organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4-eth­­oxy-1-(4-methyl-2-pyri­dyl)-5-oxo-2,5-di­hydro-1H-pyrrole-2,3-di­carboxyl­ate

aDepartment of Chemistry, Islamic Azad University Yazd Branch, Yazd, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 3 April 2010; accepted 7 April 2010; online 17 April 2010)

In the title compound, C16H18N2O6, the dihedral angle between the aromatic ring planes is 8.11 (6)°. One of the O atoms is disordered over two sites of equal occupancy. In the crystal structure, aromatic ππ stacking [centroid-to-centroid separation = 3.5503 (8) Å] helps to consolidate the packing.

Related literature

For background on 3-pyrrolines as synthetic inter­mediates, see: Tarnchompoo et al. (1987[Tarnchompoo, B., Thebtaranonth, C. & Thebtaranonth, Y. (1987). Tetrahedron Lett. 28, 6675-6678.]); Bienz et al. (1989[Bienz, S., Busacca, C. & Mayers, A. I. (1989). J. Am. Chem. Soc. 111, 1905-1907.]). For further synthetic details, see: Anary-Abbasinejad et al. (2010[Anary-Abbasinejad, M., Mirhossaini, M., Parhami, A. & Pourhassan, E. (2010). Synth. Commun. 40, 1350-1359.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O6

  • Mr = 334.32

  • Triclinic, [P \overline 1]

  • a = 9.2674 (6) Å

  • b = 9.4219 (6) Å

  • c = 10.7650 (7) Å

  • α = 87.692 (2)°

  • β = 72.037 (1)°

  • γ = 61.797 (1)°

  • V = 781.73 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.22 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.984

  • 14075 measured reflections

  • 4340 independent reflections

  • 3811 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.00

  • 4340 reflections

  • 231 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

(N-Substituted 3-pyrrolines serve as useful synthetic intermediates (Tarnchompoo et al., 1987; Bienz et al., 1989). Recently we reported a one-pot procedure for the synthesis of some dialkyl N-(3-methyl-2-pyridyl)-4-ethoxy-5-oxo-2,5-dihydro-1H- pyrole-2,3-dicarboxylate derivatives (Anary-Abbasinejad et al., 2010).

Here we report the synthesis and crystal structure of the title compound, (I). It is rational to assume that compound 1 (Fig. 1) is produced from the initial production of ylide intermediate produced from three-component reaction of DMAD, 4-methyl-2-aminopyridine and triphenylphosphine, which then reacted with ethyl chlorooxoacetate to produce an oxamate derivative that underwent intramolecular Wittig reaction to give the products. Crystal packing of I is shown in Fig. 2. A considerable feature of the compound (I) is the presence of ππ stacking interactions between six and five membered rings (Fig. 3) with distance 3.5503 (8) Å for Cg2···Cg3 (Cg2 = N1/C10–C17 and Cg3 = N2/C9–C12).

Related literature top

For background on 3-pyrrolines as synthetic intermediates, see: Tarnchompoo et al. (1987); Bienz et al. (1989). For further synthetic details, see: Anary-Abbasinejad et al. (2010).

Experimental top

To a magnetically stirred solution of PPh3 (0.26 g, 1 mmol) and 4-methyl-2-aminopyridine (0.9 g, 1 mmol) in CH2Cl2(10 ml) was added drop-wise a mixture of dimethyl acetylenedicarboxylate DMAD (0.14 g, 1 mmol) in CH2Cl2 (3 ml) at room temperature over 2 min. The reaction mixture was then stirred for one more minute, then triethylamine (1 mmol) and ethyl chlorooxoacetate (1 mmol) was added and the reaction mixture was stirred for more 24 h. Solvent was evaporated and the residue was purified by column chromatography on SiO2 using EtOAC–hexane (1:4) mixture as eluent. The solid formed was filtrated, recrystallised from dichloromethane/ethanol (2:1) to yield colourless prisms of (I).

Refinement top

The H(C) atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

(N-Substituted 3-pyrrolines serve as useful synthetic intermediates (Tarnchompoo et al., 1987; Bienz et al., 1989). Recently we reported a one-pot procedure for the synthesis of some dialkyl N-(3-methyl-2-pyridyl)-4-ethoxy-5-oxo-2,5-dihydro-1H- pyrole-2,3-dicarboxylate derivatives (Anary-Abbasinejad et al., 2010).

Here we report the synthesis and crystal structure of the title compound, (I). It is rational to assume that compound 1 (Fig. 1) is produced from the initial production of ylide intermediate produced from three-component reaction of DMAD, 4-methyl-2-aminopyridine and triphenylphosphine, which then reacted with ethyl chlorooxoacetate to produce an oxamate derivative that underwent intramolecular Wittig reaction to give the products. Crystal packing of I is shown in Fig. 2. A considerable feature of the compound (I) is the presence of ππ stacking interactions between six and five membered rings (Fig. 3) with distance 3.5503 (8) Å for Cg2···Cg3 (Cg2 = N1/C10–C17 and Cg3 = N2/C9–C12).

For background on 3-pyrrolines as synthetic intermediates, see: Tarnchompoo et al. (1987); Bienz et al. (1989). For further synthetic details, see: Anary-Abbasinejad et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Atoms are represented by 50% displacement ellipsoids. The occupancies of positions of disordered O6 atom are equal (0.5).
[Figure 2] Fig. 2. The overview of I crystal packing. Atoms are represented by spheres.
[Figure 3] Fig. 3. Representation of ππ stacking in I.
Dimethyl 4-ethoxy-1-(4-methyl-2-pyridyl)-5-oxo-2,5-dihydro- 1H-pyrrole-2,3-dicarboxylate top
Crystal data top
C16H18N2O6Z = 2
Mr = 334.32F(000) = 352
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2674 (6) ÅCell parameters from 259 reflections
b = 9.4219 (6) Åθ = 3–29°
c = 10.7650 (7) ŵ = 0.11 mm1
α = 87.692 (2)°T = 120 K
β = 72.037 (1)°Prism, colourless
γ = 61.797 (1)°0.22 × 0.19 × 0.15 mm
V = 781.73 (9) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4340 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 29.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.976, Tmax = 0.984k = 1313
14075 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.3063P]
where P = (Fo2 + 2Fc2)/3
4340 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.37 e Å3
8 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H18N2O6γ = 61.797 (1)°
Mr = 334.32V = 781.73 (9) Å3
Triclinic, P1Z = 2
a = 9.2674 (6) ÅMo Kα radiation
b = 9.4219 (6) ŵ = 0.11 mm1
c = 10.7650 (7) ÅT = 120 K
α = 87.692 (2)°0.22 × 0.19 × 0.15 mm
β = 72.037 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4340 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3811 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.020
14075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0438 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
4340 reflectionsΔρmin = 0.29 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17590 (10)0.52219 (10)0.39546 (8)0.02303 (17)
O20.40451 (10)0.95161 (9)0.14840 (8)0.02268 (17)
O30.51098 (11)0.79492 (10)0.29618 (8)0.02475 (18)
N10.71510 (11)0.58162 (11)0.02268 (9)0.01973 (18)
O40.06090 (10)0.84294 (10)0.37603 (9)0.02895 (19)
O50.54578 (10)0.30748 (9)0.25074 (8)0.02478 (18)
N20.52930 (11)0.53670 (10)0.15196 (8)0.01807 (17)
C80.44689 (12)0.82101 (12)0.21038 (10)0.01806 (19)
C90.39637 (12)0.70530 (12)0.16169 (10)0.01788 (19)
H9A0.37610.73100.07560.021*
C100.69758 (12)0.47752 (12)0.06007 (9)0.01754 (19)
C111.01376 (13)0.37860 (13)0.12410 (10)0.0217 (2)
H11A1.12180.34740.19110.026*
C120.46748 (13)0.45026 (12)0.23786 (10)0.01882 (19)
C130.23818 (13)0.71222 (12)0.26432 (10)0.01865 (19)
C140.83205 (13)0.32265 (12)0.05951 (10)0.0201 (2)
H14A0.81330.25380.12200.024*
C150.28055 (13)0.56764 (12)0.30958 (10)0.0190 (2)
C160.99386 (13)0.27226 (13)0.03493 (10)0.0209 (2)
C170.87312 (13)0.53027 (13)0.11305 (10)0.0216 (2)
H17A0.88890.60270.17290.026*
C180.07123 (14)0.86461 (13)0.30661 (11)0.0230 (2)
C200.23239 (15)0.44492 (14)0.50530 (11)0.0242 (2)
H20A0.35080.35140.47060.029*
H20B0.15380.40400.55590.029*
C211.14368 (15)0.10896 (14)0.03822 (13)0.0295 (2)
H21A1.24310.12160.03930.044*
H21B1.17490.03880.11750.044*
H21C1.11080.05980.04000.044*
C220.40700 (15)1.08725 (13)0.20518 (12)0.0263 (2)
H22A0.41731.15840.13800.039*
H22B0.50611.04640.23720.039*
H22C0.29931.14850.27870.039*
C230.22672 (15)0.98915 (16)0.42475 (13)0.0347 (3)
H23A0.31770.96000.46590.052*
H23B0.25181.05040.35140.052*
H23C0.22301.05600.48990.052*
C240.23145 (19)0.56449 (17)0.59437 (13)0.0351 (3)
H24A0.25950.51420.67120.053*
H24B0.11630.66060.62350.053*
H24C0.31790.59660.54650.053*
O6'0.0517 (16)0.9913 (13)0.2663 (9)0.0417 (17)0.50
O60.0634 (17)0.9971 (12)0.2975 (10)0.0393 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (4)0.0295 (4)0.0238 (4)0.0162 (3)0.0077 (3)0.0093 (3)
O20.0264 (4)0.0174 (3)0.0276 (4)0.0124 (3)0.0107 (3)0.0065 (3)
O30.0280 (4)0.0229 (4)0.0262 (4)0.0124 (3)0.0126 (3)0.0039 (3)
N10.0194 (4)0.0210 (4)0.0196 (4)0.0107 (3)0.0058 (3)0.0030 (3)
O40.0168 (4)0.0254 (4)0.0354 (4)0.0078 (3)0.0006 (3)0.0022 (3)
O50.0237 (4)0.0182 (4)0.0318 (4)0.0108 (3)0.0076 (3)0.0060 (3)
N20.0161 (4)0.0154 (4)0.0202 (4)0.0072 (3)0.0033 (3)0.0018 (3)
C80.0155 (4)0.0157 (4)0.0198 (4)0.0070 (3)0.0028 (3)0.0017 (3)
C90.0168 (4)0.0166 (4)0.0192 (4)0.0078 (4)0.0049 (3)0.0024 (3)
C100.0175 (4)0.0184 (4)0.0175 (4)0.0097 (4)0.0048 (3)0.0001 (3)
C110.0188 (4)0.0264 (5)0.0197 (4)0.0118 (4)0.0044 (3)0.0003 (4)
C120.0195 (4)0.0188 (4)0.0204 (4)0.0111 (4)0.0063 (3)0.0024 (3)
C130.0168 (4)0.0204 (5)0.0190 (4)0.0096 (4)0.0051 (3)0.0017 (3)
C140.0192 (4)0.0181 (4)0.0217 (5)0.0086 (4)0.0059 (4)0.0015 (3)
C150.0181 (4)0.0213 (5)0.0202 (4)0.0118 (4)0.0059 (3)0.0030 (3)
C160.0183 (4)0.0208 (5)0.0223 (5)0.0082 (4)0.0065 (4)0.0008 (4)
C170.0215 (5)0.0250 (5)0.0196 (4)0.0128 (4)0.0061 (4)0.0037 (4)
C180.0197 (5)0.0227 (5)0.0223 (5)0.0085 (4)0.0044 (4)0.0024 (4)
C200.0246 (5)0.0249 (5)0.0242 (5)0.0133 (4)0.0081 (4)0.0090 (4)
C210.0199 (5)0.0238 (5)0.0350 (6)0.0051 (4)0.0052 (4)0.0027 (4)
C220.0280 (5)0.0168 (5)0.0329 (6)0.0120 (4)0.0065 (4)0.0016 (4)
C230.0176 (5)0.0322 (6)0.0358 (6)0.0034 (5)0.0009 (4)0.0014 (5)
C240.0472 (7)0.0378 (7)0.0276 (6)0.0245 (6)0.0155 (5)0.0082 (5)
O6'0.026 (2)0.026 (2)0.051 (4)0.0063 (13)0.004 (2)0.014 (2)
O60.0263 (16)0.0202 (13)0.058 (4)0.0087 (11)0.002 (3)0.004 (2)
Geometric parameters (Å, º) top
O1—C151.3364 (12)C13—C181.4769 (14)
O1—C201.4679 (13)C14—C161.3904 (14)
O2—C81.3238 (12)C14—H14A0.9500
O2—C221.4515 (13)C16—C211.5004 (15)
O3—C81.2035 (13)C17—H17A0.9500
N1—C101.3315 (13)C18—O6'1.204 (10)
N1—C171.3471 (13)C18—O61.218 (10)
O4—C181.3263 (13)C20—C241.5037 (17)
O4—C231.4472 (14)C20—H20A0.9900
O5—C121.2165 (13)C20—H20B0.9900
N2—C121.3785 (12)C21—H21A0.9800
N2—C101.4115 (12)C21—H21B0.9800
N2—C91.4615 (12)C21—H21C0.9800
C8—C91.5369 (14)C22—H22A0.9800
C9—C131.5134 (13)C22—H22B0.9800
C9—H9A1.0000C22—H22C0.9800
C10—C141.3999 (14)C23—H23A0.9800
C11—C171.3830 (15)C23—H23B0.9800
C11—C161.3954 (15)C23—H23C0.9800
C11—H11A0.9500C24—H24A0.9800
C12—C151.5011 (14)C24—H24B0.9800
C13—C151.3440 (14)C24—H24C0.9800
C15—O1—C20116.43 (8)N1—C17—H17A118.0
C8—O2—C22116.22 (9)C11—C17—H17A118.0
C10—N1—C17116.47 (9)O6'—C18—O4122.5 (6)
C18—O4—C23115.57 (9)O6—C18—O4123.7 (6)
C12—N2—C10127.04 (9)O6'—C18—C13123.4 (6)
C12—N2—C9112.20 (8)O6—C18—C13121.9 (6)
C10—N2—C9120.74 (8)O4—C18—C13113.18 (9)
O3—C8—O2126.28 (10)O1—C20—C24110.36 (9)
O3—C8—C9123.12 (9)O1—C20—H20A109.6
O2—C8—C9110.56 (8)C24—C20—H20A109.6
N2—C9—C13102.82 (8)O1—C20—H20B109.6
N2—C9—C8110.34 (8)C24—C20—H20B109.6
C13—C9—C8110.24 (8)H20A—C20—H20B108.1
N2—C9—H9A111.1C16—C21—H21A109.5
C13—C9—H9A111.1C16—C21—H21B109.5
C8—C9—H9A111.1H21A—C21—H21B109.5
N1—C10—C14124.23 (9)C16—C21—H21C109.5
N1—C10—N2114.20 (9)H21A—C21—H21C109.5
C14—C10—N2121.57 (9)H21B—C21—H21C109.5
C17—C11—C16118.70 (9)O2—C22—H22A109.5
C17—C11—H11A120.7O2—C22—H22B109.5
C16—C11—H11A120.7H22A—C22—H22B109.5
O5—C12—N2127.50 (10)O2—C22—H22C109.5
O5—C12—C15126.81 (9)H22A—C22—H22C109.5
N2—C12—C15105.66 (8)H22B—C22—H22C109.5
C15—C13—C18129.15 (9)O4—C23—H23A109.5
C15—C13—C9109.65 (9)O4—C23—H23B109.5
C18—C13—C9121.10 (9)H23A—C23—H23B109.5
C16—C14—C10118.22 (10)O4—C23—H23C109.5
C16—C14—H14A120.9H23A—C23—H23C109.5
C10—C14—H14A120.9H23B—C23—H23C109.5
O1—C15—C13127.97 (9)C20—C24—H24A109.5
O1—C15—C12122.13 (9)C20—C24—H24B109.5
C13—C15—C12109.62 (9)H24A—C24—H24B109.5
C14—C16—C11118.34 (10)C20—C24—H24C109.5
C14—C16—C21120.49 (10)H24A—C24—H24C109.5
C11—C16—C21121.16 (10)H24B—C24—H24C109.5
N1—C17—C11124.02 (10)
C22—O2—C8—O311.71 (15)C20—O1—C15—C13130.46 (11)
C22—O2—C8—C9166.06 (8)C20—O1—C15—C1256.26 (13)
C12—N2—C9—C131.63 (11)C18—C13—C15—O17.41 (18)
C10—N2—C9—C13176.88 (8)C9—C13—C15—O1176.23 (10)
C12—N2—C9—C8115.93 (9)C18—C13—C15—C12178.63 (10)
C10—N2—C9—C865.56 (11)C9—C13—C15—C122.27 (11)
O3—C8—C9—N240.90 (13)O5—C12—C15—O12.48 (16)
O2—C8—C9—N2141.24 (8)N2—C12—C15—O1175.60 (9)
O3—C8—C9—C1371.98 (12)O5—C12—C15—C13176.85 (10)
O2—C8—C9—C13105.87 (9)N2—C12—C15—C131.22 (11)
C17—N1—C10—C141.13 (15)C10—C14—C16—C110.02 (15)
C17—N1—C10—N2179.48 (8)C10—C14—C16—C21178.63 (9)
C12—N2—C10—N1171.31 (9)C17—C11—C16—C141.30 (15)
C9—N2—C10—N16.97 (13)C17—C11—C16—C21177.30 (10)
C12—N2—C10—C149.29 (16)C10—N1—C17—C110.34 (15)
C9—N2—C10—C14172.43 (9)C16—C11—C17—N11.56 (16)
C10—N2—C12—O50.04 (17)C23—O4—C18—O6'12.9 (5)
C9—N2—C12—O5178.45 (10)C23—O4—C18—O69.6 (5)
C10—N2—C12—C15178.01 (9)C23—O4—C18—C13177.55 (10)
C9—N2—C12—C150.39 (11)C15—C13—C18—O6'173.7 (5)
N2—C9—C13—C152.39 (11)C9—C13—C18—O6'2.3 (5)
C8—C9—C13—C15115.24 (9)C15—C13—C18—O6151.4 (5)
N2—C9—C13—C18179.09 (9)C9—C13—C18—O624.6 (5)
C8—C9—C13—C1861.45 (12)C15—C13—C18—O416.81 (16)
N1—C10—C14—C161.31 (16)C9—C13—C18—O4167.21 (9)
N2—C10—C14—C16179.34 (9)C15—O1—C20—C2466.34 (12)

Experimental details

Crystal data
Chemical formulaC16H18N2O6
Mr334.32
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.2674 (6), 9.4219 (6), 10.7650 (7)
α, β, γ (°)87.692 (2), 72.037 (1), 61.797 (1)
V3)781.73 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14075, 4340, 3811
Rint0.020
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.00
No. of reflections4340
No. of parameters231
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to Islamic Azad University, Yazd Branch, for supporting this work.

References

First citationAnary-Abbasinejad, M., Mirhossaini, M., Parhami, A. & Pourhassan, E. (2010). Synth. Commun. 40, 1350–1359.  Web of Science CrossRef CAS Google Scholar
First citationBienz, S., Busacca, C. & Mayers, A. I. (1989). J. Am. Chem. Soc. 111, 1905–1907.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarnchompoo, B., Thebtaranonth, C. & Thebtaranonth, Y. (1987). Tetrahedron Lett. 28, 6675–6678.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds