metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­(μ-pyrazine-2-carboxyl­ato-κ3N,O:O)(μ-pyrazine-2-carboxyl­ato-κ3N,O:O′)lead(II)]

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 30 March 2010; accepted 9 April 2010; online 17 April 2010)

The polymeric structure of the title compound, [Pb(C5H3N2O2)2(H2O)]n, is built up from centrosymmetric [Pb(C5H3N2O2)2(H2O)]2 dimers, which are bridged by ligand carboxyl­ate O atoms. The PbII ion adopts an irregular PbN2O5 coordination polyhedron; it is chelated by one N,O-bidentate ligand and also bonds to a water O atom. A second N,O-bidentate ligand forms the dimer bridge and another bridging O atom from a nearby dimer also bonds to the PbII ion, leading to layers propagating in (100). A network of O—H⋯O hydrogen bonds operates between water O atoms (donors) and carboxyl­ate O atoms (acceptors).

Related literature

For the crystal structures of divalent metal ions with pyrazine-2-carboxyl­ate and water ligands, see, for example: Alcock et al. (1996[Alcock, N. W., Kemp, T. J., Roe, M. S. & Leciejewicz, J. (1996). Inorg. Chim. Acta A, 248, 241-249.]); Ptasiewicz-Bąk et al. (1995[Ptasiewicz-Bąk, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. A, 36, 317-326.], 1998[Ptasiewicz-Bąk, H., Ostrowski, A. & Leciejewicz, J. (1998). Pol. J. Chem. A, 72, 2014-2023.]). The structures of lead(II) complexes with pyrazine-4-carboxyl­ate (Starosta & Leciejewicz, 2009[Starosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291.]) and pyrazine-3-carboxyl­ate ligands (Starosta & Leciejewicz, 2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m192.]) have also been reported.

[Scheme 1]

Experimental

Crystal data
  • [Pb(C5H3N2O2)2(H2O)]

  • Mr = 471.39

  • Monoclinic, P 21 /c

  • a = 11.098 (2) Å

  • b = 10.382 (2) Å

  • c = 11.678 (2) Å

  • β = 114.13 (3)°

  • V = 1228.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.77 mm−1

  • T = 293 K

  • 0.29 × 0.16 × 0.12 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.135, Tmax = 0.251

  • 3579 measured reflections

  • 3411 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 200 reflections intensity decay: 20.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 1.02

  • 3411 reflections

  • 188 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 6.45 e Å−3

  • Δρmin = −5.86 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O21 2.341 (7)
Pb1—O11i 2.508 (7)
Pb1—O1 2.573 (9)
Pb1—O11 2.572 (8)
Pb1—N21 2.577 (9)
Pb1—N11 2.807 (9)
Pb1—O22ii 2.856 (8)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2⋯O21ii 0.84 (2) 2.17 (5) 2.837 (13) 136 (7)
O1—H1⋯O22iii 0.84 (2) 2.29 (5) 2.969 (15) 139 (7)
O1—H1⋯O12ii 0.84 (2) 2.49 (7) 3.056 (13) 126 (7)
Symmetry codes: (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Divalent UO2(II) ion (Alcock et al.,1996), 3-d metal M(II) ions (Ptasiewicz-Bąk et al.,(1995), Ca(II) and Sr(II) ions (Ptasiewicz-Bąk et al.,1998) form with pyrazine-2-carboxylate and water ligands monomeric molecules with coordination modes characteristic for particular ions. On the other hand, the structure of a Pb(II) complex with pyridazine-4-carboxylate and water ligands is composed of dimeric molecules (Starosta & Leciejewicz, 2009), while the structure of a Pb(II) complex with pyridazine-3-carboxylate and water ligands is polymeric (Starosta & Leciejewicz, 2010). The structure of title compound (I) is composed of centrosymmetric dimeric molecules in which each of the two Pb(II) ions is cheletated by two symmetry independent ligands via their N,O bonding groups. Their planes make at the metal ion an angle of 85.1 (2)o each to the other. Pb(II) ions are bridged by O11 and O11(i) atoms donated by symmetry related ligands L1. The O12 and O12(i) atoms do not take part in coordination. A water O atom is chelated to each metal ion. The second pair of ligand molecules L2 also coordinates the Pb(II) ions by their N,O bonding groups while the O22 and O22(i) atoms act as bridges to Pb(II) ions in adjacent dimers. A polymeric structure is formed in this way. The coordination geometry of a Pb(II) ion is represented by a pyramid in which N11, O11, O11(I) and O1 atoms form an equatorial plane [ r.m.s. 0.0083 (1) Å] with a Pb(II) ion shifted from it by 0.3079 (2) Å; N21 and O21 atoms make two apices of the pyramid while the bridging O22(II) atom forms a single apex on the other side of the equatorial plane. Bond angles reveal an empty space around the metal ion between Pb—O11(I)and Pb—O1 bonds It may indicate the stereochemical activity of the lone 6 s2 electron pair of the Pb(II) ion. Pyrazine rings of both ligands are planar: r.m.s. 0.0089 (2)Å in L1 and 0.0046 (1)Å in L2. The C17/O11/O12 carboxylic group makes an angle of 6.7 (1)° with pyrazine ring L1, the carboxylic group C27/O21/O22 - an angle of 9.1 (1)° with L2. Weak hydrogen bonds operate between the coordinated water O atoms (donors) and carboxylate O21 and O22 atoms (acceptors) in adjacent dimers.

Related literature top

For the crystal structures of divalent metal ions with pyrazine-2-carboxylate and water ligands, see, for example: Alcock et al. (1996); Ptasiewicz-Bąk et al. (1995, 1998). The structures of lead(II) complexes with pyrazine-4-carboxylate (Starosta & Leciejewicz, 2009) and pyrazine-3-carboxylate ligands (Starosta & Leciejewicz, 2010) have also been reported.

Experimental top

The title compound was synthetized by reacting boiling aqueous solution of pyrazine-2-carboxylic acid dihydrate (Aldrich) with some excess of lead(II) hydroxide. The mixture was boiled under reflux for three hours and after cooling to room temperature, filtered and left for crystallization. Few days later, colourless blocks of (I) were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in the air.

Refinement top

Water hydrogen atoms were found from Fourier maps and restrained geometrically to form hydrogen bonds. H atoms attached to pyrazine -ring C atoms were positioned geometrically and refined with a riding model. A maximum peak of 6.450 e Å3 (at 0.83 Å) and a deepest hole of -5.858 e Å3 (at 0.80 Å) were found on the final electron density map close to the Pb1 atom.

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

#==============================================================================

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (1) with 50% probability displacement ellipsoids. Symmetry codes: (i) -x+1,-y,-z+1; (ii) x,-y+1/2,z-1/2.
[Figure 2] Fig. 2. Packing diagram of the structure of (I).
Poly[aqua(µ-pyrazine-2-carboxylato-κ3N,O:O)(µ- pyrazine-2-carboxylato-κ3N,O:O')lead(II)] top
Crystal data top
[Pb(C5H3N2O2)2(H2O)]F(000) = 872
Mr = 471.39Dx = 2.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.098 (2) Åθ = 6–15°
b = 10.382 (2) ŵ = 13.77 mm1
c = 11.678 (2) ÅT = 293 K
β = 114.13 (3)°Blocks, colourless
V = 1228.0 (4) Å30.29 × 0.16 × 0.12 mm
Z = 4
Data collection top
Kuma KM-4 four-circle
diffractometer
2230 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 30.1°, θmin = 2.0°
profile data from ω/2θ scansh = 014
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 140
Tmin = 0.135, Tmax = 0.251l = 1514
3579 measured reflections3 standard reflections every 200 reflections
3411 independent reflections intensity decay: 20.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.1217P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3411 reflectionsΔρmax = 6.45 e Å3
188 parametersΔρmin = 5.86 e Å3
5 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0154 (12)
Crystal data top
[Pb(C5H3N2O2)2(H2O)]V = 1228.0 (4) Å3
Mr = 471.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.098 (2) ŵ = 13.77 mm1
b = 10.382 (2) ÅT = 293 K
c = 11.678 (2) Å0.29 × 0.16 × 0.12 mm
β = 114.13 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
2230 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.051
Tmin = 0.135, Tmax = 0.2513 standard reflections every 200 reflections
3579 measured reflections intensity decay: 20.2%
3411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0585 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 6.45 e Å3
3411 reflectionsΔρmin = 5.86 e Å3
188 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.47863 (3)0.12876 (4)0.35712 (3)0.02848 (19)
O110.3570 (7)0.0031 (8)0.4636 (8)0.0413 (18)
C220.6620 (9)0.3784 (10)0.5171 (10)0.034 (2)
O210.4811 (9)0.2586 (8)0.5220 (8)0.0399 (18)
N210.6655 (8)0.2972 (9)0.4344 (8)0.0327 (18)
C120.1581 (9)0.1152 (9)0.3625 (10)0.0299 (19)
C130.0296 (11)0.1383 (11)0.3473 (11)0.039 (2)
H130.00390.09570.39800.047*
C270.5599 (12)0.3532 (11)0.5717 (12)0.040 (2)
N220.8312 (12)0.5089 (11)0.5106 (13)0.059 (3)
C260.7546 (11)0.3203 (12)0.3893 (12)0.039 (2)
H260.76160.26420.33030.047*
N110.2083 (9)0.1695 (10)0.2906 (9)0.0362 (19)
C160.1307 (12)0.2491 (12)0.2013 (12)0.045 (3)
H160.16280.28890.14810.054*
C230.7440 (13)0.4853 (12)0.5559 (14)0.050 (3)
H230.73650.54090.61510.060*
O10.4080 (11)0.3287 (10)0.2149 (9)0.056 (2)
H10.378 (11)0.402 (7)0.218 (10)0.084*
H20.385 (8)0.312 (13)0.138 (3)0.084*
O120.2045 (8)0.0170 (9)0.5394 (8)0.0445 (19)
C170.2455 (9)0.0251 (9)0.4646 (9)0.0275 (18)
N120.0479 (10)0.2225 (11)0.2591 (11)0.050 (3)
C150.0023 (12)0.2730 (13)0.1871 (12)0.047 (3)
H150.05000.32780.12300.056*
C250.8376 (14)0.4253 (14)0.4272 (15)0.055 (3)
H250.89950.43790.39350.066*
O220.5643 (12)0.4168 (10)0.6610 (9)0.054 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0271 (2)0.0296 (2)0.0327 (3)0.00255 (14)0.01621 (15)0.00445 (14)
O110.024 (3)0.044 (4)0.060 (5)0.005 (3)0.020 (3)0.021 (4)
C220.019 (4)0.039 (5)0.041 (5)0.002 (4)0.010 (4)0.008 (4)
O210.045 (4)0.035 (4)0.058 (5)0.011 (3)0.040 (4)0.012 (3)
N210.024 (4)0.044 (5)0.038 (5)0.005 (4)0.021 (3)0.002 (4)
C120.018 (4)0.035 (5)0.038 (5)0.002 (3)0.012 (3)0.003 (4)
C130.031 (5)0.048 (7)0.041 (6)0.009 (4)0.019 (4)0.001 (4)
C270.038 (6)0.039 (6)0.047 (6)0.005 (4)0.020 (5)0.001 (4)
N220.048 (6)0.050 (6)0.091 (9)0.021 (5)0.042 (6)0.007 (6)
C260.034 (5)0.050 (6)0.050 (6)0.004 (5)0.032 (5)0.003 (5)
N110.027 (4)0.043 (5)0.040 (5)0.001 (4)0.016 (4)0.009 (4)
C160.039 (7)0.046 (6)0.051 (7)0.008 (5)0.018 (6)0.021 (5)
C230.042 (6)0.040 (6)0.077 (9)0.017 (5)0.032 (6)0.012 (6)
O10.072 (7)0.052 (5)0.042 (5)0.009 (5)0.022 (5)0.013 (4)
O120.040 (4)0.056 (5)0.044 (4)0.002 (4)0.024 (3)0.011 (4)
C170.022 (4)0.027 (4)0.033 (5)0.007 (3)0.011 (3)0.003 (3)
N120.031 (5)0.064 (7)0.054 (6)0.018 (5)0.016 (5)0.003 (5)
C150.030 (6)0.057 (8)0.045 (7)0.011 (5)0.008 (5)0.012 (5)
C250.044 (7)0.055 (8)0.081 (10)0.015 (6)0.041 (7)0.003 (7)
O220.077 (6)0.062 (6)0.042 (5)0.030 (5)0.043 (4)0.017 (4)
Geometric parameters (Å, º) top
Pb1—O212.341 (7)C13—N121.357 (15)
Pb1—O11i2.508 (7)C13—H130.9300
Pb1—O12.573 (9)C27—O221.217 (15)
Pb1—O112.572 (8)N22—C231.302 (17)
Pb1—N212.577 (9)N22—C251.328 (19)
Pb1—N112.807 (9)C26—C251.378 (18)
Pb1—O22ii2.856 (8)C26—H260.9300
O11—C171.277 (12)N11—C161.334 (14)
O11—Pb1i2.508 (7)C16—C151.388 (17)
C22—N211.295 (14)C16—H160.9300
C22—C231.389 (15)C23—H230.9300
C22—C271.532 (16)O1—H10.84 (2)
O21—C271.285 (14)O1—H20.84 (2)
N21—C261.318 (12)O12—C171.219 (12)
C12—N111.310 (13)N12—C151.295 (17)
C12—C131.385 (13)C15—H150.9300
C12—C171.513 (13)C25—H250.9300
O21—Pb1—O11i81.6 (3)C13—C12—C17120.2 (9)
O21—Pb1—O188.0 (3)N12—C13—C12120.6 (11)
O11i—Pb1—O1152.2 (3)N12—C13—H13119.7
O21—Pb1—O1175.0 (3)C12—C13—H13119.7
O11i—Pb1—O1170.5 (3)O22—C27—O21125.7 (12)
O1—Pb1—O11131.3 (3)O22—C27—C22119.1 (10)
O21—Pb1—N2165.4 (3)O21—C27—C22115.1 (10)
O11i—Pb1—N2181.6 (3)C23—N22—C25116.5 (11)
O1—Pb1—N2170.6 (3)N21—C26—C25121.9 (11)
O11—Pb1—N21134.3 (3)N21—C26—H26119.0
O21—Pb1—N1178.0 (3)C25—C26—H26119.0
O11i—Pb1—N11129.8 (3)C12—N11—C16117.4 (10)
O1—Pb1—N1172.0 (3)C12—N11—Pb1116.4 (6)
O11—Pb1—N1160.1 (3)C16—N11—Pb1125.8 (8)
N21—Pb1—N11127.6 (3)N11—C16—C15120.5 (11)
O21—Pb1—O22ii149.2 (3)N11—C16—H16119.8
O11i—Pb1—O22ii102.5 (3)C15—C16—H16119.8
O1—Pb1—O22ii74.3 (3)N22—C23—C22121.0 (13)
O11—Pb1—O22ii135.4 (3)N22—C23—H23119.5
N21—Pb1—O22ii84.8 (3)C22—C23—H23119.5
N11—Pb1—O22ii118.2 (3)Pb1—O1—H1137 (10)
C17—O11—Pb1i119.3 (6)Pb1—O1—H2113 (9)
C17—O11—Pb1125.8 (6)H1—O1—H2106 (3)
Pb1i—O11—Pb1109.5 (3)O12—C17—O11124.8 (9)
N21—C22—C23123.2 (11)O12—C17—C12118.7 (9)
N21—C22—C27116.9 (9)O11—C17—C12116.5 (8)
C23—C22—C27119.9 (11)C15—N12—C13116.5 (10)
C27—O21—Pb1126.1 (7)N12—C15—C16122.9 (11)
C22—N21—C26115.8 (10)N12—C15—H15118.5
C22—N21—Pb1116.0 (6)C16—C15—H15118.5
C26—N21—Pb1127.7 (8)N22—C25—C26121.5 (11)
N11—C12—C13121.9 (10)N22—C25—H25119.2
N11—C12—C17117.9 (8)C26—C25—H25119.2
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···O21ii0.84 (2)2.17 (5)2.837 (13)136 (7)
O1—H1···O22iii0.84 (2)2.29 (5)2.969 (15)139 (7)
O1—H1···O12ii0.84 (2)2.49 (7)3.056 (13)126 (7)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb(C5H3N2O2)2(H2O)]
Mr471.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.098 (2), 10.382 (2), 11.678 (2)
β (°) 114.13 (3)
V3)1228.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)13.77
Crystal size (mm)0.29 × 0.16 × 0.12
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.135, 0.251
No. of measured, independent and
observed [I > 2σ(I)] reflections
3579, 3411, 2230
Rint0.051
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.02
No. of reflections3411
No. of parameters188
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)6.45, 5.86

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—O212.341 (7)Pb1—N212.577 (9)
Pb1—O11i2.508 (7)Pb1—N112.807 (9)
Pb1—O12.573 (9)Pb1—O22ii2.856 (8)
Pb1—O112.572 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···O21ii0.84 (2)2.17 (5)2.837 (13)136 (7)
O1—H1···O22iii0.84 (2)2.29 (5)2.969 (15)139 (7)
O1—H1···O12ii0.84 (2)2.49 (7)3.056 (13)126 (7)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

References

First citationAlcock, N. W., Kemp, T. J., Roe, M. S. & Leciejewicz, J. (1996). Inorg. Chim. Acta A, 248, 241–249.  CSD CrossRef CAS Web of Science Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPtasiewicz-Bąk, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. A, 36, 317–326.  Google Scholar
First citationPtasiewicz-Bąk, H., Ostrowski, A. & Leciejewicz, J. (1998). Pol. J. Chem. A, 72, 2014–2023.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m192.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds