0.0128 (3)0.0234 (4)0.0004 (2)0.0030 (3)0.0023 (3)
C10.0117 (3)0.0165 (3)0.0162 (3)0.0037 (3)0.0007 (2)0.0037 (3)
C20.0111 (3)0.0196 (4)0.0177 (4)0.0027 (3)0.0002 (3)0.0045 (3)
C30.0131 (3)0.0165 (3)0.0140 (3)0.0010 (3)0.0003 (2)0.0034 (3)
C40.0156 (3)0.0177 (4)0.0161 (3)0.0053 (3)0.0015 (3)0.0055 (3)
C50.0134 (3)0.0173 (3)0.0159 (3)0.0057 (3)0.0018 (2)0.0049 (3)
C60.0114 (3)0.0133 (3)0.0137 (3)0.0027 (2)0.0002 (2)0.0028 (2)
C70.0109 (3)0.0130 (3)0.0146 (3)0.0028 (2)0.0001 (2)0.0026 (2)
C80.0102 (3)0.0123 (3)0.0140 (3)0.0017 (2)0.0001 (2)0.0025 (2)
C90.0098 (3)0.0115 (3)0.0150 (3)0.0021 (2)0.0008 (2)0.0020 (2)
C100.0100 (3)0.0121 (3)0.0150 (3)0.0010 (2)0.0014 (2)0.0016 (2)
C110.0153 (3)0.0168 (4)0.0143 (3)0.0012 (3)0.0006 (3)0.0011 (3)
C120.0159 (3)0.0183 (4)0.0154 (4)0.0027 (3)0.0003 (3)0.0009 (3)
C130.0123 (3)0.0127 (3)0.0185 (4)0.0012 (3)0.0018 (3)0.0008 (3)
C140.0112 (3)0.0125 (3)0.0146 (3)0.0011 (2)0.0002 (2)0.0030 (2)
C150.0101 (3)0.0124 (3)0.0134 (3)0.0019 (2)0.0001 (2)0.0017 (2)
C160.0140 (3)0.0154 (3)0.0151 (3)0.0008 (3)0.0009 (3)0.0042 (3)
C170.0152 (3)0.0198 (4)0.0153 (4)0.0008 (3)0.0007 (3)0.0061 (3)
C180.0117 (3)0.0197 (4)0.0133 (3)0.0027 (3)0.0002 (2)0.0021 (3)
C190.0116 (3)0.0159 (3)0.0186 (4)0.0011 (3)0.0013 (3)0.0021 (3)
C200.0112 (3)0.0130 (3)0.0180 (4)0.0016 (2)0.0011 (2)0.0031 (3)
C210.0208 (4)0.0327 (5)0.0192 (4)0.0042 (4)0.0033 (3)0.0096 (4)
Geometric parameters (Å, º) top
Cl1—C31.7351 (9)C7—C81.4662 (12)
O1—C131.3488 (11)C8—C141.3892 (11)
O1—C101.3774 (10)C8—C91.4294 (11)
O2—C71.2282 (10)C9—C101.4516 (11)
O3—C181.3593 (11)C10—C111.3696 (12)
O3—C211.4313 (13)C11—C121.4180 (13)
O4—N31.2343 (11)C11—H11A0.9300
O5—N31.2270 (12)C12—C131.3563 (13)
N1—C141.3503 (11)C12—H12A0.9300
N1—N21.3574 (10)C14—H14A0.9300
N1—C151.4275 (11)C15—C161.3883 (12)
N2—C91.3393 (11)C15—C201.3969 (12)
N3—C131.4200 (12)C16—C171.3942 (12)
C1—C21.3949 (12)C16—H16A0.9300
C1—C61.3998 (12)C17—C181.3933 (13)
C1—H1A0.9300C17—H17A0.9300
C2—C31.3906 (12)C18—C191.3987 (13)
C2—H2A0.9300C19—C201.3828 (12)
C3—C41.3919 (12)C19—H19A0.9300
C4—C51.3899 (13)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9600
C5—C61.3975 (12)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C71.4948 (12)
C13—O1—C10105.18 (7)O1—C10—C9114.95 (7)
C18—O3—C21117.66 (8)C10—C11—C12106.87 (8)
C14—N1—N2112.41 (7)C10—C11—H11A126.6
C14—N1—C15128.09 (7)C12—C11—H11A126.6
N2—N1—C15119.46 (7)C13—C12—C11104.95 (8)
C9—N2—N1105.18 (7)C13—C12—H12A127.5
O5—N3—O4124.52 (9)C11—C12—H12A127.5
O5—N3—C13119.17 (8)O1—C13—C12112.92 (8)
O4—N3—C13116.31 (9)O1—C13—N3116.80 (8)
C2—C1—C6120.23 (8)C12—C13—N3130.27 (8)
C2—C1—H1A119.9N1—C14—C8107.30 (7)
C6—C1—H1A119.9N1—C14—H14A126.3
C3—C2—C1118.94 (8)C8—C14—H14A126.3
C3—C2—H2A120.5C16—C15—C20120.14 (8)
C1—C2—H2A120.5C16—C15—N1119.68 (7)
C2—C3—C4121.82 (8)C20—C15—N1120.17 (7)
C2—C3—Cl1118.96 (7)C15—C16—C17120.14 (8)
C4—C3—Cl1119.22 (7)C15—C16—H16A119.9
C5—C4—C3118.60 (8)C17—C16—H16A119.9
C5—C4—H4A120.7C18—C17—C16119.84 (8)
C3—C4—H4A120.7C18—C17—H17A120.1
C4—C5—C6120.81 (8)C16—C17—H17A120.1
C4—C5—H5A119.6O3—C18—C17124.49 (8)
C6—C5—H5A119.6O3—C18—C19115.85 (8)
C5—C6—C1119.53 (8)C17—C18—C19119.66 (8)
C5—C6—C7116.77 (7)C20—C19—C18120.48 (8)
C1—C6—C7123.58 (7)C20—C19—H19A119.8
O2—C7—C8120.95 (8)C18—C19—H19A119.8
O2—C7—C6119.13 (8)C19—C20—C15119.70 (8)
C8—C7—C6119.91 (7)C19—C20—H20A120.1
C14—C8—C9104.13 (7)C15—C20—H20A120.1
C14—C8—C7126.36 (8)O3—C21—H21A109.5
C9—C8—C7129.40 (7)O3—C21—H21B109.5
N2—C9—C8110.98 (7)H21A—C21—H21B109.5
N2—C9—C10117.95 (7)O3—C21—H21C109.5
C8—C9—C10131.03 (8)H21A—C21—H21C109.5
C11—C10—O1110.07 (7)H21B—C21—H21C109.5
C11—C10—C9134.98 (8)
C14—N1—N2—C90.53 (9)O1—C10—C11—C120.31 (10)
C15—N1—N2—C9178.56 (7)C9—C10—C11—C12179.62 (9)
C6—C1—C2—C31.91 (13)C10—C11—C12—C130.05 (10)
C1—C2—C3—C41.44 (14)C10—O1—C13—C120.43 (10)
C1—C2—C3—Cl1178.93 (7)C10—O1—C13—N3178.49 (7)
C2—C3—C4—C50.89 (14)C11—C12—C13—O10.24 (11)
Cl1—C3—C4—C5178.74 (7)C11—C12—C13—N3178.50 (9)
C3—C4—C5—C62.78 (14)O5—N3—C13—O11.02 (13)
C4—C5—C6—C12.31 (13)O4—N3—C13—O1178.36 (8)
C4—C5—C6—C7178.41 (8)O5—N3—C13—C12179.72 (10)
C2—C1—C6—C50.08 (13)O4—N3—C13—C120.34 (15)
C2—C1—C6—C7175.74 (8)N2—N1—C14—C80.08 (9)
C5—C6—C7—O227.96 (12)C15—N1—C14—C8177.90 (7)
C1—C6—C7—O2147.96 (9)C9—C8—C14—N10.37 (9)
C5—C6—C7—C8150.78 (8)C7—C8—C14—N1177.02 (8)
C1—C6—C7—C833.30 (12)C14—N1—C15—C16172.85 (8)
O2—C7—C8—C14156.41 (9)N2—N1—C15—C164.84 (12)
C6—C7—C8—C1422.30 (12)C14—N1—C15—C206.33 (13)
O2—C7—C8—C919.38 (14)N2—N1—C15—C20175.98 (7)
C6—C7—C8—C9161.90 (8)C20—C15—C16—C170.74 (13)
N1—N2—C9—C80.76 (9)N1—C15—C16—C17178.45 (8)
N1—N2—C9—C10178.64 (7)C15—C16—C17—C181.34 (14)
C14—C8—C9—N20.72 (9)C21—O3—C18—C173.45 (14)
C7—C8—C9—N2177.23 (8)C21—O3—C18—C19176.00 (9)
C14—C8—C9—C10178.24 (8)C16—C17—C18—O3179.70 (8)
C7—C8—C9—C105.26 (15)C16—C17—C18—C190.27 (14)
C13—O1—C10—C110.45 (9)O3—C18—C19—C20178.05 (8)
C13—O1—C10—C9179.91 (7)C17—C18—C19—C201.43 (13)
N2—C9—C10—C11177.28 (9)C18—C19—C20—C152.03 (13)
C8—C9—C10—C110.10 (16)C16—C15—C20—C190.95 (13)
N2—C9—C10—O12.01 (11)N1—C15—C20—C19179.87 (8)
C8—C9—C10—O1179.38 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.272.9153 (12)126
C2—H2A···O5i0.932.483.2820 (13)145
C14—H14A···O4ii0.932.463.3846 (12)175
C21—H21A···O2iii0.962.553.5064 (14)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H14ClN3O5
Mr423.80
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5589 (8), 9.6603 (8), 10.6401 (9)
α, β, γ (°)95.523 (2), 91.074 (2), 107.706 (2)
V3)930.44 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
31674, 8076, 7107
Rint0.026
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.146, 1.13
No. of reflections8076
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.70

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.272.9153 (12)126
C2—H2A···O5i0.932.483.2820 (13)145
C14—H14A···O4ii0.932.463.3846 (12)175
C21—H21A···O2iii0.962.553.5064 (14)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B & Rai, N. S. (2010). Acta Cryst. E66, o1229–o1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHedge, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285–1290.  Google Scholar
First citationKalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.  Google Scholar
First citationRai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds