organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)-1,2-benziso­thia­zol-3-amine 1,1-dioxide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 31 March 2010; accepted 25 April 2010; online 30 April 2010)

In the title compound, C13H9ClN2O2S, the dihedral angle between the aromatic ring systems is 6.00 (12)° and an intra­molecular C—H⋯N inter­action generates an S(6) ring. In the crystal, mol­ecules inter­act by way of C—H⋯O and N—H⋯O bonds, generating R21(7) and R22(10) ring motifs, and aromatic ππ stacking inter­actions [centroid–centroid separations = 3.730 (3) and 3.733 (2) Å] help to consolidate the packing.

Related literature

For other saccharin derivatives, see: Rafique et al. (2009[Rafique, M., Hussain, G., Siddiqui, W. A. & Tahir, M. N. (2009). Acta Cryst. E65, o1883.]); Siddiqui et al. (2010[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, T. & Parvez, M. (2010). J. Chem. Crystallogr. 40, 116-121.]). For a related structure, see: Brigas et al. (2001[Brigas, A. F., Clegg, W., Dillon, C. J., Fonseca, C. F. C. & Johnstone, R. A. W. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1315-1324.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN2O2S

  • Mr = 292.73

  • Triclinic, [P \overline 1]

  • a = 7.2223 (10) Å

  • b = 7.9138 (12) Å

  • c = 11.2175 (17) Å

  • α = 96.178 (6)°

  • β = 98.840 (5)°

  • γ = 97.574 (5)°

  • V = 622.63 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.28 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.962

  • 10481 measured reflections

  • 2700 independent reflections

  • 1244 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.115

  • S = 0.98

  • 2700 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N2 0.93 2.28 2.901 (5) 124
N1—H1⋯O1i 0.86 2.24 3.084 (4) 165
C5—H5⋯O1i 0.93 2.51 3.396 (4) 159
C2—H2⋯O2ii 0.93 2.42 3.302 (4) 158
Symmetry codes: (i) x-1, y, z; (ii) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Due to the interest in obtaining new derivatives of saccharin (Rafique et al., 2009: Siddiqui et al., 2010), we wish to report the preparation and crystal structure of the title compound (I, Fig. 1).

The crystal structure of (II) N-(1,1-Dioxo-1,2-benzisothiazol-3-yl)-4- methoxyaniline (Brigas et al., 2001) and (III) N-(1,1-Dioxo-1,2-benzisothiazol-3-yl)-3-methylaniline (Brigas et al., 2001) have been published. The title compound differs from (II) and (III) due to attachement of chloro substition on the aniline. In (I), 1,2-benzisothiazol-3-amine A (C–C7/N2/S1) and 3-Chlorophenyl B (C8–C13/CL1) are planar with maximum r. m. s. deviations of 0.0080 Å and 0.0033 Å from the respective mean square planes. The dihedral angle between A/B is 6.00 (12)°. There exists an intramolecular H-bonding of C–H···N type forming S(6) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric sheets due to intermolecular H-bondings (Table 1, Fig. 2) completing R21(7) and R22(10) ring motifs. There exist ππ interactions at a distance of 3.733 (2) Å and 3.730 (2) Å, between the centroids of the benzene rings Cg1 (C1—C6) and Cg2 (C8—C13) respectively, [Cg1···Cg1i: i = 2 - x,-y, 1 - z] and [Cg2···Cg2ii: ii = 1 - x,-y, - z].

Related literature top

For other saccharin derivatives, see: Rafique et al. (2009); Siddiqui et al. (2010). For a related structure, see: Brigas et al. (2001). For graph-set theory, see: Bernstein et al. (1995);

Experimental top

A mixture of saccharin (1.0 g, 5.46 mmol) and m-chloroaniline (5 ml, in excess) was heated to reflux on an oil-bath (4 h), cooled to room temperature and kept overnight in a freezer. The solvent was evaporated under reduced pressure and the brownish yellow paste obtained was washed with benzene (4 × 25 ml) to obtain the bright light brown crystalline product (1.25, 78%, m. p. 578-579 K). Recrystallisation solvent: MeOH:AcOEt (1:1): the solution was subjected to slow evaporation at room temperature to obtain colourless needles of (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93, N–H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Structure description top

Due to the interest in obtaining new derivatives of saccharin (Rafique et al., 2009: Siddiqui et al., 2010), we wish to report the preparation and crystal structure of the title compound (I, Fig. 1).

The crystal structure of (II) N-(1,1-Dioxo-1,2-benzisothiazol-3-yl)-4- methoxyaniline (Brigas et al., 2001) and (III) N-(1,1-Dioxo-1,2-benzisothiazol-3-yl)-3-methylaniline (Brigas et al., 2001) have been published. The title compound differs from (II) and (III) due to attachement of chloro substition on the aniline. In (I), 1,2-benzisothiazol-3-amine A (C–C7/N2/S1) and 3-Chlorophenyl B (C8–C13/CL1) are planar with maximum r. m. s. deviations of 0.0080 Å and 0.0033 Å from the respective mean square planes. The dihedral angle between A/B is 6.00 (12)°. There exists an intramolecular H-bonding of C–H···N type forming S(6) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric sheets due to intermolecular H-bondings (Table 1, Fig. 2) completing R21(7) and R22(10) ring motifs. There exist ππ interactions at a distance of 3.733 (2) Å and 3.730 (2) Å, between the centroids of the benzene rings Cg1 (C1—C6) and Cg2 (C8—C13) respectively, [Cg1···Cg1i: i = 2 - x,-y, 1 - z] and [Cg2···Cg2ii: ii = 1 - x,-y, - z].

For other saccharin derivatives, see: Rafique et al. (2009); Siddiqui et al. (2010). For a related structure, see: Brigas et al. (2001). For graph-set theory, see: Bernstein et al. (1995);

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form polymeric sheets with various ring motifs.
N-(3-Chlorophenyl)-1,2-benzisothiazol-3-amine 1,1-dioxide top
Crystal data top
C13H9ClN2O2SZ = 2
Mr = 292.73F(000) = 300
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2223 (10) ÅCell parameters from 1244 reflections
b = 7.9138 (12) Åθ = 2.6–27.1°
c = 11.2175 (17) ŵ = 0.47 mm1
α = 96.178 (6)°T = 296 K
β = 98.840 (5)°Needle, colourless
γ = 97.574 (5)°0.28 × 0.10 × 0.08 mm
V = 622.63 (16) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2700 independent reflections
Radiation source: fine-focus sealed tube1244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 7.60 pixels mm-1θmax = 27.1°, θmin = 2.6°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.947, Tmax = 0.962l = 1414
10481 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
2700 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H9ClN2O2Sγ = 97.574 (5)°
Mr = 292.73V = 622.63 (16) Å3
Triclinic, P1Z = 2
a = 7.2223 (10) ÅMo Kα radiation
b = 7.9138 (12) ŵ = 0.47 mm1
c = 11.2175 (17) ÅT = 296 K
α = 96.178 (6)°0.28 × 0.10 × 0.08 mm
β = 98.840 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2700 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1244 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.962Rint = 0.088
10481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.98Δρmax = 0.25 e Å3
2700 reflectionsΔρmin = 0.26 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1663 (5)0.2836 (4)0.4969 (3)0.0380 (9)
C21.2431 (5)0.3741 (5)0.6082 (3)0.0512 (11)
H21.37190.41620.62780.061*
C31.1225 (6)0.4010 (5)0.6905 (3)0.0566 (12)
H31.17050.46250.76680.068*
C40.9329 (6)0.3379 (5)0.6609 (4)0.0557 (11)
H40.85420.35720.71770.067*
C50.8563 (5)0.2460 (5)0.5481 (3)0.0466 (10)
H50.72750.20380.52890.056*
C60.9745 (5)0.2185 (4)0.4651 (3)0.0352 (9)
C70.9368 (5)0.1246 (4)0.3407 (3)0.0374 (9)
C80.6944 (4)0.0592 (4)0.1789 (3)0.0361 (9)
C90.5043 (5)0.1312 (5)0.1558 (3)0.0426 (10)
H90.42570.10740.21190.051*
C100.4338 (5)0.2380 (5)0.0491 (3)0.0415 (10)
C110.5448 (5)0.2769 (5)0.0357 (3)0.0482 (10)
H110.49440.34970.10730.058*
C120.7330 (5)0.2050 (5)0.0116 (3)0.0485 (11)
H120.81090.23020.06770.058*
C130.8080 (5)0.0967 (5)0.0939 (3)0.0457 (10)
H130.93530.04850.10810.055*
Cl10.19425 (13)0.32624 (14)0.02129 (9)0.0658 (4)
N10.7608 (4)0.0472 (4)0.2912 (3)0.0417 (8)
H10.67510.06500.33450.050*
N21.0821 (4)0.1190 (4)0.2841 (3)0.0428 (8)
O11.4055 (3)0.1090 (3)0.4010 (2)0.0619 (8)
O21.3450 (4)0.3710 (3)0.3184 (2)0.0645 (8)
S11.27387 (13)0.22471 (14)0.37119 (9)0.0481 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (2)0.039 (2)0.041 (2)0.0055 (17)0.0023 (17)0.0026 (19)
C20.044 (2)0.052 (3)0.047 (3)0.011 (2)0.003 (2)0.001 (2)
C30.062 (3)0.062 (3)0.039 (3)0.004 (2)0.002 (2)0.002 (2)
C40.056 (3)0.063 (3)0.045 (3)0.001 (2)0.013 (2)0.001 (2)
C50.036 (2)0.059 (3)0.041 (2)0.0003 (19)0.0038 (19)0.002 (2)
C60.033 (2)0.039 (2)0.033 (2)0.0038 (17)0.0032 (17)0.0035 (19)
C70.028 (2)0.037 (2)0.043 (2)0.0002 (17)0.0007 (17)0.0000 (19)
C80.028 (2)0.040 (2)0.036 (2)0.0022 (17)0.0018 (17)0.0021 (19)
C90.030 (2)0.048 (3)0.047 (3)0.0001 (18)0.0107 (18)0.005 (2)
C100.027 (2)0.042 (3)0.049 (3)0.0019 (17)0.0015 (18)0.005 (2)
C110.040 (2)0.054 (3)0.044 (2)0.0013 (19)0.0037 (19)0.010 (2)
C120.036 (2)0.064 (3)0.042 (2)0.002 (2)0.0083 (19)0.007 (2)
C130.024 (2)0.065 (3)0.044 (2)0.0020 (18)0.0045 (18)0.001 (2)
Cl10.0325 (6)0.0807 (9)0.0706 (8)0.0122 (5)0.0055 (5)0.0205 (6)
N10.0249 (16)0.054 (2)0.0411 (19)0.0042 (14)0.0069 (14)0.0036 (16)
N20.0248 (16)0.057 (2)0.0421 (19)0.0024 (14)0.0065 (14)0.0062 (16)
O10.0289 (15)0.077 (2)0.073 (2)0.0088 (14)0.0005 (13)0.0092 (17)
O20.0539 (18)0.070 (2)0.0632 (19)0.0227 (15)0.0210 (15)0.0020 (16)
S10.0261 (5)0.0609 (8)0.0494 (7)0.0073 (5)0.0045 (5)0.0087 (6)
Geometric parameters (Å, º) top
C1—C21.367 (5)C8—C91.389 (4)
C1—C61.390 (4)C8—N11.417 (4)
C1—S11.760 (4)C9—C101.374 (5)
C2—C31.382 (5)C9—H90.9300
C2—H20.9300C10—C111.370 (5)
C3—C41.371 (5)C10—Cl11.746 (3)
C3—H30.9300C11—C121.376 (4)
C4—C51.384 (5)C11—H110.9300
C4—H40.9300C12—C131.375 (5)
C5—C61.376 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—C71.477 (5)N1—H10.8600
C7—N21.310 (4)N2—S11.635 (3)
C7—N11.343 (4)O1—S11.432 (3)
C8—C131.384 (4)O2—S11.428 (3)
C2—C1—C6122.5 (3)C10—C9—H9120.4
C2—C1—S1130.4 (3)C8—C9—H9120.4
C6—C1—S1107.1 (3)C11—C10—C9122.3 (3)
C1—C2—C3117.7 (4)C11—C10—Cl1119.2 (3)
C1—C2—H2121.2C9—C10—Cl1118.5 (3)
C3—C2—H2121.2C10—C11—C12118.0 (3)
C4—C3—C2120.7 (4)C10—C11—H11121.0
C4—C3—H3119.6C12—C11—H11121.0
C2—C3—H3119.6C13—C12—C11121.3 (3)
C3—C4—C5121.3 (4)C13—C12—H12119.3
C3—C4—H4119.4C11—C12—H12119.3
C5—C4—H4119.4C12—C13—C8120.0 (3)
C6—C5—C4118.7 (4)C12—C13—H13120.0
C6—C5—H5120.7C8—C13—H13120.0
C4—C5—H5120.7C7—N1—C8130.1 (3)
C5—C6—C1119.2 (3)C7—N1—H1115.0
C5—C6—C7131.3 (3)C8—N1—H1115.0
C1—C6—C7109.5 (3)C7—N2—S1109.9 (2)
N2—C7—N1122.9 (3)O2—S1—O1115.88 (17)
N2—C7—C6116.9 (3)O2—S1—N2110.41 (16)
N1—C7—C6120.2 (3)O1—S1—N2109.76 (16)
C13—C8—C9119.3 (3)O2—S1—C1111.86 (17)
C13—C8—N1123.8 (3)O1—S1—C1110.64 (17)
C9—C8—N1116.9 (3)N2—S1—C196.63 (15)
C10—C9—C8119.1 (3)
C6—C1—C2—C30.3 (6)Cl1—C10—C11—C12179.7 (3)
S1—C1—C2—C3179.8 (3)C10—C11—C12—C130.3 (6)
C1—C2—C3—C40.3 (6)C11—C12—C13—C80.6 (6)
C2—C3—C4—C50.1 (6)C9—C8—C13—C120.5 (5)
C3—C4—C5—C60.0 (6)N1—C8—C13—C12178.3 (3)
C4—C5—C6—C10.1 (5)N2—C7—N1—C84.0 (6)
C4—C5—C6—C7178.8 (4)C6—C7—N1—C8174.8 (3)
C2—C1—C6—C50.2 (6)C13—C8—N1—C73.2 (6)
S1—C1—C6—C5179.8 (3)C9—C8—N1—C7175.6 (3)
C2—C1—C6—C7178.9 (3)N1—C7—N2—S1179.4 (3)
S1—C1—C6—C70.8 (4)C6—C7—N2—S10.6 (4)
C5—C6—C7—N2179.1 (4)C7—N2—S1—O2115.4 (3)
C1—C6—C7—N20.1 (4)C7—N2—S1—O1115.7 (3)
C5—C6—C7—N10.2 (6)C7—N2—S1—C10.9 (3)
C1—C6—C7—N1178.7 (3)C2—C1—S1—O266.3 (4)
C13—C8—C9—C100.1 (5)C6—C1—S1—O2114.1 (3)
N1—C8—C9—C10178.8 (3)C2—C1—S1—O164.5 (4)
C8—C9—C10—C110.2 (6)C6—C1—S1—O1115.0 (3)
C8—C9—C10—Cl1179.6 (3)C2—C1—S1—N2178.6 (4)
C9—C10—C11—C120.1 (6)C6—C1—S1—N21.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N20.932.282.901 (5)124
N1—H1···O1i0.862.243.084 (4)165
C5—H5···O1i0.932.513.396 (4)159
C2—H2···O2ii0.932.423.302 (4)158
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9ClN2O2S
Mr292.73
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2223 (10), 7.9138 (12), 11.2175 (17)
α, β, γ (°)96.178 (6), 98.840 (5), 97.574 (5)
V3)622.63 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.28 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
10481, 2700, 1244
Rint0.088
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.115, 0.98
No. of reflections2700
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N20.932.282.901 (5)124
N1—H1···O1i0.862.243.084 (4)165
C5—H5···O1i0.932.513.396 (4)159
C2—H2···O2ii0.932.423.302 (4)158
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. The authors also acknowledge technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrigas, A. F., Clegg, W., Dillon, C. J., Fonseca, C. F. C. & Johnstone, R. A. W. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1315–1324.  CSD CrossRef Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRafique, M., Hussain, G., Siddiqui, W. A. & Tahir, M. N. (2009). Acta Cryst. E65, o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, T. & Parvez, M. (2010). J. Chem. Crystallogr. 40, 116–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds