organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-2-hydr­­oxy-3-methyl­benzohydrazide

aDepartment of Chemistry and Life Science, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China
*Correspondence e-mail: hanyouyue@126.com

(Received 30 March 2010; accepted 30 March 2010; online 2 April 2010)

In the title compound, C15H13ClN2O2, the dihedral angle between the two benzene rings is 3.4 (5)° and the mol­ecule adopts an E configuration with respect to the C=N bond. There is an intra­molecular O—H⋯O hydrogen bond in the mol­ecule, which generates an S(6) loop. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming C(4) chains running along the a axis.

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010[Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688-699.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For related structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]); Lin & Sang (2009[Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.]); Ning & Xu (2009[Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905-o906.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Monoclinic, C c

  • a = 7.084 (2) Å

  • b = 27.010 (3) Å

  • c = 7.755 (2) Å

  • β = 111.229 (3)°

  • V = 1383.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.973

  • 3856 measured reflections

  • 1981 independent reflections

  • 1145 reflections with I > 2σ(I)

  • Rint = 0.151

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.220

  • S = 0.92

  • 1981 reflections

  • 183 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 470 Friedel pairs

  • Flack parameter: 0.29 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.41 3.202 (7) 154
O2—H2⋯O1 0.82 1.92 2.641 (7) 146
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the molecule of the title compound, Fig. 1, the dihedral angle between the two benzene rings is 3.4 (5)°. The molecule adopts an E configuration with respect to the CN bond. There is an intramolecular O–H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in the similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1) to form chains running along the a axis (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For related structures, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010); Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009). For reference bond-length values, see: Allen et al. (1987).

Experimental top

A mixture of 2-chlorobenzaldehyde (0.140 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml me thanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, colourless blocks of (I) were formed.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, N–H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl C and O).

Structure description top

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the molecule of the title compound, Fig. 1, the dihedral angle between the two benzene rings is 3.4 (5)°. The molecule adopts an E configuration with respect to the CN bond. There is an intramolecular O–H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in the similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1) to form chains running along the a axis (Fig. 2).

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For related structures, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010); Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009). For reference bond-length values, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O–H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The packing of (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.
N'-(2-Chlorobenzylidene)-2-hydroxy-3-methylbenzohydrazide top
Crystal data top
C15H13ClN2O2F(000) = 600
Mr = 288.72Dx = 1.387 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 975 reflections
a = 7.084 (2) Åθ = 2.6–24.5°
b = 27.010 (3) ŵ = 0.28 mm1
c = 7.755 (2) ÅT = 298 K
β = 111.229 (3)°Block, colorless
V = 1383.1 (6) Å30.12 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1981 independent reflections
Radiation source: fine-focus sealed tube1145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.151
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 49
Tmin = 0.967, Tmax = 0.973k = 3434
3856 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1271P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
1981 reflectionsΔρmax = 0.39 e Å3
183 parametersΔρmin = 0.45 e Å3
2 restraintsAbsolute structure: Flack (1983), 470 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.29 (17)
Crystal data top
C15H13ClN2O2V = 1383.1 (6) Å3
Mr = 288.72Z = 4
Monoclinic, CcMo Kα radiation
a = 7.084 (2) ŵ = 0.28 mm1
b = 27.010 (3) ÅT = 298 K
c = 7.755 (2) Å0.12 × 0.10 × 0.10 mm
β = 111.229 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1145 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.973Rint = 0.151
3856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.220Δρmax = 0.39 e Å3
S = 0.92Δρmin = 0.45 e Å3
1981 reflectionsAbsolute structure: Flack (1983), 470 Fridel pairs
183 parametersAbsolute structure parameter: 0.29 (17)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3375 (3)0.43050 (6)0.8129 (3)0.0785 (7)
N10.2710 (8)0.24748 (18)0.8198 (7)0.0526 (14)
H10.34900.25720.92770.063*
N20.2275 (8)0.2780 (2)0.6677 (6)0.0503 (13)
O10.0826 (8)0.18614 (19)0.6388 (6)0.0704 (15)
O20.1832 (8)0.09660 (18)0.7787 (7)0.0666 (14)
H20.14430.11740.69640.100*
C10.2311 (9)0.1713 (2)0.9627 (8)0.0462 (15)
C20.2276 (10)0.1188 (2)0.9446 (8)0.0505 (16)
C30.2680 (10)0.0889 (3)1.1021 (10)0.0599 (19)
C40.3049 (11)0.1111 (3)1.2688 (9)0.065 (2)
H40.33280.09121.37300.078*
C50.3026 (12)0.1623 (3)1.2901 (11)0.067 (2)
H50.32530.17621.40550.081*
C60.2661 (9)0.1919 (3)1.1361 (8)0.0550 (17)
H60.26480.22621.14840.066*
C70.1867 (9)0.2013 (2)0.7943 (8)0.0489 (16)
C80.2946 (10)0.3218 (3)0.7035 (9)0.0485 (15)
H80.36650.33120.82510.058*
C90.2591 (9)0.3575 (2)0.5540 (8)0.0445 (14)
C100.2758 (10)0.4085 (2)0.5897 (9)0.0548 (18)
C110.2424 (13)0.4419 (3)0.4451 (12)0.070 (2)
H110.25090.47570.46890.084*
C120.1983 (14)0.4256 (3)0.2722 (13)0.078 (2)
H120.17780.44850.17750.093*
C130.1823 (11)0.3753 (3)0.2297 (9)0.066 (2)
H130.15230.36450.10870.079*
C140.2122 (10)0.3417 (3)0.3723 (9)0.0555 (18)
H140.20080.30800.34620.067*
C150.2730 (15)0.0336 (3)1.0799 (14)0.085 (3)
H15A0.37500.02511.03060.127*
H15B0.14330.02240.99690.127*
H15C0.30370.01801.19820.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1018 (16)0.0557 (10)0.0756 (12)0.0051 (12)0.0294 (10)0.0184 (10)
N10.063 (3)0.044 (3)0.035 (2)0.005 (3)0.001 (2)0.005 (2)
N20.056 (3)0.049 (3)0.034 (2)0.002 (3)0.002 (2)0.002 (2)
O10.100 (4)0.057 (3)0.034 (2)0.024 (3)0.001 (2)0.001 (2)
O20.087 (4)0.049 (3)0.058 (3)0.002 (3)0.020 (3)0.005 (2)
C10.042 (3)0.046 (3)0.039 (3)0.001 (3)0.001 (3)0.001 (3)
C20.050 (4)0.049 (3)0.043 (3)0.003 (3)0.005 (3)0.006 (3)
C30.052 (4)0.056 (4)0.062 (5)0.001 (3)0.009 (3)0.015 (3)
C40.063 (5)0.075 (5)0.050 (4)0.001 (4)0.012 (4)0.025 (4)
C50.066 (5)0.089 (6)0.043 (3)0.008 (4)0.015 (3)0.003 (4)
C60.059 (4)0.059 (4)0.038 (3)0.007 (3)0.007 (3)0.001 (3)
C70.051 (4)0.049 (3)0.034 (3)0.005 (3)0.001 (3)0.003 (3)
C80.048 (4)0.049 (4)0.039 (3)0.007 (3)0.003 (2)0.001 (3)
C90.046 (3)0.043 (3)0.041 (3)0.002 (3)0.011 (3)0.003 (3)
C100.058 (4)0.044 (3)0.060 (4)0.003 (3)0.018 (3)0.005 (3)
C110.078 (5)0.047 (4)0.082 (6)0.009 (4)0.024 (4)0.012 (4)
C120.085 (6)0.071 (5)0.074 (5)0.010 (5)0.024 (4)0.032 (5)
C130.066 (5)0.082 (5)0.038 (3)0.001 (4)0.006 (3)0.012 (3)
C140.051 (4)0.061 (4)0.048 (4)0.004 (3)0.011 (3)0.008 (3)
C150.093 (6)0.057 (4)0.100 (7)0.006 (5)0.028 (5)0.024 (5)
Geometric parameters (Å, º) top
Cl1—C101.730 (7)C5—H50.9300
N1—C71.365 (8)C6—H60.9300
N1—N21.379 (7)C8—C91.458 (9)
N1—H10.8600C8—H80.9300
N2—C81.268 (8)C9—C141.392 (10)
O1—C71.234 (7)C9—C101.400 (8)
O2—C21.350 (8)C10—C111.392 (10)
O2—H20.8200C11—C121.336 (12)
C1—C61.392 (9)C11—H110.9300
C1—C21.423 (8)C12—C131.392 (12)
C1—C71.472 (9)C12—H120.9300
C2—C31.405 (9)C13—C141.387 (10)
C3—C41.362 (10)C13—H130.9300
C3—C151.506 (12)C14—H140.9300
C4—C51.394 (11)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.382 (10)C15—H15C0.9600
C7—N1—N2118.1 (4)N2—C8—H8120.0
C7—N1—H1121.0C9—C8—H8120.0
N2—N1—H1121.0C14—C9—C10118.3 (6)
C8—N2—N1114.9 (5)C14—C9—C8120.7 (6)
C2—O2—H2109.5C10—C9—C8121.0 (6)
C6—C1—C2119.0 (6)C11—C10—C9120.0 (6)
C6—C1—C7122.8 (6)C11—C10—Cl1119.4 (5)
C2—C1—C7118.1 (5)C9—C10—Cl1120.6 (5)
O2—C2—C3118.4 (6)C12—C11—C10120.3 (7)
O2—C2—C1121.8 (5)C12—C11—H11119.8
C3—C2—C1119.8 (6)C10—C11—H11119.8
C4—C3—C2118.7 (7)C11—C12—C13121.9 (7)
C4—C3—C15122.7 (7)C11—C12—H12119.1
C2—C3—C15118.5 (7)C13—C12—H12119.1
C3—C4—C5122.9 (7)C14—C13—C12118.3 (7)
C3—C4—H4118.6C14—C13—H13120.9
C5—C4—H4118.6C12—C13—H13120.9
C6—C5—C4118.6 (7)C13—C14—C9121.2 (7)
C6—C5—H5120.7C13—C14—H14119.4
C4—C5—H5120.7C9—C14—H14119.4
C5—C6—C1121.0 (7)C3—C15—H15A109.5
C5—C6—H6119.5C3—C15—H15B109.5
C1—C6—H6119.5H15A—C15—H15B109.5
O1—C7—N1121.4 (6)C3—C15—H15C109.5
O1—C7—C1122.9 (6)H15A—C15—H15C109.5
N1—C7—C1115.7 (5)H15B—C15—H15C109.5
N2—C8—C9120.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.413.202 (7)154
O2—H2···O10.821.922.641 (7)146
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)7.084 (2), 27.010 (3), 7.755 (2)
β (°) 111.229 (3)
V3)1383.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.967, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
3856, 1981, 1145
Rint0.151
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.220, 0.92
No. of reflections1981
No. of parameters183
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45
Absolute structureFlack (1983), 470 Fridel pairs
Absolute structure parameter0.29 (17)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.413.202 (7)154
O2—H2···O10.821.922.641 (7)146
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C). The authors thank Mr Gang Wu of Chuzhou University for his help with growing the crystals.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNing, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds