organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

17,18-Di­bromo-8-methyl-4,12-di­tosyl-3,4,5,6,7,8,9,10,11,12,13,14-dodeca­hydro-2H-benzo[b][1,4,7,11,15]dioxatri­aza­cyclo­hepta­decine

aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, bGümüşhane University, TR-29000, Gümüşhane, Turkey, and cDepartment of Chemistry, Karadeniz Technical University, TR-61080, Trabzon, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 8 April 2010; accepted 8 April 2010; online 14 April 2010)

In the title compound, C31H39Br2N3O6S2, a 17-membered aza-macrocyclic ligand containing two ether O and three aza N atoms, the three pendant aromatic rings form an `E' shape. The dihedral angles between the central benzene ring and the side ones are 17.8 (3) and 7.4 (3)°, and the dihedral angle between the tosyl rings is 10.6 (3)°. The methyl group is disordered over two orientations, with occupancies of 0.52 (15) and 0.48 (15).

Related literature

For general background to aza-macrocyclic ligands, see: Fry et al. (1997[Fry, F. H., Graham, B., Spiccia, L., Hockles, D. C. R. & Tiekink, E. R. T. (1997). J. Chem. Soc., Dalton Trans. pp. 827-831.]); Xu et al. (1997[Xu, X., Luo, Q., Shen, M., Huang, X. & Wu, Q. (1997). Polyhedron, 6, 1301-1305.]); Canales et al. (2000[Canales, J., Ramirez, J., Estiu, G. & Costamagna, J. (2000). Polyhedron, 19, 2373-2381.]); Shishkina et al. (2007[Shishkina, S. V., Shishkina, O. V., Grygorash, R., Mazega, A. V., Rakipov, I. M., Yakshin, V. V., Kotlyar, S. A. & Gerbert, L. K. (2007). J. Mol. Struct. 832, 199-208.]). For related structures, see: Hökelek et al. (2001[Hökelek, T., Kaya, E. E. & Kılıç, Z. (2001). Acta Cryst. E57, o309-o311.], 2004[Hökelek, T., Ilter, E. E. & Kılıç, Z. (2004). Anal. Sci. 20, 69-70.]); Işik et al. (1999[Işik, Ş., Öztürk, S., Fun, H.-K., Agar, E. & Şaşmaz, S. (1999). Acta Cryst. C55, 1850-1852.]). For further synthetic details, see: Notni et al. (2006[Notni, J., Görls, H. & Anders, E. (2006). Eur. J. Inorg. Chem. 7, 1444-1455.]); Koçak et al. (1994[Koçak, M., Gürek, A., Gül, A. & Bekaroğlu, Ö. (1994). Eur. J. Inorg. Chem. 127, 355-358.]).

[Scheme 1]

Experimental

Crystal data
  • C31H39Br2N3O6S2

  • Mr = 773.59

  • Monoclinic, P 21 /c

  • a = 18.7520 (9) Å

  • b = 10.6864 (4) Å

  • c = 19.9527 (9) Å

  • β = 121.416 (3)°

  • V = 3412.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 296 K

  • 0.60 × 0.52 × 0.37 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.260, Tmax = 0.425

  • 24321 measured reflections

  • 7243 independent reflections

  • 4640 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.152

  • S = 1.02

  • 7243 reflections

  • 409 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −1.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis and characterization of coordination compounds with aza-macrocyclic ligands has evolved during the last years as one of the main research areas in coordination chemistry (Fry et al.,1997; Xu et al., 1997). By the end of the last century the macrocyclic polyethers (crown ethers) had became one of the most popular chemical reagents with a very wide area of applications. They are used successfully in chemistry of 'host–guest' complexes, extraction, phase transfer catalysis, organic synthesis, analytical chemistry, biology, medicine, ecology, etc. (Shishkina et al., 2007). In addition, aza-macrocyclic ligands, as well as their coordination and organometallic compounds play important roles in catalysis in the activation of small molecules, showing catalytic activity in electrochemically assisted reactions with several substrates (Canales et al., 2000).

We have investigated the title structure of macrocyclic multidentate O2N3 donor-type ligand (Fig. 1). The 17-membered macrocyclic ring contains two ether O and three aza N atoms. The ligand cavity for macrocyclic ring plays an important role in metal-ion selectivity (Hökelek et al.,2004; Hökelek et al., 2001).

The 17-membered macro-cyclic molecule with O2N3 type ring, the deviations from the least-squares plane defined by atoms O1, O2, N1, N2 and N3 are -0.661 (4)Å (O1), 0.363 (3)Å (O2), -0.352 (3)(N1) and 0.806 (3)Å (N2) and C29 shows the maximum r.m.s deviation from the plane as 1.067 (3).

The dihedral angle between the tosyl rings A(C18—C23, C24, S2) and B(C11—C16, C17, S1) is 10.6 (3)° [both nearly planar with r.m.s. deviations of 0.11 (3) Å for S1 and -0.06 (3) Å for S2, from the mean planes]. The geometry at the S atoms is distorted from the tetrahedral configuration [the largest angle is 120.3 (3)° for O3—S1—O4] and agree with the corresponding angle 120.4 (3)° in 10,11-Dibromo-3,6-ditosyl-3,6-diazabicyclo-[6.4.0]dodeca-1 (8),9,11-triene (Işik et al., 1999).

The benzene rings C(C1—C6), D(C11—C16) and E(C18—C23) are planar with the maximum r.m.s. deviation from the mean plane as 0.021 (4) Å for C13. The dihedral angles between these benzene rings are C/D = 17.8 (3)°, D/E = 10.9 (3)° and C/E = 7.4 (3)°. The conformation of the title compound's macrocyclic ring can be given by the torsion angles. The optimum values of the torsion angles in a macrocyclic ring are 180° (anti) and 60° (gauche). In the compound (I), seven torsion angles are seems to be anti and five ones as gauche (Table 1). There is no classic hydrogen bonds in (I) and van der Waals interactions are effective in the molecular packing.

Related literature top

For general background to aza-macrocyclic ligands, see: Fry et al. (1997); Xu et al. (1997); Canales et al. (2000); Shishkina et al. (2007). For related structures, see: Hökelek et al. (2001, 2004); Işik et al. (1999). For further synthetic details, see: Notni et al. (2006); Koçak et al. (1994).

Experimental top

N,N'-(3,3'-(methylazanediyl)bis(propane-3,1-diyl))bis(4-methyl benzenesulfonamide) (Notni et al., 2006) (1 g, 2.21 mmol) was dissolved in dry acetonitrile (50 ml) containing finely ground anhydrous Cs2CO3 (2.16 g, 6.63 mmol) and purged under nitrogen in a Schlenk system. This solution was stirred at 50 °C and a solution 1,2-bis(2-iodo-ethoxy) -4,5-dibromobenzene (Koçak et al., 1994) (1.27 g, 2.21 mmol) in dry acetonitrile (30 ml) was added dropwise over a period of 3 h at reflux temperature (90 °C). The reaction was monitored by TLC using hexane/ethyl acetate (1:1) and was complete in 8 days at the reflux temperature. At the end of this period the solvent was removed under reduced pressure, mixed with water (50 ml) and then extracted with chloroform (3 times 50). The combine extract was washed with water, dried over Na2SO4 and filtered and evaporated to dryness. The product was chromatographed on silica gel with hexane/ethyl acetate (2:3). Finally the white solid product was obtained. This product was crystallized from chloroform/hexane to yield colourless prisms of (I). This compound is soluble in chloroform, dichloromethane, dimethyl formamide. Yield: 0.65 g (%38). IR(KBr pellets): 3026 (Ar–H), 2926–2854 (Aliph. C–H), 1642, 1597, 1493, 1335, 1251, 1156, 815. 1H NMR (CDCl3): 7.67 (d, 4H, Ar–Ts—H), 7.22 (d, 4H, Ar–Ts—H), 6.81 (s, 2H, Ar–H), 3.97 (t, 4H, O–CH2), 3.66 (t, 4H, N–CH2), 3.45 (t, 4H, N–CH2), 2.37 (t, 4H, N–CH2), 2.21 (s, 6H, CH3), 2.08 (s, 3H, N—CH3), 1.70 (m, 4H, CH2). 13C NMR (CDCl3): 148.15 (Ar–C), 148.61 (Ar–C), 137.93 (Ar–C), 129.86 (Ar–C),127.06 (Ar–C), 117.47 (Ar–C), 115.25 (Ar–C), 69.21 (O–CH2), 54.26 (N–CH2), 48.58 (N–CH2), 47.96 (N–CH2), 41.56 (N–CH2), 26.98 (CH2), 21.77 (CH3).

Refinement top

All H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 and 1.5 times of the Ueq of the parent atom). The methyl group is disordered over two orientations, with occupancies of 0.52 (15) and O.48 (15).

Structure description top

The synthesis and characterization of coordination compounds with aza-macrocyclic ligands has evolved during the last years as one of the main research areas in coordination chemistry (Fry et al.,1997; Xu et al., 1997). By the end of the last century the macrocyclic polyethers (crown ethers) had became one of the most popular chemical reagents with a very wide area of applications. They are used successfully in chemistry of 'host–guest' complexes, extraction, phase transfer catalysis, organic synthesis, analytical chemistry, biology, medicine, ecology, etc. (Shishkina et al., 2007). In addition, aza-macrocyclic ligands, as well as their coordination and organometallic compounds play important roles in catalysis in the activation of small molecules, showing catalytic activity in electrochemically assisted reactions with several substrates (Canales et al., 2000).

We have investigated the title structure of macrocyclic multidentate O2N3 donor-type ligand (Fig. 1). The 17-membered macrocyclic ring contains two ether O and three aza N atoms. The ligand cavity for macrocyclic ring plays an important role in metal-ion selectivity (Hökelek et al.,2004; Hökelek et al., 2001).

The 17-membered macro-cyclic molecule with O2N3 type ring, the deviations from the least-squares plane defined by atoms O1, O2, N1, N2 and N3 are -0.661 (4)Å (O1), 0.363 (3)Å (O2), -0.352 (3)(N1) and 0.806 (3)Å (N2) and C29 shows the maximum r.m.s deviation from the plane as 1.067 (3).

The dihedral angle between the tosyl rings A(C18—C23, C24, S2) and B(C11—C16, C17, S1) is 10.6 (3)° [both nearly planar with r.m.s. deviations of 0.11 (3) Å for S1 and -0.06 (3) Å for S2, from the mean planes]. The geometry at the S atoms is distorted from the tetrahedral configuration [the largest angle is 120.3 (3)° for O3—S1—O4] and agree with the corresponding angle 120.4 (3)° in 10,11-Dibromo-3,6-ditosyl-3,6-diazabicyclo-[6.4.0]dodeca-1 (8),9,11-triene (Işik et al., 1999).

The benzene rings C(C1—C6), D(C11—C16) and E(C18—C23) are planar with the maximum r.m.s. deviation from the mean plane as 0.021 (4) Å for C13. The dihedral angles between these benzene rings are C/D = 17.8 (3)°, D/E = 10.9 (3)° and C/E = 7.4 (3)°. The conformation of the title compound's macrocyclic ring can be given by the torsion angles. The optimum values of the torsion angles in a macrocyclic ring are 180° (anti) and 60° (gauche). In the compound (I), seven torsion angles are seems to be anti and five ones as gauche (Table 1). There is no classic hydrogen bonds in (I) and van der Waals interactions are effective in the molecular packing.

For general background to aza-macrocyclic ligands, see: Fry et al. (1997); Xu et al. (1997); Canales et al. (2000); Shishkina et al. (2007). For related structures, see: Hökelek et al. (2001, 2004); Işik et al. (1999). For further synthetic details, see: Notni et al. (2006); Koçak et al. (1994).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% probability displacement ellipsoids. Only the major disorder component of the methyl group is shown.
17,18-Dibromo-8-methyl-4,12-ditosyl-3,4,5,6,7,8,9,10,11,12,13,14- dodecahydro-2H-benzo[b][1,4,7,11,15]dioxatriazacycloheptadecine top
Crystal data top
C31H39Br2N3O6S2F(000) = 1584
Mr = 773.59Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22517 reflections
a = 18.7520 (9) Åθ = 1.2–27.3°
b = 10.6864 (4) ŵ = 2.54 mm1
c = 19.9527 (9) ÅT = 296 K
β = 121.416 (3)°Prism, colorless
V = 3412.2 (3) Å30.60 × 0.52 × 0.37 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
7243 independent reflections
Radiation source: fine-focus sealed tube4640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.0°
rotation method scansh = 2321
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.260, Tmax = 0.425l = 2525
24321 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0629P)2 + 3.5929P]
where P = (Fo2 + 2Fc2)/3
7243 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
C31H39Br2N3O6S2V = 3412.2 (3) Å3
Mr = 773.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.7520 (9) ŵ = 2.54 mm1
b = 10.6864 (4) ÅT = 296 K
c = 19.9527 (9) Å0.60 × 0.52 × 0.37 mm
β = 121.416 (3)°
Data collection top
Stoe IPDS 2
diffractometer
7243 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4640 reflections with I > 2σ(I)
Tmin = 0.260, Tmax = 0.425Rint = 0.049
24321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 1.31 e Å3
7243 reflectionsΔρmin = 1.17 e Å3
409 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7001 (3)0.3914 (4)0.5560 (2)0.0486 (10)
C20.6569 (3)0.2996 (4)0.5022 (3)0.0632 (12)
H20.64270.22630.51760.076*
C30.6341 (3)0.3154 (4)0.4237 (3)0.0655 (13)
C40.6564 (3)0.4214 (5)0.4013 (2)0.0585 (11)
C50.6994 (3)0.5155 (4)0.4557 (2)0.0556 (11)
H50.71380.58830.44000.067*
C60.7208 (3)0.5021 (4)0.5325 (2)0.0468 (9)
C70.7871 (3)0.7025 (4)0.5702 (3)0.0573 (11)
H7A0.74250.73500.52030.069*
H7B0.83510.68550.56560.069*
C80.8097 (3)0.7969 (4)0.6346 (3)0.0579 (11)
H8A0.85370.76170.68380.069*
H8B0.83220.87070.62380.069*
C90.7245 (3)0.2609 (4)0.6628 (3)0.0564 (11)
H9A0.74630.20000.64190.068*
H9B0.66810.23670.64740.068*
C100.7790 (3)0.2666 (5)0.7508 (2)0.0569 (11)
H10A0.75190.31930.77060.068*
H10B0.78320.18310.77160.068*
C110.5504 (3)0.7378 (6)0.5204 (3)0.0806 (15)
H110.55520.73630.56920.097*
C120.4984 (3)0.6531 (6)0.4624 (4)0.0842 (17)
H120.46780.59640.47290.101*
C130.4909 (3)0.6504 (5)0.3900 (3)0.0723 (14)
C140.5329 (3)0.7394 (6)0.3749 (3)0.0813 (16)
H140.52670.74220.32560.098*
C150.5846 (3)0.8260 (5)0.4315 (3)0.0790 (16)
H150.61260.88570.41990.095*
C160.5944 (3)0.8236 (5)0.5051 (3)0.0645 (12)
C170.4383 (4)0.5511 (6)0.3308 (4)0.098 (2)
H17A0.38180.55700.31890.118*
H17B0.46030.46990.35210.118*
H17C0.43940.56330.28360.118*
C180.9238 (3)0.2680 (4)0.6840 (3)0.0580 (11)
C190.8771 (4)0.1928 (5)0.6181 (4)0.0787 (16)
H190.85170.12030.62150.094*
C200.8690 (4)0.2273 (6)0.5484 (4)0.0888 (19)
H200.83800.17630.50480.107*
C210.9045 (3)0.3334 (5)0.5398 (3)0.0692 (13)
C220.9515 (3)0.4052 (5)0.6057 (3)0.0694 (13)
H220.97730.47700.60210.083*
C230.9614 (3)0.3740 (5)0.6772 (3)0.0631 (12)
H230.99340.42450.72080.076*
C240.8933 (5)0.3707 (7)0.4621 (4)0.106 (2)
H24A0.94690.37480.46690.128*
H24B0.86680.45110.44700.128*
H24C0.85900.30980.42300.128*
C250.7356 (3)0.7777 (5)0.7079 (3)0.0642 (12)
H25A0.74670.68880.70920.077*
H25B0.67930.78760.69750.077*
C260.7965 (4)0.8339 (5)0.7868 (3)0.0759 (15)
H26A0.78470.92250.78570.091*
H26B0.85270.82560.79660.091*
C270.7927 (5)0.7729 (5)0.8533 (3)0.0908 (19)
H27A0.83270.81340.90220.109*
H27B0.73740.78580.84500.109*
C280.8987 (4)0.6155 (6)0.8929 (3)0.101 (2)
H28A0.92890.63460.94860.122*
H28B0.91930.67070.86810.122*
C290.9159 (4)0.4810 (6)0.8816 (3)0.094 (2)
H29A0.97580.46780.90860.113*
H29B0.89370.42560.90480.113*
C300.8775 (3)0.4486 (4)0.7963 (3)0.0644 (12)
H30A0.82450.49200.76620.077*
H30B0.91380.47820.77860.077*
C31A0.797 (8)0.589 (5)0.919 (6)0.14 (2)0.52 (15)
H31A0.80630.49990.92220.205*0.52 (15)
H31B0.74100.60570.90520.205*0.52 (15)
H31C0.83570.62660.96840.205*0.52 (15)
C31B0.758 (5)0.570 (6)0.890 (4)0.118 (12)0.48 (15)
H31D0.76270.48090.88640.178*0.48 (15)
H31E0.70070.59430.85910.178*0.48 (15)
H31F0.77970.59180.94430.178*0.48 (15)
N10.7410 (2)0.8354 (3)0.6445 (2)0.0543 (9)
N20.8634 (2)0.3142 (3)0.7806 (2)0.0545 (9)
N30.8103 (4)0.6388 (4)0.8600 (3)0.0798 (13)
O10.72458 (19)0.3840 (3)0.63322 (15)0.0562 (7)
O20.76047 (19)0.5906 (3)0.58982 (16)0.0551 (7)
O30.7025 (3)0.9994 (3)0.5462 (2)0.0861 (12)
O40.6274 (3)0.9787 (4)0.6179 (3)0.0931 (12)
O50.9052 (3)0.1027 (3)0.7685 (3)0.0910 (12)
O61.0111 (2)0.2702 (4)0.8347 (2)0.0906 (12)
S10.66723 (9)0.92262 (11)0.58044 (8)0.0680 (3)
S20.93076 (8)0.23094 (12)0.77324 (8)0.0643 (3)
Br10.56928 (5)0.18578 (6)0.35290 (3)0.1104 (3)
Br20.62827 (4)0.44795 (6)0.29617 (3)0.0819 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.046 (2)0.043 (2)0.0069 (19)0.0199 (18)0.0034 (17)
C20.079 (3)0.044 (2)0.055 (2)0.001 (2)0.026 (2)0.0036 (19)
C30.077 (3)0.051 (3)0.050 (2)0.002 (2)0.021 (2)0.004 (2)
C40.063 (3)0.064 (3)0.045 (2)0.005 (2)0.026 (2)0.001 (2)
C50.063 (3)0.053 (3)0.049 (2)0.002 (2)0.028 (2)0.0026 (19)
C60.048 (2)0.044 (2)0.046 (2)0.0026 (18)0.0217 (18)0.0010 (17)
C70.060 (3)0.052 (3)0.060 (2)0.008 (2)0.031 (2)0.001 (2)
C80.057 (3)0.051 (3)0.060 (3)0.010 (2)0.026 (2)0.001 (2)
C90.059 (3)0.047 (2)0.059 (2)0.004 (2)0.028 (2)0.012 (2)
C100.057 (3)0.062 (3)0.056 (2)0.012 (2)0.032 (2)0.020 (2)
C110.068 (3)0.096 (4)0.069 (3)0.011 (3)0.030 (3)0.004 (3)
C120.058 (3)0.093 (4)0.095 (4)0.017 (3)0.035 (3)0.004 (3)
C130.045 (3)0.078 (4)0.072 (3)0.002 (2)0.016 (2)0.003 (3)
C140.070 (3)0.094 (4)0.057 (3)0.000 (3)0.018 (3)0.011 (3)
C150.073 (4)0.074 (3)0.067 (3)0.010 (3)0.020 (3)0.021 (3)
C160.056 (3)0.060 (3)0.065 (3)0.010 (2)0.022 (2)0.014 (2)
C170.068 (4)0.103 (5)0.100 (4)0.011 (3)0.027 (3)0.015 (4)
C180.055 (3)0.048 (2)0.078 (3)0.003 (2)0.039 (2)0.005 (2)
C190.095 (4)0.053 (3)0.117 (5)0.020 (3)0.075 (4)0.031 (3)
C200.099 (4)0.088 (4)0.095 (4)0.034 (4)0.062 (4)0.054 (3)
C210.070 (3)0.074 (3)0.071 (3)0.004 (3)0.042 (3)0.018 (3)
C220.083 (4)0.061 (3)0.073 (3)0.013 (3)0.046 (3)0.007 (2)
C230.065 (3)0.060 (3)0.063 (3)0.014 (2)0.032 (2)0.012 (2)
C240.127 (6)0.128 (6)0.073 (4)0.000 (5)0.058 (4)0.016 (4)
C250.071 (3)0.058 (3)0.063 (3)0.001 (2)0.035 (3)0.005 (2)
C260.105 (4)0.058 (3)0.066 (3)0.004 (3)0.045 (3)0.003 (2)
C270.142 (6)0.070 (4)0.073 (3)0.020 (4)0.065 (4)0.003 (3)
C280.117 (6)0.080 (4)0.059 (3)0.009 (4)0.013 (3)0.016 (3)
C290.100 (4)0.082 (4)0.056 (3)0.022 (3)0.010 (3)0.005 (3)
C300.076 (3)0.057 (3)0.057 (3)0.010 (2)0.033 (2)0.006 (2)
C31A0.23 (6)0.092 (18)0.16 (4)0.02 (3)0.15 (4)0.03 (2)
C31B0.18 (3)0.12 (2)0.10 (2)0.02 (2)0.11 (2)0.002 (16)
N10.055 (2)0.049 (2)0.0530 (19)0.0003 (17)0.0237 (17)0.0008 (16)
N20.054 (2)0.052 (2)0.057 (2)0.0107 (17)0.0285 (18)0.0106 (16)
N30.121 (4)0.067 (3)0.068 (3)0.017 (3)0.060 (3)0.009 (2)
O10.071 (2)0.0450 (16)0.0431 (14)0.0023 (14)0.0232 (14)0.0057 (12)
O20.0665 (19)0.0474 (16)0.0483 (15)0.0081 (14)0.0277 (14)0.0018 (13)
O30.098 (3)0.0517 (19)0.084 (2)0.0102 (19)0.030 (2)0.0179 (18)
O40.089 (3)0.072 (2)0.113 (3)0.022 (2)0.049 (2)0.010 (2)
O50.104 (3)0.0483 (19)0.143 (4)0.023 (2)0.080 (3)0.030 (2)
O60.055 (2)0.121 (3)0.082 (2)0.018 (2)0.0259 (19)0.027 (2)
S10.0714 (8)0.0436 (6)0.0742 (8)0.0055 (6)0.0275 (7)0.0053 (5)
S20.0548 (7)0.0589 (7)0.0799 (8)0.0187 (6)0.0355 (6)0.0218 (6)
Br10.1618 (7)0.0672 (4)0.0607 (3)0.0270 (4)0.0290 (4)0.0158 (3)
Br20.1014 (5)0.0923 (4)0.0486 (3)0.0089 (3)0.0368 (3)0.0056 (3)
Geometric parameters (Å, º) top
C1—O11.361 (5)C19—H190.9300
C1—C21.366 (6)C20—C211.370 (8)
C1—C61.400 (6)C20—H200.9300
C2—C31.401 (6)C21—C221.374 (7)
C2—H20.9300C21—C241.504 (8)
C3—C41.361 (7)C22—C231.379 (7)
C3—Br11.898 (5)C22—H220.9300
C4—C51.388 (6)C23—H230.9300
C4—Br21.899 (4)C24—H24A0.9600
C5—C61.374 (5)C24—H24B0.9600
C5—H50.9300C24—H24C0.9600
C6—O21.368 (5)C25—N11.456 (6)
C7—O21.427 (5)C25—C261.506 (7)
C7—C81.510 (6)C25—H25A0.9700
C7—H7A0.9700C25—H25B0.9700
C7—H7B0.9700C26—C271.513 (7)
C8—N11.462 (6)C26—H26A0.9700
C8—H8A0.9700C26—H26B0.9700
C8—H8B0.9700C27—N31.462 (7)
C9—O11.442 (5)C27—H27A0.9700
C9—C101.503 (6)C27—H27B0.9700
C9—H9A0.9700C28—N31.451 (8)
C9—H9B0.9700C28—C291.516 (8)
C10—N21.461 (6)C28—H28A0.9700
C10—H10A0.9700C28—H28B0.9700
C10—H10B0.9700C29—C301.501 (7)
C11—C161.371 (7)C29—H29A0.9700
C11—C121.390 (8)C29—H29B0.9700
C11—H110.9300C30—N21.465 (6)
C12—C131.376 (8)C30—H30A0.9700
C12—H120.9300C30—H30B0.9700
C13—C141.365 (8)C31A—N31.42 (4)
C13—C171.511 (8)C31A—H31A0.9600
C14—C151.389 (8)C31A—H31B0.9600
C14—H140.9300C31A—H31C0.9600
C15—C161.380 (7)C31B—N31.58 (6)
C15—H150.9300C31B—H31D0.9600
C16—S11.762 (5)C31B—H31E0.9600
C17—H17A0.9600C31B—H31F0.9600
C17—H17B0.9600N1—S11.604 (4)
C17—H17C0.9600N2—S21.613 (4)
C18—C231.377 (7)O3—S11.432 (4)
C18—C191.392 (7)O4—S11.434 (4)
C18—S21.762 (5)O5—S21.439 (4)
C19—C201.370 (8)O6—S21.423 (4)
O1—C1—C2124.1 (4)C23—C22—H22119.1
O1—C1—C6116.1 (4)C18—C23—C22120.0 (5)
C2—C1—C6119.8 (4)C18—C23—H23120.0
C1—C2—C3120.2 (4)C22—C23—H23120.0
C1—C2—H2119.9C21—C24—H24A109.5
C3—C2—H2119.9C21—C24—H24B109.5
C4—C3—C2120.0 (4)H24A—C24—H24B109.5
C4—C3—Br1123.4 (3)C21—C24—H24C109.5
C2—C3—Br1116.6 (4)H24A—C24—H24C109.5
C3—C4—C5120.0 (4)H24B—C24—H24C109.5
C3—C4—Br2122.1 (3)N1—C25—C26112.4 (4)
C5—C4—Br2117.9 (4)N1—C25—H25A109.1
C6—C5—C4120.6 (4)C26—C25—H25A109.1
C6—C5—H5119.7N1—C25—H25B109.1
C4—C5—H5119.7C26—C25—H25B109.1
O2—C6—C5125.2 (4)H25A—C25—H25B107.9
O2—C6—C1115.4 (3)C25—C26—C27112.8 (5)
C5—C6—C1119.4 (4)C25—C26—H26A109.0
O2—C7—C8108.0 (3)C27—C26—H26A109.0
O2—C7—H7A110.1C25—C26—H26B109.0
C8—C7—H7A110.1C27—C26—H26B109.0
O2—C7—H7B110.1H26A—C26—H26B107.8
C8—C7—H7B110.1N3—C27—C26113.0 (4)
H7A—C7—H7B108.4N3—C27—H27A109.0
N1—C8—C7115.3 (4)C26—C27—H27A109.0
N1—C8—H8A108.5N3—C27—H27B109.0
C7—C8—H8A108.5C26—C27—H27B109.0
N1—C8—H8B108.5H27A—C27—H27B107.8
C7—C8—H8B108.5N3—C28—C29112.1 (5)
H8A—C8—H8B107.5N3—C28—H28A109.2
O1—C9—C10107.2 (4)C29—C28—H28A109.2
O1—C9—H9A110.3N3—C28—H28B109.2
C10—C9—H9A110.3C29—C28—H28B109.2
O1—C9—H9B110.3H28A—C28—H28B107.9
C10—C9—H9B110.3C30—C29—C28112.0 (5)
H9A—C9—H9B108.5C30—C29—H29A109.2
N2—C10—C9115.0 (4)C28—C29—H29A109.2
N2—C10—H10A108.5C30—C29—H29B109.2
C9—C10—H10A108.5C28—C29—H29B109.2
N2—C10—H10B108.5H29A—C29—H29B107.9
C9—C10—H10B108.5N2—C30—C29113.3 (4)
H10A—C10—H10B107.5N2—C30—H30A108.9
C16—C11—C12119.5 (5)C29—C30—H30A108.9
C16—C11—H11120.2N2—C30—H30B108.9
C12—C11—H11120.2C29—C30—H30B108.9
C13—C12—C11122.0 (6)H30A—C30—H30B107.7
C13—C12—H12119.0N3—C31A—H31A109.5
C11—C12—H12119.0N3—C31A—H31B109.5
C14—C13—C12117.6 (5)N3—C31A—H31C109.5
C14—C13—C17122.2 (6)N3—C31B—H31D109.5
C12—C13—C17120.2 (6)N3—C31B—H31E109.5
C13—C14—C15121.5 (5)H31D—C31B—H31E109.5
C13—C14—H14119.3N3—C31B—H31F109.5
C15—C14—H14119.3H31D—C31B—H31F109.5
C16—C15—C14120.2 (5)H31E—C31B—H31F109.5
C16—C15—H15119.9C25—N1—C8117.6 (4)
C14—C15—H15119.9C25—N1—S1121.2 (3)
C11—C16—C15119.1 (5)C8—N1—S1120.7 (3)
C11—C16—S1120.0 (4)C10—N2—C30117.7 (4)
C15—C16—S1120.7 (4)C10—N2—S2120.3 (3)
C13—C17—H17A109.5C30—N2—S2119.9 (3)
C13—C17—H17B109.5C31A—N3—C28102 (5)
H17A—C17—H17B109.5C31A—N3—C27109 (2)
C13—C17—H17C109.5C28—N3—C27111.2 (5)
H17A—C17—H17C109.5C28—N3—C31B122 (3)
H17B—C17—H17C109.5C27—N3—C31B110 (2)
C23—C18—C19119.0 (5)C1—O1—C9116.4 (3)
C23—C18—S2120.8 (4)C6—O2—C7117.8 (3)
C19—C18—S2120.2 (4)O3—S1—O4120.3 (3)
C20—C19—C18119.0 (5)O3—S1—N1107.0 (2)
C20—C19—H19120.5O4—S1—N1107.1 (2)
C18—C19—H19120.5O3—S1—C16106.4 (2)
C21—C20—C19123.1 (5)O4—S1—C16108.2 (3)
C21—C20—H20118.4N1—S1—C16107.1 (2)
C19—C20—H20118.4O6—S2—O5120.3 (3)
C20—C21—C22116.9 (5)O6—S2—N2106.7 (2)
C20—C21—C24122.1 (5)O5—S2—N2106.3 (2)
C22—C21—C24120.9 (5)O6—S2—C18106.9 (2)
C21—C22—C23121.9 (5)O5—S2—C18107.5 (2)
C21—C22—H22119.1N2—S2—C18108.7 (2)
O1—C1—C2—C3179.8 (4)C26—C25—N1—S1110.2 (4)
C6—C1—C2—C30.6 (7)C7—C8—N1—C25100.3 (5)
C1—C2—C3—C41.4 (8)C7—C8—N1—S171.1 (5)
C1—C2—C3—Br1176.8 (4)C9—C10—N2—C3092.1 (5)
C2—C3—C4—C52.2 (8)C9—C10—N2—S271.1 (5)
Br1—C3—C4—C5175.9 (4)C29—C30—N2—C1099.7 (5)
C2—C3—C4—Br2179.4 (4)C29—C30—N2—S297.0 (5)
Br1—C3—C4—Br22.5 (6)C29—C28—N3—C31A79 (4)
C3—C4—C5—C60.9 (7)C29—C28—N3—C27165.4 (5)
Br2—C4—C5—C6179.4 (3)C29—C28—N3—C31B62 (3)
C4—C5—C6—O2177.6 (4)C26—C27—N3—C31A174 (6)
C4—C5—C6—C11.1 (7)C26—C27—N3—C2874.0 (7)
O1—C1—C6—O22.3 (5)C26—C27—N3—C31B147 (3)
C2—C1—C6—O2177.0 (4)C2—C1—O1—C917.1 (6)
O1—C1—C6—C5178.9 (4)C6—C1—O1—C9163.6 (4)
C2—C1—C6—C51.8 (6)C10—C9—O1—C1161.3 (4)
O2—C7—C8—N162.9 (5)C5—C6—O2—C74.6 (6)
O1—C9—C10—N254.1 (5)C1—C6—O2—C7176.7 (4)
C16—C11—C12—C131.4 (9)C8—C7—O2—C6166.7 (4)
C11—C12—C13—C143.7 (9)C25—N1—S1—O3159.0 (3)
C11—C12—C13—C17175.8 (6)C8—N1—S1—O330.0 (4)
C12—C13—C14—C153.1 (9)C25—N1—S1—O428.7 (4)
C17—C13—C14—C15176.5 (5)C8—N1—S1—O4160.3 (3)
C13—C14—C15—C160.1 (9)C25—N1—S1—C1687.3 (4)
C12—C11—C16—C151.6 (8)C8—N1—S1—C1683.8 (4)
C12—C11—C16—S1174.5 (4)C11—C16—S1—O3179.6 (4)
C14—C15—C16—C112.2 (8)C15—C16—S1—O33.5 (5)
C14—C15—C16—S1173.8 (4)C11—C16—S1—O449.8 (5)
C23—C18—C19—C200.7 (8)C15—C16—S1—O4134.2 (5)
S2—C18—C19—C20176.5 (4)C11—C16—S1—N165.4 (5)
C18—C19—C20—C210.4 (9)C15—C16—S1—N1110.6 (4)
C19—C20—C21—C221.4 (9)C10—N2—S2—O6154.2 (3)
C19—C20—C21—C24178.7 (6)C30—N2—S2—O642.9 (4)
C20—C21—C22—C231.2 (8)C10—N2—S2—O524.7 (4)
C24—C21—C22—C23178.8 (5)C30—N2—S2—O5172.5 (3)
C19—C18—C23—C220.9 (8)C10—N2—S2—C1890.8 (3)
S2—C18—C23—C22176.4 (4)C30—N2—S2—C1872.0 (4)
C21—C22—C23—C180.1 (8)C23—C18—S2—O635.0 (5)
N1—C25—C26—C27178.9 (4)C19—C18—S2—O6147.8 (4)
C25—C26—C27—N359.2 (7)C23—C18—S2—O5165.5 (4)
N3—C28—C29—C3064.1 (8)C19—C18—S2—O517.3 (5)
C28—C29—C30—N2157.2 (6)C23—C18—S2—N279.8 (4)
C26—C25—N1—C878.5 (5)C19—C18—S2—N297.4 (4)

Experimental details

Crystal data
Chemical formulaC31H39Br2N3O6S2
Mr773.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.7520 (9), 10.6864 (4), 19.9527 (9)
β (°) 121.416 (3)
V3)3412.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.60 × 0.52 × 0.37
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.260, 0.425
No. of measured, independent and
observed [I > 2σ(I)] reflections
24321, 7243, 4640
Rint0.049
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.152, 1.02
No. of reflections7243
No. of parameters409
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 1.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationCanales, J., Ramirez, J., Estiu, G. & Costamagna, J. (2000). Polyhedron, 19, 2373–2381.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFry, F. H., Graham, B., Spiccia, L., Hockles, D. C. R. & Tiekink, E. R. T. (1997). J. Chem. Soc., Dalton Trans. pp. 827–831.  Google Scholar
First citationHökelek, T., Ilter, E. E. & Kılıç, Z. (2004). Anal. Sci. 20, 69–70.  Web of Science PubMed Google Scholar
First citationHökelek, T., Kaya, E. E. & Kılıç, Z. (2001). Acta Cryst. E57, o309–o311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIşik, Ş., Öztürk, S., Fun, H.-K., Agar, E. & Şaşmaz, S. (1999). Acta Cryst. C55, 1850–1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoçak, M., Gürek, A., Gül, A. & Bekaroğlu, Ö. (1994). Eur. J. Inorg. Chem. 127, 355–358.  Google Scholar
First citationNotni, J., Görls, H. & Anders, E. (2006). Eur. J. Inorg. Chem. 7, 1444–1455.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishkina, S. V., Shishkina, O. V., Grygorash, R., Mazega, A. V., Rakipov, I. M., Yakshin, V. V., Kotlyar, S. A. & Gerbert, L. K. (2007). J. Mol. Struct. 832, 199–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, X., Luo, Q., Shen, M., Huang, X. & Wu, Q. (1997). Polyhedron, 6, 1301-1305.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds