organic compounds
Dimethyl 4-ethoxy-1-(4-methyl-2-pyridyl)-5-oxo-2,5-dihydro-1H-pyrrole-2,3-dicarboxylate
aDepartment of Chemistry, Islamic Azad University Yazd Branch, Yazd, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com
In the title compound, C16H18N2O6, the dihedral angle between the aromatic ring planes is 8.11 (6)°. One of the O atoms is disordered over two sites of equal occupancy. In the aromatic π–π stacking [centroid-to-centroid separation = 3.5503 (8) Å] helps to consolidate the packing.
Related literature
For background on 3-pyrrolines as synthetic intermediates, see: Tarnchompoo et al. (1987); Bienz et al. (1989). For further synthetic details, see: Anary-Abbasinejad et al. (2010).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810012882/hb5395sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810012882/hb5395Isup2.hkl
To a magnetically stirred solution of PPh3 (0.26 g, 1 mmol) and 4-methyl-2-aminopyridine (0.9 g, 1 mmol) in CH2Cl2(10 ml) was added drop-wise a mixture of dimethyl acetylenedicarboxylate DMAD (0.14 g, 1 mmol) in CH2Cl2 (3 ml) at room temperature over 2 min. The reaction mixture was then stirred for one more minute, then triethylamine (1 mmol) and ethyl chlorooxoacetate (1 mmol) was added and the reaction mixture was stirred for more 24 h. Solvent was evaporated and the residue was purified by
on SiO2 using EtOAC–hexane (1:4) mixture as The solid formed was filtrated, recrystallised from dichloromethane/ethanol (2:1) to yield colourless prisms of (I).The H(C) atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2Ueq(C).
(N-Substituted 3-pyrrolines serve as useful synthetic intermediates (Tarnchompoo et al., 1987; Bienz et al., 1989). Recently we reported a one-pot procedure for the synthesis of some dialkyl N-(3-methyl-2-pyridyl)-4-ethoxy-5-oxo-2,5-dihydro-1H- pyrole-2,3-dicarboxylate derivatives (Anary-Abbasinejad et al., 2010).
Here we report the synthesis and π–π stacking interactions between six and five membered rings (Fig. 3) with distance 3.5503 (8) Å for Cg2···Cg3 (Cg2 = N1/C10–C17 and Cg3 = N2/C9–C12).
of the title compound, (I). It is rational to assume that compound 1 (Fig. 1) is produced from the initial production of ylide intermediate produced from three-component reaction of DMAD, 4-methyl-2-aminopyridine and triphenylphosphine, which then reacted with ethyl chlorooxoacetate to produce an oxamate derivative that underwent intramolecular Wittig reaction to give the products. Crystal packing of I is shown in Fig. 2. A considerable feature of the compound (I) is the presence ofFor background on 3-pyrrolines as synthetic intermediates, see: Tarnchompoo et al. (1987); Bienz et al. (1989). For further synthetic details, see: Anary-Abbasinejad et al. (2010).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H18N2O6 | Z = 2 |
Mr = 334.32 | F(000) = 352 |
Triclinic, P1 | Dx = 1.420 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2674 (6) Å | Cell parameters from 259 reflections |
b = 9.4219 (6) Å | θ = 3–29° |
c = 10.7650 (7) Å | µ = 0.11 mm−1 |
α = 87.692 (2)° | T = 120 K |
β = 72.037 (1)° | Prism, colourless |
γ = 61.797 (1)° | 0.22 × 0.19 × 0.15 mm |
V = 781.73 (9) Å3 |
Bruker SMART 1000 CCD diffractometer | 4340 independent reflections |
Radiation source: fine-focus sealed tube | 3811 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 29.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→12 |
Tmin = 0.976, Tmax = 0.984 | k = −13→13 |
14075 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0685P)2 + 0.3063P] where P = (Fo2 + 2Fc2)/3 |
4340 reflections | (Δ/σ)max = 0.001 |
231 parameters | Δρmax = 0.37 e Å−3 |
8 restraints | Δρmin = −0.29 e Å−3 |
C16H18N2O6 | γ = 61.797 (1)° |
Mr = 334.32 | V = 781.73 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2674 (6) Å | Mo Kα radiation |
b = 9.4219 (6) Å | µ = 0.11 mm−1 |
c = 10.7650 (7) Å | T = 120 K |
α = 87.692 (2)° | 0.22 × 0.19 × 0.15 mm |
β = 72.037 (1)° |
Bruker SMART 1000 CCD diffractometer | 4340 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3811 reflections with I > 2σ(I) |
Tmin = 0.976, Tmax = 0.984 | Rint = 0.020 |
14075 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 8 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.37 e Å−3 |
4340 reflections | Δρmin = −0.29 e Å−3 |
231 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.17590 (10) | 0.52219 (10) | 0.39546 (8) | 0.02303 (17) | |
O2 | 0.40451 (10) | 0.95161 (9) | 0.14840 (8) | 0.02268 (17) | |
O3 | 0.51098 (11) | 0.79492 (10) | 0.29618 (8) | 0.02475 (18) | |
N1 | 0.71510 (11) | 0.58162 (11) | −0.02268 (9) | 0.01973 (18) | |
O4 | −0.06090 (10) | 0.84294 (10) | 0.37603 (9) | 0.02895 (19) | |
O5 | 0.54578 (10) | 0.30748 (9) | 0.25074 (8) | 0.02478 (18) | |
N2 | 0.52930 (11) | 0.53670 (10) | 0.15196 (8) | 0.01807 (17) | |
C8 | 0.44689 (12) | 0.82101 (12) | 0.21038 (10) | 0.01806 (19) | |
C9 | 0.39637 (12) | 0.70530 (12) | 0.16169 (10) | 0.01788 (19) | |
H9A | 0.3761 | 0.7310 | 0.0756 | 0.021* | |
C10 | 0.69758 (12) | 0.47752 (12) | 0.06007 (9) | 0.01754 (19) | |
C11 | 1.01376 (13) | 0.37860 (13) | −0.12410 (10) | 0.0217 (2) | |
H11A | 1.1218 | 0.3474 | −0.1911 | 0.026* | |
C12 | 0.46748 (13) | 0.45026 (12) | 0.23786 (10) | 0.01882 (19) | |
C13 | 0.23818 (13) | 0.71222 (12) | 0.26432 (10) | 0.01865 (19) | |
C14 | 0.83205 (13) | 0.32265 (12) | 0.05951 (10) | 0.0201 (2) | |
H14A | 0.8133 | 0.2538 | 0.1220 | 0.024* | |
C15 | 0.28055 (13) | 0.56764 (12) | 0.30958 (10) | 0.0190 (2) | |
C16 | 0.99386 (13) | 0.27226 (13) | −0.03493 (10) | 0.0209 (2) | |
C17 | 0.87312 (13) | 0.53027 (13) | −0.11305 (10) | 0.0216 (2) | |
H17A | 0.8889 | 0.6027 | −0.1729 | 0.026* | |
C18 | 0.07123 (14) | 0.86461 (13) | 0.30661 (11) | 0.0230 (2) | |
C20 | 0.23239 (15) | 0.44492 (14) | 0.50530 (11) | 0.0242 (2) | |
H20A | 0.3508 | 0.3514 | 0.4706 | 0.029* | |
H20B | 0.1538 | 0.4040 | 0.5559 | 0.029* | |
C21 | 1.14368 (15) | 0.10896 (14) | −0.03822 (13) | 0.0295 (2) | |
H21A | 1.2431 | 0.1216 | −0.0393 | 0.044* | |
H21B | 1.1749 | 0.0388 | −0.1175 | 0.044* | |
H21C | 1.1108 | 0.0598 | 0.0400 | 0.044* | |
C22 | 0.40700 (15) | 1.08725 (13) | 0.20518 (12) | 0.0263 (2) | |
H22A | 0.4173 | 1.1584 | 0.1380 | 0.039* | |
H22B | 0.5061 | 1.0464 | 0.2372 | 0.039* | |
H22C | 0.2993 | 1.1485 | 0.2787 | 0.039* | |
C23 | −0.22672 (15) | 0.98915 (16) | 0.42475 (13) | 0.0347 (3) | |
H23A | −0.3177 | 0.9600 | 0.4659 | 0.052* | |
H23B | −0.2518 | 1.0504 | 0.3514 | 0.052* | |
H23C | −0.2230 | 1.0560 | 0.4899 | 0.052* | |
C24 | 0.23145 (19) | 0.56449 (17) | 0.59437 (13) | 0.0351 (3) | |
H24A | 0.2595 | 0.5142 | 0.6712 | 0.053* | |
H24B | 0.1163 | 0.6606 | 0.6235 | 0.053* | |
H24C | 0.3179 | 0.5966 | 0.5465 | 0.053* | |
O6' | 0.0517 (16) | 0.9913 (13) | 0.2663 (9) | 0.0417 (17) | 0.50 |
O6 | 0.0634 (17) | 0.9971 (12) | 0.2975 (10) | 0.0393 (15) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0207 (4) | 0.0295 (4) | 0.0238 (4) | −0.0162 (3) | −0.0077 (3) | 0.0093 (3) |
O2 | 0.0264 (4) | 0.0174 (3) | 0.0276 (4) | −0.0124 (3) | −0.0107 (3) | 0.0065 (3) |
O3 | 0.0280 (4) | 0.0229 (4) | 0.0262 (4) | −0.0124 (3) | −0.0126 (3) | 0.0039 (3) |
N1 | 0.0194 (4) | 0.0210 (4) | 0.0196 (4) | −0.0107 (3) | −0.0058 (3) | 0.0030 (3) |
O4 | 0.0168 (4) | 0.0254 (4) | 0.0354 (4) | −0.0078 (3) | −0.0006 (3) | 0.0022 (3) |
O5 | 0.0237 (4) | 0.0182 (4) | 0.0318 (4) | −0.0108 (3) | −0.0076 (3) | 0.0060 (3) |
N2 | 0.0161 (4) | 0.0154 (4) | 0.0202 (4) | −0.0072 (3) | −0.0033 (3) | 0.0018 (3) |
C8 | 0.0155 (4) | 0.0157 (4) | 0.0198 (4) | −0.0070 (3) | −0.0028 (3) | 0.0017 (3) |
C9 | 0.0168 (4) | 0.0166 (4) | 0.0192 (4) | −0.0078 (4) | −0.0049 (3) | 0.0024 (3) |
C10 | 0.0175 (4) | 0.0184 (4) | 0.0175 (4) | −0.0097 (4) | −0.0048 (3) | 0.0001 (3) |
C11 | 0.0188 (4) | 0.0264 (5) | 0.0197 (4) | −0.0118 (4) | −0.0044 (3) | 0.0003 (4) |
C12 | 0.0195 (4) | 0.0188 (4) | 0.0204 (4) | −0.0111 (4) | −0.0063 (3) | 0.0024 (3) |
C13 | 0.0168 (4) | 0.0204 (5) | 0.0190 (4) | −0.0096 (4) | −0.0051 (3) | 0.0017 (3) |
C14 | 0.0192 (4) | 0.0181 (4) | 0.0217 (5) | −0.0086 (4) | −0.0059 (4) | 0.0015 (3) |
C15 | 0.0181 (4) | 0.0213 (5) | 0.0202 (4) | −0.0118 (4) | −0.0059 (3) | 0.0030 (3) |
C16 | 0.0183 (4) | 0.0208 (5) | 0.0223 (5) | −0.0082 (4) | −0.0065 (4) | −0.0008 (4) |
C17 | 0.0215 (5) | 0.0250 (5) | 0.0196 (4) | −0.0128 (4) | −0.0061 (4) | 0.0037 (4) |
C18 | 0.0197 (5) | 0.0227 (5) | 0.0223 (5) | −0.0085 (4) | −0.0044 (4) | 0.0024 (4) |
C20 | 0.0246 (5) | 0.0249 (5) | 0.0242 (5) | −0.0133 (4) | −0.0081 (4) | 0.0090 (4) |
C21 | 0.0199 (5) | 0.0238 (5) | 0.0350 (6) | −0.0051 (4) | −0.0052 (4) | 0.0027 (4) |
C22 | 0.0280 (5) | 0.0168 (5) | 0.0329 (6) | −0.0120 (4) | −0.0065 (4) | 0.0016 (4) |
C23 | 0.0176 (5) | 0.0322 (6) | 0.0358 (6) | −0.0034 (5) | 0.0009 (4) | 0.0014 (5) |
C24 | 0.0472 (7) | 0.0378 (7) | 0.0276 (6) | −0.0245 (6) | −0.0155 (5) | 0.0082 (5) |
O6' | 0.026 (2) | 0.026 (2) | 0.051 (4) | −0.0063 (13) | 0.004 (2) | 0.014 (2) |
O6 | 0.0263 (16) | 0.0202 (13) | 0.058 (4) | −0.0087 (11) | −0.002 (3) | 0.004 (2) |
O1—C15 | 1.3364 (12) | C13—C18 | 1.4769 (14) |
O1—C20 | 1.4679 (13) | C14—C16 | 1.3904 (14) |
O2—C8 | 1.3238 (12) | C14—H14A | 0.9500 |
O2—C22 | 1.4515 (13) | C16—C21 | 1.5004 (15) |
O3—C8 | 1.2035 (13) | C17—H17A | 0.9500 |
N1—C10 | 1.3315 (13) | C18—O6' | 1.204 (10) |
N1—C17 | 1.3471 (13) | C18—O6 | 1.218 (10) |
O4—C18 | 1.3263 (13) | C20—C24 | 1.5037 (17) |
O4—C23 | 1.4472 (14) | C20—H20A | 0.9900 |
O5—C12 | 1.2165 (13) | C20—H20B | 0.9900 |
N2—C12 | 1.3785 (12) | C21—H21A | 0.9800 |
N2—C10 | 1.4115 (12) | C21—H21B | 0.9800 |
N2—C9 | 1.4615 (12) | C21—H21C | 0.9800 |
C8—C9 | 1.5369 (14) | C22—H22A | 0.9800 |
C9—C13 | 1.5134 (13) | C22—H22B | 0.9800 |
C9—H9A | 1.0000 | C22—H22C | 0.9800 |
C10—C14 | 1.3999 (14) | C23—H23A | 0.9800 |
C11—C17 | 1.3830 (15) | C23—H23B | 0.9800 |
C11—C16 | 1.3954 (15) | C23—H23C | 0.9800 |
C11—H11A | 0.9500 | C24—H24A | 0.9800 |
C12—C15 | 1.5011 (14) | C24—H24B | 0.9800 |
C13—C15 | 1.3440 (14) | C24—H24C | 0.9800 |
C15—O1—C20 | 116.43 (8) | N1—C17—H17A | 118.0 |
C8—O2—C22 | 116.22 (9) | C11—C17—H17A | 118.0 |
C10—N1—C17 | 116.47 (9) | O6'—C18—O4 | 122.5 (6) |
C18—O4—C23 | 115.57 (9) | O6—C18—O4 | 123.7 (6) |
C12—N2—C10 | 127.04 (9) | O6'—C18—C13 | 123.4 (6) |
C12—N2—C9 | 112.20 (8) | O6—C18—C13 | 121.9 (6) |
C10—N2—C9 | 120.74 (8) | O4—C18—C13 | 113.18 (9) |
O3—C8—O2 | 126.28 (10) | O1—C20—C24 | 110.36 (9) |
O3—C8—C9 | 123.12 (9) | O1—C20—H20A | 109.6 |
O2—C8—C9 | 110.56 (8) | C24—C20—H20A | 109.6 |
N2—C9—C13 | 102.82 (8) | O1—C20—H20B | 109.6 |
N2—C9—C8 | 110.34 (8) | C24—C20—H20B | 109.6 |
C13—C9—C8 | 110.24 (8) | H20A—C20—H20B | 108.1 |
N2—C9—H9A | 111.1 | C16—C21—H21A | 109.5 |
C13—C9—H9A | 111.1 | C16—C21—H21B | 109.5 |
C8—C9—H9A | 111.1 | H21A—C21—H21B | 109.5 |
N1—C10—C14 | 124.23 (9) | C16—C21—H21C | 109.5 |
N1—C10—N2 | 114.20 (9) | H21A—C21—H21C | 109.5 |
C14—C10—N2 | 121.57 (9) | H21B—C21—H21C | 109.5 |
C17—C11—C16 | 118.70 (9) | O2—C22—H22A | 109.5 |
C17—C11—H11A | 120.7 | O2—C22—H22B | 109.5 |
C16—C11—H11A | 120.7 | H22A—C22—H22B | 109.5 |
O5—C12—N2 | 127.50 (10) | O2—C22—H22C | 109.5 |
O5—C12—C15 | 126.81 (9) | H22A—C22—H22C | 109.5 |
N2—C12—C15 | 105.66 (8) | H22B—C22—H22C | 109.5 |
C15—C13—C18 | 129.15 (9) | O4—C23—H23A | 109.5 |
C15—C13—C9 | 109.65 (9) | O4—C23—H23B | 109.5 |
C18—C13—C9 | 121.10 (9) | H23A—C23—H23B | 109.5 |
C16—C14—C10 | 118.22 (10) | O4—C23—H23C | 109.5 |
C16—C14—H14A | 120.9 | H23A—C23—H23C | 109.5 |
C10—C14—H14A | 120.9 | H23B—C23—H23C | 109.5 |
O1—C15—C13 | 127.97 (9) | C20—C24—H24A | 109.5 |
O1—C15—C12 | 122.13 (9) | C20—C24—H24B | 109.5 |
C13—C15—C12 | 109.62 (9) | H24A—C24—H24B | 109.5 |
C14—C16—C11 | 118.34 (10) | C20—C24—H24C | 109.5 |
C14—C16—C21 | 120.49 (10) | H24A—C24—H24C | 109.5 |
C11—C16—C21 | 121.16 (10) | H24B—C24—H24C | 109.5 |
N1—C17—C11 | 124.02 (10) | ||
C22—O2—C8—O3 | −11.71 (15) | C20—O1—C15—C13 | −130.46 (11) |
C22—O2—C8—C9 | 166.06 (8) | C20—O1—C15—C12 | 56.26 (13) |
C12—N2—C9—C13 | −1.63 (11) | C18—C13—C15—O1 | 7.41 (18) |
C10—N2—C9—C13 | 176.88 (8) | C9—C13—C15—O1 | −176.23 (10) |
C12—N2—C9—C8 | 115.93 (9) | C18—C13—C15—C12 | −178.63 (10) |
C10—N2—C9—C8 | −65.56 (11) | C9—C13—C15—C12 | −2.27 (11) |
O3—C8—C9—N2 | −40.90 (13) | O5—C12—C15—O1 | −2.48 (16) |
O2—C8—C9—N2 | 141.24 (8) | N2—C12—C15—O1 | 175.60 (9) |
O3—C8—C9—C13 | 71.98 (12) | O5—C12—C15—C13 | −176.85 (10) |
O2—C8—C9—C13 | −105.87 (9) | N2—C12—C15—C13 | 1.22 (11) |
C17—N1—C10—C14 | 1.13 (15) | C10—C14—C16—C11 | 0.02 (15) |
C17—N1—C10—N2 | −179.48 (8) | C10—C14—C16—C21 | 178.63 (9) |
C12—N2—C10—N1 | 171.31 (9) | C17—C11—C16—C14 | 1.30 (15) |
C9—N2—C10—N1 | −6.97 (13) | C17—C11—C16—C21 | −177.30 (10) |
C12—N2—C10—C14 | −9.29 (16) | C10—N1—C17—C11 | 0.34 (15) |
C9—N2—C10—C14 | 172.43 (9) | C16—C11—C17—N1 | −1.56 (16) |
C10—N2—C12—O5 | 0.04 (17) | C23—O4—C18—O6' | −12.9 (5) |
C9—N2—C12—O5 | 178.45 (10) | C23—O4—C18—O6 | 9.6 (5) |
C10—N2—C12—C15 | −178.01 (9) | C23—O4—C18—C13 | 177.55 (10) |
C9—N2—C12—C15 | 0.39 (11) | C15—C13—C18—O6' | 173.7 (5) |
N2—C9—C13—C15 | 2.39 (11) | C9—C13—C18—O6' | −2.3 (5) |
C8—C9—C13—C15 | −115.24 (9) | C15—C13—C18—O6 | 151.4 (5) |
N2—C9—C13—C18 | 179.09 (9) | C9—C13—C18—O6 | −24.6 (5) |
C8—C9—C13—C18 | 61.45 (12) | C15—C13—C18—O4 | −16.81 (16) |
N1—C10—C14—C16 | −1.31 (16) | C9—C13—C18—O4 | 167.21 (9) |
N2—C10—C14—C16 | 179.34 (9) | C15—O1—C20—C24 | 66.34 (12) |
Experimental details
Crystal data | |
Chemical formula | C16H18N2O6 |
Mr | 334.32 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 9.2674 (6), 9.4219 (6), 10.7650 (7) |
α, β, γ (°) | 87.692 (2), 72.037 (1), 61.797 (1) |
V (Å3) | 781.73 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.22 × 0.19 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.976, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14075, 4340, 3811 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.693 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.119, 1.00 |
No. of reflections | 4340 |
No. of parameters | 231 |
No. of restraints | 8 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.29 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors are grateful to Islamic Azad University, Yazd Branch, for supporting this work.
References
Anary-Abbasinejad, M., Mirhossaini, M., Parhami, A. & Pourhassan, E. (2010). Synth. Commun. 40, 1350–1359. Web of Science CrossRef CAS Google Scholar
Bienz, S., Busacca, C. & Mayers, A. I. (1989). J. Am. Chem. Soc. 111, 1905–1907. CrossRef CAS Web of Science Google Scholar
Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarnchompoo, B., Thebtaranonth, C. & Thebtaranonth, Y. (1987). Tetrahedron Lett. 28, 6675–6678. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
(N-Substituted 3-pyrrolines serve as useful synthetic intermediates (Tarnchompoo et al., 1987; Bienz et al., 1989). Recently we reported a one-pot procedure for the synthesis of some dialkyl N-(3-methyl-2-pyridyl)-4-ethoxy-5-oxo-2,5-dihydro-1H- pyrole-2,3-dicarboxylate derivatives (Anary-Abbasinejad et al., 2010).
Here we report the synthesis and crystal structure of the title compound, (I). It is rational to assume that compound 1 (Fig. 1) is produced from the initial production of ylide intermediate produced from three-component reaction of DMAD, 4-methyl-2-aminopyridine and triphenylphosphine, which then reacted with ethyl chlorooxoacetate to produce an oxamate derivative that underwent intramolecular Wittig reaction to give the products. Crystal packing of I is shown in Fig. 2. A considerable feature of the compound (I) is the presence of π–π stacking interactions between six and five membered rings (Fig. 3) with distance 3.5503 (8) Å for Cg2···Cg3 (Cg2 = N1/C10–C17 and Cg3 = N2/C9–C12).