organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di-2-thienyl-2,3-di­hydro­pyrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 April 2010; accepted 6 April 2010; online 14 April 2010)

In the title compound, C12H10N2S2, which was synthesized by the reaction of 2,2′-thenil and ethyl­enediamine, the dihedral angle between the two thio­phene rings is 66.33 (9)°. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into infinite chains along the b axis and weak C—H⋯π inter­actions may further stabilize the structure.

Related literature

For backgroud to thenils, see: Shimon et al. (1993[Shimon, L. J. W., Vaida, M., Frolow, F., Lahav, M., Leiserowitz, L., Weissinger-Lewin, Y. & McMullan, R. K. (1993). Faraday Discuss. 95, 307-327.]). For related structures, see: Crundwell et al. (2002a[Crundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002a). Acta Cryst. E58, o666-o667.],b[Crundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002b). Acta Cryst. E58, o668-o670.], 2003[Crundwell, G., Sayers, D., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o314-o315.]); Linehan et al. (2003[Linehan, J., Crundwell, G., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o466-o468.]); Stacy et al. (2003[Stacy, V. L., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2003). Acta Cryst. E59, o1812-o1813.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2S2

  • Mr = 246.34

  • Monoclinic, P 21

  • a = 5.5006 (9) Å

  • b = 7.5246 (12) Å

  • c = 14.116 (2) Å

  • β = 97.902 (5)°

  • V = 578.73 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.32 × 0.26 × 0.08 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.965

  • 9583 measured reflections

  • 4603 independent reflections

  • 4295 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.115

  • S = 1.20

  • 4603 reflections

  • 145 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1899 Friedel pairs

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the S2/C9–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N1i 0.93 2.33 3.235 (3) 163
C2—H2ACg2ii 0.93 2.85 3.7737 (18) 171
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thienyl-based guests have shown preferential inclusion into the host by keeping thienyl ring S atoms pointed away from the face of growing crystals, possibly to avoid unfavorable electrostatic interactions between sulfur lone pairs coplanar with the thiophene ring and molecules already incorporated into the growing crystal face (Shimon et al., 1993). The structural studies on thenoins (Crundwell et al., 2002a,b) and thenils (Crundwell et al., 2003), and other thiophene-containing molecules such as 2,5-diphenyl-3,4-dithien-3-ylcyclopentadien-1-one (Linehan et al., 2003) and 4-bromo-2-thiophenecarboxaldehyde (Stacy et al., 2003) have been reported in the literature. In continuation of this area of study, the crystal structure of the title compound, (I), is reported here.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the two thiophene rings S1/C1–C4 and S2/C9–C12 is 66.33 (9)°. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2) into infinite chains along the b axis, in which they may be effective in the stabilization of the structure. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the S2/C9–C12 (centroid Cg2) ring.

Related literature top

For backgroud to thenils, see: Shimon et al. (1993). For related structures, see: Crundwell et al. (2002a,b, 2003); Linehan et al. (2003); Stacy et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2,2'-thenil (55 mg) and ethylenediamine (15 mg) in ethanol/water (40 ml) were heated under reflux for 2 h with stirring. The resulting solution was then cooled to room temperature. After a few days of slow evaporation of the solvent, brown plates of (I) were obtained.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). In the absence of significant anomalous scattering effects, 1899 Friedel pairs were merged.

Structure description top

Thienyl-based guests have shown preferential inclusion into the host by keeping thienyl ring S atoms pointed away from the face of growing crystals, possibly to avoid unfavorable electrostatic interactions between sulfur lone pairs coplanar with the thiophene ring and molecules already incorporated into the growing crystal face (Shimon et al., 1993). The structural studies on thenoins (Crundwell et al., 2002a,b) and thenils (Crundwell et al., 2003), and other thiophene-containing molecules such as 2,5-diphenyl-3,4-dithien-3-ylcyclopentadien-1-one (Linehan et al., 2003) and 4-bromo-2-thiophenecarboxaldehyde (Stacy et al., 2003) have been reported in the literature. In continuation of this area of study, the crystal structure of the title compound, (I), is reported here.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the two thiophene rings S1/C1–C4 and S2/C9–C12 is 66.33 (9)°. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2) into infinite chains along the b axis, in which they may be effective in the stabilization of the structure. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the S2/C9–C12 (centroid Cg2) ring.

For backgroud to thenils, see: Shimon et al. (1993). For related structures, see: Crundwell et al. (2002a,b, 2003); Linehan et al. (2003); Stacy et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) networks. H atoms are not involving the hydrogen bond interactions are omitted for clarity.
5,6-Di-2-thienyl-2,3-dihydropyrazine top
Crystal data top
C12H10N2S2F(000) = 256
Mr = 246.34Dx = 1.414 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5014 reflections
a = 5.5006 (9) Åθ = 2.9–34.8°
b = 7.5246 (12) ŵ = 0.43 mm1
c = 14.116 (2) ÅT = 100 K
β = 97.902 (5)°Plate, brown
V = 578.73 (16) Å30.32 × 0.26 × 0.08 mm
Z = 2
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4603 independent reflections
Radiation source: fine-focus sealed tube4295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 35.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.875, Tmax = 0.965k = 1212
9583 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0559P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
4603 reflectionsΔρmax = 0.62 e Å3
145 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), with 1899 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C12H10N2S2V = 578.73 (16) Å3
Mr = 246.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.5006 (9) ŵ = 0.43 mm1
b = 7.5246 (12) ÅT = 100 K
c = 14.116 (2) Å0.32 × 0.26 × 0.08 mm
β = 97.902 (5)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4295 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.965Rint = 0.022
9583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.115Δρmax = 0.62 e Å3
S = 1.20Δρmin = 0.47 e Å3
4603 reflectionsAbsolute structure: Flack (1983), with 1899 Friedel pairs
145 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53730 (6)0.88379 (6)0.15567 (3)0.02249 (9)
S20.08370 (7)0.37500 (7)0.39261 (3)0.02435 (10)
N10.1511 (2)0.42753 (19)0.18646 (9)0.0176 (2)
N20.2016 (2)0.58341 (19)0.08083 (8)0.0167 (2)
C10.5372 (3)1.0745 (3)0.22117 (12)0.0256 (3)
H1A0.65181.16510.22060.031*
C20.3468 (3)1.0777 (2)0.27490 (12)0.0225 (3)
H2A0.31661.17190.31430.027*
C30.2025 (3)0.9222 (2)0.26367 (10)0.0176 (2)
H3A0.06650.90260.29480.021*
C40.2854 (2)0.8021 (2)0.20133 (9)0.0141 (2)
C50.1765 (2)0.6334 (2)0.16622 (10)0.0141 (2)
C60.0602 (3)0.4259 (2)0.04601 (10)0.0199 (3)
H6A0.14940.31940.06860.024*
H6B0.03730.42450.02340.024*
C70.1875 (3)0.4280 (2)0.08163 (10)0.0192 (3)
H7A0.27830.53330.05820.023*
H7B0.28170.32440.05790.023*
C80.0286 (2)0.5231 (2)0.22635 (9)0.0136 (2)
C90.0980 (3)0.5061 (2)0.32993 (9)0.0148 (2)
C100.3080 (3)0.5582 (2)0.38767 (10)0.0199 (3)
H10A0.42860.62920.36700.024*
C110.3203 (4)0.4914 (3)0.48252 (11)0.0272 (3)
H11A0.44960.51440.53070.033*
C120.1220 (4)0.3904 (3)0.49497 (11)0.0296 (4)
H12A0.10070.33600.55240.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02124 (15)0.02353 (19)0.02375 (16)0.01080 (15)0.00690 (12)0.00227 (15)
S20.02570 (17)0.0293 (2)0.01976 (15)0.00416 (17)0.00917 (12)0.00490 (16)
N10.0195 (5)0.0164 (5)0.0168 (4)0.0061 (4)0.0022 (4)0.0014 (4)
N20.0188 (5)0.0166 (5)0.0151 (5)0.0038 (4)0.0037 (4)0.0023 (4)
C10.0311 (8)0.0176 (7)0.0264 (7)0.0130 (6)0.0022 (6)0.0022 (6)
C20.0283 (7)0.0127 (6)0.0246 (6)0.0012 (6)0.0030 (5)0.0006 (5)
C30.0178 (5)0.0161 (6)0.0186 (5)0.0030 (5)0.0010 (4)0.0018 (5)
C40.0142 (5)0.0126 (6)0.0151 (5)0.0027 (4)0.0007 (4)0.0008 (4)
C50.0138 (5)0.0131 (6)0.0154 (5)0.0023 (4)0.0019 (4)0.0006 (4)
C60.0256 (6)0.0162 (6)0.0181 (5)0.0039 (5)0.0042 (5)0.0054 (5)
C70.0203 (6)0.0200 (7)0.0164 (5)0.0066 (5)0.0001 (4)0.0024 (5)
C80.0154 (5)0.0113 (5)0.0141 (5)0.0022 (4)0.0027 (4)0.0000 (4)
C90.0180 (5)0.0129 (6)0.0140 (5)0.0001 (5)0.0036 (4)0.0004 (4)
C100.0205 (6)0.0206 (7)0.0173 (5)0.0006 (5)0.0017 (5)0.0012 (5)
C110.0331 (8)0.0304 (9)0.0163 (6)0.0034 (7)0.0030 (5)0.0006 (6)
C120.0399 (8)0.0353 (10)0.0151 (5)0.0070 (9)0.0087 (5)0.0054 (7)
Geometric parameters (Å, º) top
S1—C11.707 (2)C4—C51.461 (2)
S1—C41.7201 (14)C5—C81.5040 (19)
S2—C121.7124 (19)C6—C71.516 (2)
S2—C91.7317 (14)C6—H6A0.9700
N1—C81.2874 (18)C6—H6B0.9700
N1—C71.4658 (19)C7—H7A0.9700
N2—C51.2880 (18)C7—H7B0.9700
N2—C61.465 (2)C8—C91.4652 (19)
C1—C21.375 (3)C9—C101.376 (2)
C1—H1A0.9300C10—C111.423 (2)
C2—C31.411 (2)C10—H10A0.9300
C2—H2A0.9300C11—C121.361 (3)
C3—C41.382 (2)C11—H11A0.9300
C3—H3A0.9300C12—H12A0.9300
C1—S1—C492.13 (8)C7—C6—H6B109.7
C12—S2—C991.82 (8)H6A—C6—H6B108.2
C8—N1—C7115.50 (12)N1—C7—C6109.29 (12)
C5—N2—C6115.48 (12)N1—C7—H7A109.8
C2—C1—S1111.76 (12)C6—C7—H7A109.8
C2—C1—H1A124.1N1—C7—H7B109.8
S1—C1—H1A124.1C6—C7—H7B109.8
C1—C2—C3112.51 (15)H7A—C7—H7B108.3
C1—C2—H2A123.7N1—C8—C9117.84 (12)
C3—C2—H2A123.7N1—C8—C5120.25 (12)
C4—C3—C2112.59 (13)C9—C8—C5121.61 (12)
C4—C3—H3A123.7C10—C9—C8130.47 (13)
C2—C3—H3A123.7C10—C9—S2110.85 (10)
C3—C4—C5128.94 (12)C8—C9—S2118.02 (10)
C3—C4—S1110.99 (11)C9—C10—C11112.61 (15)
C5—C4—S1119.83 (10)C9—C10—H10A123.7
N2—C5—C4118.67 (13)C11—C10—H10A123.7
N2—C5—C8120.18 (13)C12—C11—C10112.55 (15)
C4—C5—C8121.10 (11)C12—C11—H11A123.7
N2—C6—C7109.89 (12)C10—C11—H11A123.7
N2—C6—H6A109.7C11—C12—S2112.16 (12)
C7—C6—H6A109.7C11—C12—H12A123.9
N2—C6—H6B109.7S2—C12—H12A123.9
C4—S1—C1—C21.31 (14)C7—N1—C8—C53.3 (2)
S1—C1—C2—C30.95 (19)N2—C5—C8—N129.3 (2)
C1—C2—C3—C40.1 (2)C4—C5—C8—N1148.07 (15)
C2—C3—C4—C5175.19 (14)N2—C5—C8—C9144.36 (15)
C2—C3—C4—S11.03 (16)C4—C5—C8—C938.3 (2)
C1—S1—C4—C31.33 (12)N1—C8—C9—C10163.90 (16)
C1—S1—C4—C5176.10 (12)C5—C8—C9—C109.9 (2)
C6—N2—C5—C4172.06 (13)N1—C8—C9—S25.87 (19)
C6—N2—C5—C85.4 (2)C5—C8—C9—S2179.66 (11)
C3—C4—C5—N2147.03 (16)C12—S2—C9—C100.12 (14)
S1—C4—C5—N226.69 (19)C12—S2—C9—C8171.56 (13)
C3—C4—C5—C830.4 (2)C8—C9—C10—C11170.37 (16)
S1—C4—C5—C8155.92 (11)S2—C9—C10—C110.03 (18)
C5—N2—C6—C737.17 (19)C9—C10—C11—C120.2 (2)
C8—N1—C7—C638.97 (19)C10—C11—C12—S20.3 (2)
N2—C6—C7—N160.13 (17)C9—S2—C12—C110.26 (17)
C7—N1—C8—C9170.61 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N1i0.932.333.235 (3)163
C2—H2A···Cg2ii0.932.853.7737 (18)171
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H10N2S2
Mr246.34
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.5006 (9), 7.5246 (12), 14.116 (2)
β (°) 97.902 (5)
V3)578.73 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.32 × 0.26 × 0.08
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.875, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9583, 4603, 4295
Rint0.022
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.115, 1.20
No. of reflections4603
No. of parameters145
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.62, 0.47
Absolute structureFlack (1983), with 1899 Friedel pairs
Absolute structure parameter0.07 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N1i0.932.333.235 (3)163
C2—H2A···Cg2ii0.932.853.7737 (18)171
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: mhemamalini2k3@yahoo.co.in.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002a). Acta Cryst. E58, o666–o667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002b). Acta Cryst. E58, o668–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrundwell, G., Sayers, D., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o314–o315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLinehan, J., Crundwell, G., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o466–o468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimon, L. J. W., Vaida, M., Frolow, F., Lahav, M., Leiserowitz, L., Weissinger-Lewin, Y. & McMullan, R. K. (1993). Faraday Discuss. 95, 307–327.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStacy, V. L., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2003). Acta Cryst. E59, o1812–o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds