organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1-(Carb­oxy­meth­yl)cyclo­hexyl]­methan­aminium di­hydrogen phosphate

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: onurs@omu.edu.tr

(Received 5 April 2010; accepted 7 April 2010; online 14 April 2010)

In the title salt, C9H18NO2+·H2PO4, the cyclo­hexane ring is puckered, the total puckering amplitude QT being 0.555 (4) Å, and an intra­molecular N—H⋯O hydrogen bond generates an S(7) ring. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds lead to R22(14), R33(8) and R42(8) rings, generating a two-dimensional layer.

Related literature

For related structures and medicinal background, see: Reece & Levendis (2008[Reece, H. A. & Levendis, D. C. (2008). Acta Cryst. C64, o105-o108.]); Ibers (2001[Ibers, J. A. (2001). Acta Cryst. C57, 641-643.]). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-valence analysis and the positioning of H atoms, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • C9H18NO2+·H2O4P

  • Mr = 269.23

  • Orthorhombic, P b c a

  • a = 10.473 (5) Å

  • b = 9.269 (3) Å

  • c = 26.468 (5) Å

  • V = 2569.4 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 14659 measured reflections

  • 3185 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.155

  • S = 1.06

  • 3185 reflections

  • 178 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O3i 0.83 (4) 1.77 (2) 2.602 (3) 173 (4)
O1—H1⋯O3ii 0.82 (2) 1.76 (2) 2.569 (3) 173 (5)
N1—H5⋯O1iii 0.88 (2) 2.26 (3) 2.929 (4) 133 (3)
N1—H5⋯O2iv 0.88 (2) 2.44 (3) 2.959 (3) 118 (3)
N1—H5⋯O5iv 0.88 (2) 2.47 (3) 3.065 (3) 125 (3)
N1—H4⋯O5 0.91 (2) 1.89 (2) 2.760 (4) 158 (3)
N1—H3⋯O4 0.90 (2) 1.86 (2) 2.752 (3) 174 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+2, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a salt of gabapentin (Ibers, 2001; Reece & Levendis, 2008) an antiepileptic drug has potential application in treatment of neuropathic pain. Herein we report the synthesis and crystal structure of title compound (I).

The molecular structure and atom-labelling scheme are shown in Fig. 1. Selected bond distances and angles are given in Table 1. The C9—O6 bond length [1.310 (4) Å] indicate significant single-bond character, whereas the C9—O5 bond length [1.213 (3) Å] is indicative of significant double-bond character. The cyclohexane ring exhibits a puckered conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.0246 (42) Å, q3 = 0.5544 (42) Å, QT = 0.5547 (42) Å, φ = 318 (10)° and θ = 1.81 (43)°. The O—P—O angles lie in the range 106.35 (14)–115.00 (12)°. Linkages P1—O1 and P1—O2 constitute POH groups, as confirmed both by the location of H atoms in the difference Fourier maps and by bond-valence calculations (Brese & O'Keeffe, 1991).

The atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O5iv so forming a centrosymmetric R22(14) ring (Bernstein et al., 1995) centred at (1/2, 0, 1/2). The combination of N—H···O and O—H···O hydrogen bonds generates R33(8) and R42(8) rings parallel to the [010] direction (Fig. 2).

Related literature top

For related structures and medicinal background, see: Reece & Levendis (2008); Ibers (2001). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For details of ring-puckering analysis, see: Cremer & Pople (1975). For bond-valence analysis and the positioning of H atoms, see: Brese & O'Keeffe (1991).

Experimental top

To a 10 ml methanolic solution (0.002 M) of gabapentin was added 4 drops of phosphoric acid (85%). The mixture was heated and stirred for 30 min. Colourless prisms of (I) were obtained by slow evaporation from methanol.

Refinement top

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms. Other H atoms bound to N and O atoms were located in difference maps and refined subject to a DFIX restraint of O—H = 0.82 (2) Å and N—H = 0.87 (2) Å.

Structure description top

The title compound is a salt of gabapentin (Ibers, 2001; Reece & Levendis, 2008) an antiepileptic drug has potential application in treatment of neuropathic pain. Herein we report the synthesis and crystal structure of title compound (I).

The molecular structure and atom-labelling scheme are shown in Fig. 1. Selected bond distances and angles are given in Table 1. The C9—O6 bond length [1.310 (4) Å] indicate significant single-bond character, whereas the C9—O5 bond length [1.213 (3) Å] is indicative of significant double-bond character. The cyclohexane ring exhibits a puckered conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.0246 (42) Å, q3 = 0.5544 (42) Å, QT = 0.5547 (42) Å, φ = 318 (10)° and θ = 1.81 (43)°. The O—P—O angles lie in the range 106.35 (14)–115.00 (12)°. Linkages P1—O1 and P1—O2 constitute POH groups, as confirmed both by the location of H atoms in the difference Fourier maps and by bond-valence calculations (Brese & O'Keeffe, 1991).

The atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O5iv so forming a centrosymmetric R22(14) ring (Bernstein et al., 1995) centred at (1/2, 0, 1/2). The combination of N—H···O and O—H···O hydrogen bonds generates R33(8) and R42(8) rings parallel to the [010] direction (Fig. 2).

For related structures and medicinal background, see: Reece & Levendis (2008); Ibers (2001). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For details of ring-puckering analysis, see: Cremer & Pople (1975). For bond-valence analysis and the positioning of H atoms, see: Brese & O'Keeffe (1991).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of one molecule of (I), showing displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet built from R33(8) and R42(8) rings. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[1-(Carboxymethyl)cyclohexyl]methanaminium dihydrogen phosphate top
Crystal data top
C9H18NO2+·H2O4PF(000) = 1152
Mr = 269.23Dx = 1.392 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1923 reflections
a = 10.473 (5) Åθ = 3.0–21.6°
b = 9.269 (3) ŵ = 0.23 mm1
c = 26.468 (5) ÅT = 296 K
V = 2569.4 (16) Å3Prism, colourless
Z = 80.31 × 0.25 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1853 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 28.3°, θmin = 1.5°
φ and ω scansh = 137
14659 measured reflectionsk = 1112
3185 independent reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
3185 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
C9H18NO2+·H2O4PV = 2569.4 (16) Å3
Mr = 269.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.473 (5) ŵ = 0.23 mm1
b = 9.269 (3) ÅT = 296 K
c = 26.468 (5) Å0.31 × 0.25 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1853 reflections with I > 2σ(I)
14659 measured reflectionsRint = 0.071
3185 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
3185 reflectionsΔρmin = 0.45 e Å3
178 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6575 (4)0.1582 (5)0.67421 (15)0.0667 (12)
H1A0.65690.23150.64810.080*
H1B0.74570.13340.68120.080*
C20.5874 (3)0.0253 (4)0.65538 (12)0.0413 (8)
H2A0.59670.05140.68010.050*
H2B0.62660.00700.62420.050*
C30.4441 (3)0.0522 (3)0.64599 (10)0.0301 (7)
C40.3859 (4)0.1206 (4)0.69378 (12)0.0477 (9)
H4A0.29830.14740.68660.057*
H4B0.38420.04850.72040.057*
C50.4563 (4)0.2527 (4)0.71319 (15)0.0667 (12)
H5A0.44890.33030.68880.080*
H5B0.41780.28470.74460.080*
C60.5961 (5)0.2189 (6)0.72201 (16)0.0874 (16)
H6A0.60390.14920.74920.105*
H6B0.64060.30610.73210.105*
C70.4205 (3)0.1584 (3)0.60270 (11)0.0329 (7)
H7A0.32930.16390.59660.040*
H7B0.44870.25330.61330.040*
C80.3736 (3)0.0923 (3)0.63691 (13)0.0445 (9)
H8A0.36240.13950.66930.053*
H8B0.28910.07050.62390.053*
C90.4354 (3)0.1977 (3)0.60166 (12)0.0343 (7)
N10.4845 (2)0.1225 (3)0.55463 (9)0.0296 (6)
H30.5685 (19)0.141 (4)0.5561 (14)0.067 (12)*
H40.473 (4)0.027 (2)0.5469 (13)0.069 (13)*
H50.454 (3)0.173 (4)0.5291 (11)0.066 (12)*
O50.4571 (2)0.1736 (2)0.55742 (8)0.0417 (6)
O60.4610 (3)0.3214 (3)0.62334 (10)0.0537 (7)
H60.500 (4)0.373 (4)0.6027 (13)0.085 (15)*
O10.8667 (2)0.1053 (2)0.47674 (8)0.0366 (5)
H10.929 (3)0.066 (4)0.4646 (16)0.091 (16)*
O20.7236 (2)0.0726 (2)0.51893 (10)0.0413 (6)
H20.739 (5)0.149 (3)0.5316 (16)0.102 (18)*
O30.92807 (17)0.00007 (19)0.56151 (7)0.0279 (5)
O40.74292 (18)0.17523 (19)0.55177 (8)0.0324 (5)
P10.81774 (6)0.05253 (7)0.52950 (3)0.0242 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.093 (3)0.057 (2)0.009 (2)0.0153 (19)0.020 (2)
C20.0434 (18)0.050 (2)0.0308 (17)0.0091 (16)0.0039 (14)0.0055 (15)
C30.0353 (15)0.0273 (16)0.0277 (16)0.0039 (13)0.0068 (13)0.0017 (12)
C40.064 (2)0.045 (2)0.0339 (19)0.0084 (18)0.0157 (17)0.0015 (16)
C50.094 (3)0.063 (3)0.043 (2)0.002 (2)0.006 (2)0.0247 (19)
C60.101 (4)0.106 (4)0.055 (3)0.017 (3)0.016 (3)0.035 (3)
C70.0310 (15)0.0361 (18)0.0317 (16)0.0113 (13)0.0044 (13)0.0009 (13)
C80.0446 (19)0.0364 (19)0.052 (2)0.0021 (15)0.0225 (17)0.0022 (15)
C90.0320 (16)0.0271 (17)0.044 (2)0.0051 (13)0.0077 (14)0.0016 (14)
N10.0291 (14)0.0331 (16)0.0265 (14)0.0046 (12)0.0017 (11)0.0030 (12)
O50.0501 (14)0.0350 (13)0.0399 (14)0.0027 (10)0.0078 (11)0.0013 (10)
O60.0788 (18)0.0353 (15)0.0471 (15)0.0119 (13)0.0221 (14)0.0026 (12)
O10.0325 (11)0.0383 (12)0.0391 (13)0.0121 (10)0.0096 (10)0.0117 (10)
O20.0331 (11)0.0184 (12)0.0724 (17)0.0029 (9)0.0180 (11)0.0081 (11)
O30.0233 (9)0.0249 (10)0.0356 (11)0.0022 (8)0.0001 (8)0.0001 (9)
O40.0273 (10)0.0182 (10)0.0516 (13)0.0048 (8)0.0121 (9)0.0033 (9)
P10.0193 (3)0.0157 (4)0.0377 (4)0.0022 (3)0.0025 (3)0.0031 (3)
Geometric parameters (Å, º) top
C1—C21.519 (5)C7—N11.476 (4)
C1—C61.526 (6)C7—H7A0.9700
C1—H1A0.9700C7—H7B0.9700
C1—H1B0.9700C8—C91.498 (4)
C2—C31.541 (4)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700C9—O51.213 (3)
C3—C71.531 (4)C9—O61.310 (4)
C3—C41.541 (4)N1—H30.897 (18)
C3—C81.549 (4)N1—H40.912 (18)
C4—C51.519 (5)N1—H50.881 (18)
C4—H4A0.9700O6—H60.83 (4)
C4—H4B0.9700O1—P11.566 (2)
C5—C61.515 (6)O1—H10.817 (19)
C5—H5A0.9700O2—P11.548 (2)
C5—H5B0.9700O2—H20.799 (19)
C6—H6A0.9700O3—P11.513 (2)
C6—H6B0.9700O4—P11.502 (2)
C2—C1—C6111.5 (3)C5—C6—H6B109.5
C2—C1—H1A109.3C1—C6—H6B109.5
C6—C1—H1A109.3H6A—C6—H6B108.1
C2—C1—H1B109.3N1—C7—C3115.2 (2)
C6—C1—H1B109.3N1—C7—H7A108.5
H1A—C1—H1B108.0C3—C7—H7A108.5
C1—C2—C3113.1 (3)N1—C7—H7B108.5
C1—C2—H2A109.0C3—C7—H7B108.5
C3—C2—H2A109.0H7A—C7—H7B107.5
C1—C2—H2B109.0C9—C8—C3117.0 (2)
C3—C2—H2B109.0C9—C8—H8A108.0
H2A—C2—H2B107.8C3—C8—H8A108.0
C7—C3—C2112.5 (2)C9—C8—H8B108.0
C7—C3—C4106.6 (2)C3—C8—H8B108.0
C2—C3—C4108.6 (3)H8A—C8—H8B107.3
C7—C3—C8111.3 (3)O5—C9—O6123.0 (3)
C2—C3—C8110.5 (3)O5—C9—C8124.2 (3)
C4—C3—C8107.1 (2)O6—C9—C8112.7 (3)
C5—C4—C3114.7 (3)C7—N1—H3111 (2)
C5—C4—H4A108.6C7—N1—H4111 (2)
C3—C4—H4A108.6H3—N1—H4109 (3)
C5—C4—H4B108.6C7—N1—H5112 (2)
C3—C4—H4B108.6H3—N1—H5107 (3)
H4A—C4—H4B107.6H4—N1—H5107 (3)
C6—C5—C4110.7 (3)C9—O6—H6109 (3)
C6—C5—H5A109.5P1—O1—H1118 (3)
C4—C5—H5A109.5P1—O2—H2118 (3)
C6—C5—H5B109.5O4—P1—O3115.00 (12)
C4—C5—H5B109.5O4—P1—O2107.84 (12)
H5A—C5—H5B108.1O3—P1—O2110.23 (12)
C5—C6—C1110.8 (3)O4—P1—O1106.50 (11)
C5—C6—H6A109.5O3—P1—O1110.49 (12)
C1—C6—H6A109.5O2—P1—O1106.35 (14)
C6—C1—C2—C355.9 (4)C2—C1—C6—C556.5 (5)
C1—C2—C3—C765.8 (4)C2—C3—C7—N153.0 (4)
C1—C2—C3—C451.9 (4)C4—C3—C7—N1172.0 (3)
C1—C2—C3—C8169.2 (3)C8—C3—C7—N171.5 (3)
C7—C3—C4—C569.4 (4)C7—C3—C8—C980.2 (3)
C2—C3—C4—C552.0 (4)C2—C3—C8—C945.5 (4)
C8—C3—C4—C5171.4 (3)C4—C3—C8—C9163.7 (3)
C3—C4—C5—C654.9 (4)C3—C8—C9—O561.3 (4)
C4—C5—C6—C155.2 (5)C3—C8—C9—O6120.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.83 (4)1.77 (2)2.602 (3)173 (4)
O1—H1···O3ii0.82 (2)1.76 (2)2.569 (3)173 (5)
N1—H5···O1iii0.88 (2)2.26 (3)2.929 (4)133 (3)
N1—H5···O2iv0.88 (2)2.44 (3)2.959 (3)118 (3)
N1—H5···O5iv0.88 (2)2.47 (3)3.065 (3)125 (3)
N1—H4···O50.91 (2)1.89 (2)2.760 (4)158 (3)
N1—H3···O40.90 (2)1.86 (2)2.752 (3)174 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H18NO2+·H2O4P
Mr269.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.473 (5), 9.269 (3), 26.468 (5)
V3)2569.4 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.31 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14659, 3185, 1853
Rint0.071
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.155, 1.06
No. of reflections3185
No. of parameters178
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.83 (4)1.77 (2)2.602 (3)173 (4)
O1—H1···O3ii0.817 (19)1.76 (2)2.569 (3)173 (5)
N1—H5···O1iii0.881 (18)2.26 (3)2.929 (4)133 (3)
N1—H5···O2iv0.881 (18)2.44 (3)2.959 (3)118 (3)
N1—H5···O5iv0.881 (18)2.47 (3)3.065 (3)125 (3)
N1—H4···O50.912 (18)1.89 (2)2.760 (4)158 (3)
N1—H3···O40.897 (18)1.858 (19)2.752 (3)174 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for financial support under the project `Strengthening of the Materials Chemistry Laboratory' at GCUL.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIbers, J. A. (2001). Acta Cryst. C57, 641–643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReece, H. A. & Levendis, D. C. (2008). Acta Cryst. C64, o105–o108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds