metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1H-benzimidazol-2-yl)­phenolato]­di­methanol­manganese(III) chloride

bCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China, and aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn

(Received 2 April 2010; accepted 7 April 2010; online 14 April 2010)

In the title compound, [Mn(C13H9N2O)2(CH3OH)2]Cl, the MnIII atom (site symmetry [\overline{1}]) is coordinated by two N,O-bidentate 2-(1H-benzimidazol-2-yl)phenolate ligands and two methanol mol­ecules, to generate a distorted trans-MnN2O4 octa­hedral geometry for the metal ion. The dihedral angle between the aromatic ring systems in the ligand is 16.0 (3)°. In the crystal structure, the complex cations and chloride anions are linked by O—H⋯Cl and N—H⋯Cl hydrogen bonds. The chloride ion lies on a crystallographic twofold axis.

Related literature

For our previous work on manganese complexes, see: Li et al. (2000[Li, J., Yang, S.-M., Zhang, F.-X., Tang, Z.-X., Shi, Q.-Z., Wu, Q.-J. & Huang, Z.-X. (2000). Chin. J. Inorg. Chem. 16, 84-88.], 2002[Li, J., Zhang, F.-X. & Shi, Q.-Z. (2002). Chin. J. Inorg. Chem. 18, 643-645.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C13H9N2O)2(CH4O)2]Cl

  • Mr = 572.92

  • Monoclinic, C 2/c

  • a = 17.897 (4) Å

  • b = 9.0349 (19) Å

  • c = 16.024 (3) Å

  • β = 93.502 (4)°

  • V = 2586.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.962

  • 5075 measured reflections

  • 2241 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.195

  • S = 1.01

  • 2241 reflections

  • 179 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 1.864 (4)
Mn1—N1 2.041 (4)
Mn1—O2 2.252 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯Cl1i 0.88 2.25 3.107 (3) 165
N2—H2⋯Cl1 0.86 2.36 3.177 (5) 159
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

As part of the ongoing study of manganese complexes (Li et al., 2000, 2002), we now report the crystal structure of the title compound (I).

The geometric parameters of (I) are listed in Table 1. The molecular conformation is illustrated in Fig. 1. This compound consists of a Mn(III) 2-(1H-benzimidazol-2-yl)phenol complex cation and a chloride anion. The complex cation has a slightly elongated octahedral coordination of the metal ion through the formation of two Mn—N and four Mn—O bonds with two asymmetric bidentate 2-(1H-benzimidazol-2-yl)phenol ligands and two methanol molecules. The equatorial plane is formed by O1, O1A, N1, N1A from two ligands with the Mn—N bonds of 2.041 (4) Å and Mn—O bonds of 1.864 (4) Å respectively, similar to those in the related [Mn(C13H8N2OBr)2(C5H5N)2.3(C5H5N) (Li et al., 2002), [Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4 and [Mn(C20H14N2O2)(C7H5O2)].CH3CN Mn(III) compounds (Li et al., 2000). The axial positions are occupied by two methanol O atoms with Mn—O distance of 2.252 (4) Å, slightly shorter than the axial Mn—O bonds [2.297 (5) and 2.287 (5) Å] in [Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4 compound. Therefore, this complex exhibits a typically axial Jahn–Teller distortion characteristic of Mn(III) ions. The metal Mn atom is on a crystallographic inversion center. The dihedral angle between the benzimidazol group plane and the phenol group plane of the ligand is 16.0 (3)°, possibly resulting from the request of the coordination between Mn(III) and the ligands.

The hydrogen-bonding geometry in (I) is listed in Table 2 and illustrated as Fig. 2. There are two types of hydrogen bonds O—H···Cl and N—H···Cl in the crystal packing. Every chloride anion is involved in four such hydrogen bonds and lies on a two-fold axis.

Related literature top

For our previous work on manganese complexes, see: Li et al. (2000, 2002).

Experimental top

2-(1H-benzimidazol-2-yl)phenol was synthesized by adding 20 ml of salicylaldehyde (20 mmol) ethanol solution to 60 ml of O-phenylenediamine (20 mmol) ethanol solution at 373 K and refluxing for an hour. The solvent was evaporated and the light yellow precipitate collected.

2-(1H-benzimidazol-2-yl)phenol (0.2 mmol) was disolved in 8 ml of methanol and MnCl2 (0.1 mmol) in 2 ml of water. Mixing the two solutions and the solution turn to black immediately. Stirring the solution for 10 minutes at room temperature. Filtered, the filtrate was left at room temperature and black slabs of (I) appeared from the solution after three days, by slow evaporation of the mixing solvent.

Refinement top

H atoms attached to C and N atoms of (I) were placed in geometrically idealized positions, with Csp2—H = 0.93, Csp3—H = 0.96 and Nsp2—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Csp2 and Nsp2) or 1.5Ueq(Csp3). H atom attached to O atom was located from difference Fourier map and refined its global Uiso value. The O—H distance is 0.877 Å.

Structure description top

As part of the ongoing study of manganese complexes (Li et al., 2000, 2002), we now report the crystal structure of the title compound (I).

The geometric parameters of (I) are listed in Table 1. The molecular conformation is illustrated in Fig. 1. This compound consists of a Mn(III) 2-(1H-benzimidazol-2-yl)phenol complex cation and a chloride anion. The complex cation has a slightly elongated octahedral coordination of the metal ion through the formation of two Mn—N and four Mn—O bonds with two asymmetric bidentate 2-(1H-benzimidazol-2-yl)phenol ligands and two methanol molecules. The equatorial plane is formed by O1, O1A, N1, N1A from two ligands with the Mn—N bonds of 2.041 (4) Å and Mn—O bonds of 1.864 (4) Å respectively, similar to those in the related [Mn(C13H8N2OBr)2(C5H5N)2.3(C5H5N) (Li et al., 2002), [Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4 and [Mn(C20H14N2O2)(C7H5O2)].CH3CN Mn(III) compounds (Li et al., 2000). The axial positions are occupied by two methanol O atoms with Mn—O distance of 2.252 (4) Å, slightly shorter than the axial Mn—O bonds [2.297 (5) and 2.287 (5) Å] in [Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4 compound. Therefore, this complex exhibits a typically axial Jahn–Teller distortion characteristic of Mn(III) ions. The metal Mn atom is on a crystallographic inversion center. The dihedral angle between the benzimidazol group plane and the phenol group plane of the ligand is 16.0 (3)°, possibly resulting from the request of the coordination between Mn(III) and the ligands.

The hydrogen-bonding geometry in (I) is listed in Table 2 and illustrated as Fig. 2. There are two types of hydrogen bonds O—H···Cl and N—H···Cl in the crystal packing. Every chloride anion is involved in four such hydrogen bonds and lies on a two-fold axis.

For our previous work on manganese complexes, see: Li et al. (2000, 2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms. (Symmetry code: A 1 - x, 2 - y, -z.)
[Figure 2] Fig. 2. The H-bond network of (I). (Symmetry codes: A 1 - x, 2 - y, -z; B 1 - x, y, -z + 1/2; D x, y - 1, z; E 1 - x, 1 - y, -z; F 1 - x, y - 1, -z + 1/2; H x, 1 - y, z - 1/2; J x, 2 - y, z - 1/2.)
Bis[2-(1H-benzimidazol-2-yl)phenolato]dimethanolmanganese(III) chloride top
Crystal data top
[Mn(C13H9N2O)2(CH4O)2]ClF(000) = 1184
Mr = 572.92Dx = 1.471 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1038 reflections
a = 17.897 (4) Åθ = 2.3–21.8°
b = 9.0349 (19) ŵ = 0.66 mm1
c = 16.024 (3) ÅT = 298 K
β = 93.502 (4)°Sheet, black
V = 2586.2 (10) Å30.30 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2241 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2120
Tmin = 0.827, Tmax = 0.962k = 1010
5075 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0997P)2]
where P = (Fo2 + 2Fc2)/3
2241 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
[Mn(C13H9N2O)2(CH4O)2]ClV = 2586.2 (10) Å3
Mr = 572.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.897 (4) ŵ = 0.66 mm1
b = 9.0349 (19) ÅT = 298 K
c = 16.024 (3) Å0.30 × 0.10 × 0.06 mm
β = 93.502 (4)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2241 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1444 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.962Rint = 0.073
5075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.195H-atom parameters constrained
S = 1.01Δρmax = 0.72 e Å3
2241 reflectionsΔρmin = 0.41 e Å3
179 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50001.00000.00000.0291 (4)
N10.4766 (3)0.7876 (5)0.0331 (3)0.0435 (12)
N20.4849 (3)0.5839 (5)0.1099 (3)0.0518 (14)
H20.50160.52250.14760.062*
O10.5985 (2)0.9683 (4)0.0406 (3)0.0473 (11)
O20.4667 (2)1.0747 (4)0.1266 (2)0.0499 (11)
C10.6238 (3)0.8846 (6)0.1061 (3)0.0414 (14)
C20.5854 (3)0.7679 (6)0.1370 (3)0.0409 (14)
C30.6160 (4)0.6872 (6)0.2031 (4)0.0509 (16)
H30.58900.60920.22440.061*
C40.6883 (4)0.7211 (7)0.2396 (4)0.065 (2)
H40.70940.66760.28470.078*
C50.7259 (3)0.8380 (7)0.2046 (4)0.0541 (17)
H50.77360.86350.22620.065*
C60.6942 (3)0.9148 (6)0.1399 (4)0.0472 (15)
H60.72110.99140.11730.057*
C70.5144 (3)0.7165 (5)0.0934 (3)0.0327 (13)
C80.4166 (3)0.6958 (6)0.0065 (4)0.0436 (15)
C90.3598 (4)0.7060 (6)0.0577 (4)0.0519 (17)
H90.35530.78870.09220.062*
C100.3117 (3)0.5900 (7)0.0673 (4)0.0537 (17)
H100.27310.59500.10870.064*
C110.3180 (4)0.4667 (7)0.0184 (4)0.0593 (19)
H110.28360.39050.02770.071*
C120.3722 (4)0.4514 (6)0.0427 (4)0.0537 (17)
H120.37560.36690.07580.064*
C130.4212 (3)0.5632 (6)0.0540 (3)0.0411 (14)
C140.4002 (4)1.0293 (7)0.1622 (4)0.066 (2)
H14A0.37140.96860.12300.100*
H14B0.37151.11490.17560.100*
H14C0.41250.97370.21220.100*
Cl10.50000.3350 (2)0.25000.0652 (8)
H2O0.48431.14870.15720.031 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0406 (7)0.0171 (5)0.0290 (7)0.0039 (5)0.0035 (5)0.0035 (5)
N10.061 (3)0.026 (2)0.043 (3)0.006 (2)0.003 (2)0.001 (2)
N20.080 (4)0.030 (3)0.047 (3)0.003 (3)0.014 (3)0.007 (2)
O10.052 (3)0.041 (2)0.048 (3)0.0053 (18)0.0010 (19)0.0075 (19)
O20.073 (3)0.038 (2)0.040 (2)0.017 (2)0.011 (2)0.016 (2)
C10.054 (4)0.035 (3)0.035 (3)0.002 (3)0.001 (3)0.006 (3)
C20.052 (4)0.035 (3)0.035 (3)0.005 (3)0.003 (3)0.011 (3)
C30.071 (4)0.023 (3)0.059 (4)0.005 (3)0.008 (3)0.002 (3)
C40.101 (6)0.046 (4)0.045 (4)0.029 (4)0.020 (4)0.005 (3)
C50.048 (4)0.047 (4)0.065 (4)0.007 (3)0.018 (3)0.013 (3)
C60.053 (4)0.037 (3)0.051 (4)0.000 (3)0.002 (3)0.003 (3)
C70.051 (3)0.023 (3)0.024 (3)0.008 (2)0.001 (2)0.004 (2)
C80.050 (4)0.037 (3)0.045 (4)0.019 (3)0.016 (3)0.018 (3)
C90.074 (5)0.037 (3)0.044 (4)0.003 (3)0.003 (3)0.010 (3)
C100.052 (4)0.052 (4)0.055 (4)0.011 (3)0.009 (3)0.013 (3)
C110.073 (5)0.041 (4)0.066 (5)0.022 (3)0.017 (4)0.017 (3)
C120.081 (5)0.027 (3)0.056 (4)0.010 (3)0.025 (4)0.001 (3)
C130.048 (4)0.047 (3)0.028 (3)0.011 (3)0.003 (3)0.001 (3)
C140.078 (5)0.059 (4)0.064 (5)0.017 (4)0.022 (4)0.009 (3)
Cl10.142 (2)0.0221 (10)0.0309 (12)0.0000.0013 (13)0.000
Geometric parameters (Å, º) top
Mn1—O11.864 (4)C3—H30.9300
Mn1—O1i1.864 (4)C4—C51.389 (9)
Mn1—N12.041 (4)C4—H40.9300
Mn1—N1i2.041 (4)C5—C61.343 (8)
Mn1—O22.252 (4)C5—H50.9300
Mn1—O2i2.252 (4)C6—H60.9300
N1—C71.312 (6)C8—C91.404 (7)
N1—C81.403 (6)C8—C131.419 (8)
N2—C71.343 (7)C9—C101.359 (8)
N2—C131.418 (7)C9—H90.9300
N2—H20.8600C10—C111.362 (9)
O1—C11.349 (6)C10—H100.9300
O2—C141.412 (7)C11—C121.342 (9)
O2—H2O0.8771C11—H110.9300
C1—C61.368 (8)C12—C131.343 (8)
C1—C21.369 (8)C12—H120.9300
C2—C31.373 (7)C14—H14A0.9600
C2—C71.486 (7)C14—H14B0.9600
C3—C41.420 (9)C14—H14C0.9600
O1—Mn1—O1i180.0C5—C4—H4121.7
O1—Mn1—N188.22 (17)C3—C4—H4121.7
O1i—Mn1—N191.78 (17)C6—C5—C4120.8 (6)
O1—Mn1—N1i91.78 (17)C6—C5—H5119.6
O1i—Mn1—N1i88.22 (17)C4—C5—H5119.6
N1—Mn1—N1i180.0C5—C6—C1122.5 (6)
O1—Mn1—O291.61 (17)C5—C6—H6118.7
O1i—Mn1—O288.39 (17)C1—C6—H6118.7
N1—Mn1—O288.72 (17)N1—C7—N2113.0 (5)
N1i—Mn1—O291.28 (17)N1—C7—C2125.5 (5)
O1—Mn1—O2i88.39 (17)N2—C7—C2121.4 (5)
O1i—Mn1—O2i91.61 (17)N1—C8—C9133.6 (5)
N1—Mn1—O2i91.28 (17)N1—C8—C13108.5 (5)
N1i—Mn1—O2i88.72 (17)C9—C8—C13117.7 (5)
O2—Mn1—O2i180.0C10—C9—C8117.2 (5)
C7—N1—C8106.5 (4)C10—C9—H9121.4
C7—N1—Mn1123.2 (3)C8—C9—H9121.4
C8—N1—Mn1129.9 (4)C9—C10—C11122.4 (6)
C7—N2—C13107.6 (5)C9—C10—H10118.8
C7—N2—H2126.2C11—C10—H10118.8
C13—N2—H2126.2C12—C11—C10122.3 (6)
C1—O1—Mn1128.6 (4)C12—C11—H11118.9
C14—O2—Mn1123.6 (4)C10—C11—H11118.9
C14—O2—H2O106.2C11—C12—C13117.2 (6)
Mn1—O2—H2O128.8C11—C12—H12121.4
O1—C1—C6117.0 (5)C13—C12—H12121.4
O1—C1—C2124.1 (5)C12—C13—N2132.6 (6)
C6—C1—C2118.8 (5)C12—C13—C8123.1 (5)
C1—C2—C3120.2 (5)N2—C13—C8104.3 (5)
C1—C2—C7120.3 (5)O2—C14—H14A109.5
C3—C2—C7119.1 (5)O2—C14—H14B109.5
C2—C3—C4121.0 (6)H14A—C14—H14B109.5
C2—C3—H3119.5O2—C14—H14C109.5
C4—C3—H3119.5H14A—C14—H14C109.5
C5—C4—C3116.7 (5)H14B—C14—H14C109.5
O1—Mn1—N1—C726.5 (5)C2—C1—C6—C52.8 (9)
O1i—Mn1—N1—C7153.5 (5)C8—N1—C7—N20.0 (6)
O2—Mn1—N1—C765.2 (5)Mn1—N1—C7—N2173.8 (4)
O2i—Mn1—N1—C7114.8 (5)C8—N1—C7—C2176.2 (5)
O1—Mn1—N1—C8161.3 (5)Mn1—N1—C7—C210.1 (8)
O1i—Mn1—N1—C818.7 (5)C13—N2—C7—N10.8 (6)
O2—Mn1—N1—C8107.1 (5)C13—N2—C7—C2175.5 (5)
O2i—Mn1—N1—C872.9 (5)C1—C2—C7—N111.6 (8)
N1—Mn1—O1—C134.3 (4)C3—C2—C7—N1175.4 (5)
N1i—Mn1—O1—C1145.7 (4)C1—C2—C7—N2164.2 (5)
O2—Mn1—O1—C154.3 (4)C3—C2—C7—N28.8 (8)
O2i—Mn1—O1—C1125.7 (4)C7—N1—C8—C9176.0 (6)
O1—Mn1—O2—C14136.2 (5)Mn1—N1—C8—C910.8 (10)
O1i—Mn1—O2—C1443.8 (5)C7—N1—C8—C130.9 (6)
N1—Mn1—O2—C1448.1 (5)Mn1—N1—C8—C13174.1 (4)
N1i—Mn1—O2—C14131.9 (5)N1—C8—C9—C10177.3 (6)
Mn1—O1—C1—C6159.7 (4)C13—C8—C9—C102.6 (9)
Mn1—O1—C1—C224.2 (8)C8—C9—C10—C111.2 (10)
O1—C1—C2—C3178.9 (5)C9—C10—C11—C120.1 (11)
C6—C1—C2—C32.8 (8)C10—C11—C12—C130.5 (10)
O1—C1—C2—C76.0 (8)C11—C12—C13—N2178.6 (6)
C6—C1—C2—C7170.1 (5)C11—C12—C13—C82.0 (10)
C1—C2—C3—C41.2 (9)C7—N2—C13—C12179.2 (6)
C7—C2—C3—C4171.8 (5)C7—N2—C13—C81.3 (6)
C2—C3—C4—C50.5 (9)N1—C8—C13—C12179.1 (5)
C3—C4—C5—C60.6 (10)C9—C8—C13—C123.1 (9)
C4—C5—C6—C11.1 (10)N1—C8—C13—N21.4 (6)
O1—C1—C6—C5179.2 (5)C9—C8—C13—N2177.3 (5)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl1ii0.882.253.107 (3)165
N2—H2···Cl10.862.363.177 (5)159
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C13H9N2O)2(CH4O)2]Cl
Mr572.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.897 (4), 9.0349 (19), 16.024 (3)
β (°) 93.502 (4)
V3)2586.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.30 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.827, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
5075, 2241, 1444
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.195, 1.01
No. of reflections2241
No. of parameters179
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.41

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O11.864 (4)Mn1—O22.252 (4)
Mn1—N12.041 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl1i0.882.253.107 (3)165
N2—H2···Cl10.862.363.177 (5)159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2008, as well as the Doctor Startup Foundation of Shanxi University of China.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J., Yang, S.-M., Zhang, F.-X., Tang, Z.-X., Shi, Q.-Z., Wu, Q.-J. & Huang, Z.-X. (2000). Chin. J. Inorg. Chem. 16, 84–88.  CAS Google Scholar
First citationLi, J., Zhang, F.-X. & Shi, Q.-Z. (2002). Chin. J. Inorg. Chem. 18, 643–645.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds