organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Methyl-6-nitro-4-phenyl-3-quinol­yl)ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 April 2010; accepted 27 April 2010; online 30 April 2010)

In the title compound, C18H14N2O3, the quinoline ring system is almost planar [maximum deviation = 0.013 (2) Å] and forms a dihedral angle of 60.36 (7)° with the benzene ring. The nitro group is slightly twisted from the attached quinoline ring system, forming a dihedral angle of 9.06 (19)°. In the crystal packing, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For related structures, see: Fun et al. (2009[Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688-o2689.]); Loh et al. (2009[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144-o3145.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.31

  • Monoclinic, P 21 /c

  • a = 13.297 (2) Å

  • b = 7.7689 (12) Å

  • c = 17.9430 (19) Å

  • β = 129.099 (7)°

  • V = 1438.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.48 × 0.33 × 0.24 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.977

  • 14926 measured reflections

  • 4148 independent reflections

  • 3310 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.232

  • S = 1.13

  • 4148 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.56 3.208 (3) 127
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our interest in the synthesis and structures of quinolines (Fun et al., 2009; Loh et al., 2009), we now report the title compound, (I).

In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.013 (2) Å at atom C5. This mean plane of the quinoline ring forms a dihedral angle of 60.36 (7)° with the benzene ring (C10–C15). The nitro group (N2/O2/O3) is slightly twisted from the attached quinoline ring system, forming a dihedral angle of 9.06 (19)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to closely related structures (Fun et al., 2009; Loh et al., 2009).

In the crystal packing (Fig. 2), intermolecular C3—H3A···O2 hydrogen bonds (Table 1) linked the molecules into chains linking down the b axis.

Related literature top

For related structures, see: Fun et al. (2009); Loh et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 5-nitro-2-amino-benzophenone (0.01 M) acetylacetone (0.01 M) and 0.15 ml of concentrated HCl was irradiated under microwave for about 8 min at 240 W. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether. M.P.: 403 K. Yield: 60%. Yellow blocks of (I) were recrystallised from chloroform.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. In the final difference Fourier map, the highest peak and the deepest hole are 1.69 Å and 0.97 Å from atoms H18C and O3, respectively.

Structure description top

In continuation of our interest in the synthesis and structures of quinolines (Fun et al., 2009; Loh et al., 2009), we now report the title compound, (I).

In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.013 (2) Å at atom C5. This mean plane of the quinoline ring forms a dihedral angle of 60.36 (7)° with the benzene ring (C10–C15). The nitro group (N2/O2/O3) is slightly twisted from the attached quinoline ring system, forming a dihedral angle of 9.06 (19)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to closely related structures (Fun et al., 2009; Loh et al., 2009).

In the crystal packing (Fig. 2), intermolecular C3—H3A···O2 hydrogen bonds (Table 1) linked the molecules into chains linking down the b axis.

For related structures, see: Fun et al. (2009); Loh et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis, showing the chains linking down the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-(2-Methyl-6-nitro-4-phenyl-3-quinolyl)ethanone top
Crystal data top
C18H14N2O3F(000) = 640
Mr = 306.31Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5914 reflections
a = 13.297 (2) Åθ = 3.0–32.9°
b = 7.7689 (12) ŵ = 0.10 mm1
c = 17.9430 (19) ÅT = 100 K
β = 129.099 (7)°Block, yellow
V = 1438.5 (3) Å30.48 × 0.33 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4148 independent reflections
Radiation source: fine-focus sealed tube3310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.954, Tmax = 0.977k = 1010
14926 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1525P)2 + 0.4637P]
where P = (Fo2 + 2Fc2)/3
4148 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C18H14N2O3V = 1438.5 (3) Å3
Mr = 306.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.297 (2) ŵ = 0.10 mm1
b = 7.7689 (12) ÅT = 100 K
c = 17.9430 (19) Å0.48 × 0.33 × 0.24 mm
β = 129.099 (7)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4148 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3310 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.977Rint = 0.035
14926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.13Δρmax = 0.86 e Å3
4148 reflectionsΔρmin = 0.78 e Å3
211 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22581 (15)0.7458 (2)0.39046 (10)0.0262 (3)
O20.17169 (14)1.20721 (18)0.84191 (10)0.0238 (3)
O30.35548 (14)1.19938 (18)0.86969 (10)0.0229 (3)
N10.00896 (15)0.73719 (17)0.49922 (11)0.0144 (3)
N20.24139 (16)1.16058 (19)0.82228 (11)0.0169 (3)
C10.07078 (17)0.6966 (2)0.46604 (12)0.0142 (3)
C20.07093 (16)0.8420 (2)0.57827 (12)0.0133 (3)
C30.00244 (17)0.8836 (2)0.61256 (13)0.0155 (3)
H3A0.08070.84040.58090.019*
C40.05691 (18)0.9862 (2)0.69126 (13)0.0165 (3)
H4A0.01241.01250.71400.020*
C50.18211 (17)1.0511 (2)0.73696 (12)0.0149 (3)
C60.25169 (17)1.0187 (2)0.70594 (12)0.0142 (3)
H6A0.33341.06670.73740.017*
C70.19679 (16)0.9106 (2)0.62512 (12)0.0132 (3)
C80.26215 (16)0.8663 (2)0.58772 (12)0.0130 (3)
C90.19839 (17)0.7586 (2)0.50918 (12)0.0141 (3)
C100.39210 (17)0.9385 (2)0.62955 (12)0.0144 (3)
C110.50170 (17)0.9063 (2)0.72397 (13)0.0165 (3)
H11A0.49450.84040.76370.020*
C120.62200 (18)0.9721 (2)0.75941 (13)0.0189 (4)
H12A0.69460.94970.82250.023*
C130.63368 (18)1.0716 (2)0.70039 (14)0.0190 (4)
H13A0.71401.11520.72400.023*
C140.52518 (18)1.1051 (2)0.60658 (14)0.0187 (4)
H14A0.53281.17210.56740.022*
C150.40435 (18)1.0389 (2)0.57040 (13)0.0173 (4)
H15A0.33201.06120.50720.021*
C160.26170 (18)0.6954 (2)0.46785 (13)0.0180 (4)
C170.3644 (2)0.5611 (3)0.52599 (15)0.0257 (4)
H17A0.40680.54030.49900.039*
H17B0.32550.45640.52520.039*
H17C0.42690.60050.59100.039*
C180.00164 (17)0.5814 (2)0.37966 (13)0.0171 (3)
H18A0.08120.54980.36100.026*
H18B0.05230.47960.39500.026*
H18C0.01040.64110.32770.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (8)0.0330 (8)0.0241 (7)0.0058 (6)0.0234 (7)0.0039 (6)
O20.0298 (8)0.0284 (7)0.0265 (7)0.0043 (6)0.0240 (7)0.0017 (5)
O30.0266 (7)0.0256 (7)0.0232 (7)0.0056 (5)0.0189 (6)0.0054 (5)
N10.0177 (7)0.0126 (6)0.0182 (7)0.0002 (5)0.0139 (6)0.0014 (5)
N20.0234 (8)0.0166 (7)0.0188 (7)0.0026 (5)0.0172 (6)0.0017 (5)
C10.0183 (8)0.0125 (7)0.0168 (8)0.0002 (6)0.0135 (7)0.0006 (5)
C20.0163 (8)0.0127 (7)0.0165 (7)0.0017 (5)0.0131 (7)0.0031 (5)
C30.0196 (8)0.0139 (7)0.0220 (8)0.0009 (6)0.0174 (7)0.0025 (6)
C40.0237 (9)0.0146 (7)0.0227 (8)0.0031 (6)0.0202 (7)0.0032 (6)
C50.0205 (8)0.0138 (7)0.0168 (8)0.0019 (6)0.0149 (7)0.0014 (6)
C60.0176 (8)0.0135 (7)0.0182 (8)0.0018 (6)0.0144 (7)0.0018 (6)
C70.0174 (8)0.0126 (7)0.0163 (8)0.0019 (6)0.0137 (7)0.0023 (5)
C80.0144 (7)0.0136 (7)0.0160 (7)0.0012 (5)0.0120 (6)0.0019 (5)
C90.0180 (8)0.0140 (7)0.0175 (8)0.0004 (6)0.0145 (7)0.0006 (6)
C100.0177 (8)0.0141 (7)0.0191 (8)0.0014 (6)0.0153 (7)0.0026 (6)
C110.0198 (8)0.0175 (7)0.0184 (8)0.0002 (6)0.0151 (7)0.0010 (6)
C120.0191 (8)0.0208 (8)0.0197 (8)0.0003 (6)0.0136 (7)0.0020 (6)
C130.0191 (8)0.0188 (8)0.0280 (9)0.0033 (6)0.0191 (8)0.0048 (6)
C140.0235 (9)0.0173 (7)0.0263 (9)0.0019 (6)0.0209 (8)0.0011 (6)
C150.0212 (9)0.0176 (7)0.0198 (8)0.0001 (6)0.0161 (7)0.0001 (6)
C160.0197 (8)0.0207 (8)0.0218 (9)0.0063 (6)0.0170 (7)0.0076 (6)
C170.0224 (9)0.0314 (10)0.0269 (10)0.0037 (7)0.0173 (8)0.0067 (8)
C180.0199 (8)0.0155 (7)0.0200 (8)0.0020 (6)0.0145 (7)0.0024 (6)
Geometric parameters (Å, º) top
O1—C161.214 (2)C9—C161.512 (2)
O2—N21.2352 (19)C10—C111.394 (3)
O3—N21.220 (2)C10—C151.407 (2)
N1—C11.322 (2)C11—C121.393 (2)
N1—C21.371 (2)C11—H11A0.9300
N2—C51.472 (2)C12—C131.397 (3)
C1—C91.433 (2)C12—H12A0.9300
C1—C181.500 (2)C13—C141.386 (3)
C2—C71.420 (2)C13—H13A0.9300
C2—C31.421 (2)C14—C151.397 (2)
C3—C41.365 (2)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.406 (2)C16—C171.499 (3)
C4—H4A0.9300C17—H17A0.9600
C5—C61.371 (2)C17—H17B0.9600
C6—C71.416 (2)C17—H17C0.9600
C6—H6A0.9300C18—H18A0.9600
C7—C81.435 (2)C18—H18B0.9600
C8—C91.378 (2)C18—H18C0.9600
C8—C101.493 (2)
C1—N1—C2117.97 (14)C11—C10—C8122.36 (15)
O3—N2—O2123.74 (15)C15—C10—C8118.50 (15)
O3—N2—C5118.87 (13)C12—C11—C10120.56 (16)
O2—N2—C5117.39 (15)C12—C11—H11A119.7
N1—C1—C9122.51 (15)C10—C11—H11A119.7
N1—C1—C18117.24 (15)C11—C12—C13120.11 (17)
C9—C1—C18120.25 (14)C11—C12—H12A119.9
N1—C2—C7123.38 (14)C13—C12—H12A119.9
N1—C2—C3116.87 (15)C14—C13—C12119.78 (17)
C7—C2—C3119.74 (15)C14—C13—H13A120.1
C4—C3—C2120.92 (16)C12—C13—H13A120.1
C4—C3—H3A119.5C13—C14—C15120.43 (16)
C2—C3—H3A119.5C13—C14—H14A119.8
C3—C4—C5118.26 (14)C15—C14—H14A119.8
C3—C4—H4A120.9C14—C15—C10120.00 (17)
C5—C4—H4A120.9C14—C15—H15A120.0
C6—C5—C4123.46 (16)C10—C15—H15A120.0
C6—C5—N2118.22 (15)O1—C16—C17123.29 (16)
C4—C5—N2118.32 (14)O1—C16—C9121.18 (17)
C5—C6—C7118.74 (16)C17—C16—C9115.44 (15)
C5—C6—H6A120.6C16—C17—H17A109.5
C7—C6—H6A120.6C16—C17—H17B109.5
C6—C7—C2118.85 (14)H17A—C17—H17B109.5
C6—C7—C8123.23 (15)C16—C17—H17C109.5
C2—C7—C8117.91 (15)H17A—C17—H17C109.5
C9—C8—C7117.43 (15)H17B—C17—H17C109.5
C9—C8—C10120.86 (14)C1—C18—H18A109.5
C7—C8—C10121.67 (14)C1—C18—H18B109.5
C8—C9—C1120.78 (14)H18A—C18—H18B109.5
C8—C9—C16121.66 (15)C1—C18—H18C109.5
C1—C9—C16117.51 (14)H18A—C18—H18C109.5
C11—C10—C15119.12 (16)H18B—C18—H18C109.5
C2—N1—C1—C90.4 (2)C7—C8—C9—C11.1 (2)
C2—N1—C1—C18179.85 (14)C10—C8—C9—C1176.71 (15)
C1—N1—C2—C70.9 (2)C7—C8—C9—C16176.30 (15)
C1—N1—C2—C3179.96 (14)C10—C8—C9—C165.9 (2)
N1—C2—C3—C4179.55 (15)N1—C1—C9—C80.7 (3)
C7—C2—C3—C41.3 (2)C18—C1—C9—C8179.11 (15)
C2—C3—C4—C50.6 (2)N1—C1—C9—C16176.82 (15)
C3—C4—C5—C60.9 (3)C18—C1—C9—C163.4 (2)
C3—C4—C5—N2179.50 (15)C9—C8—C10—C11119.51 (18)
O3—N2—C5—C69.7 (2)C7—C8—C10—C1162.8 (2)
O2—N2—C5—C6170.71 (15)C9—C8—C10—C1558.8 (2)
O3—N2—C5—C4170.68 (15)C7—C8—C10—C15118.90 (17)
O2—N2—C5—C48.9 (2)C15—C10—C11—C120.2 (2)
C4—C5—C6—C71.7 (3)C8—C10—C11—C12178.13 (15)
N2—C5—C6—C7178.71 (14)C10—C11—C12—C130.1 (3)
C5—C6—C7—C20.9 (2)C11—C12—C13—C140.2 (3)
C5—C6—C7—C8179.01 (15)C12—C13—C14—C150.5 (3)
N1—C2—C7—C6179.57 (15)C13—C14—C15—C100.5 (3)
C3—C2—C7—C60.5 (2)C11—C10—C15—C140.1 (2)
N1—C2—C7—C80.5 (2)C8—C10—C15—C14178.50 (15)
C3—C2—C7—C8179.57 (14)C8—C9—C16—O1109.8 (2)
C6—C7—C8—C9179.40 (15)C1—C9—C16—O172.7 (2)
C2—C7—C8—C90.6 (2)C8—C9—C16—C1773.6 (2)
C6—C7—C8—C102.8 (2)C1—C9—C16—C17103.90 (19)
C2—C7—C8—C10177.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.563.208 (3)127
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.297 (2), 7.7689 (12), 17.9430 (19)
β (°) 129.099 (7)
V3)1438.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.33 × 0.24
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
14926, 4148, 3310
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.232, 1.13
No. of reflections4148
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.78

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.563.208 (3)127
Symmetry code: (i) x, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds