metal-organic compounds
Bis[2-(cyclopropyliminomethyl)-5-methoxyphenolato]zinc(II)
aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: bailiming68@yahoo.com.cn
In the title complex, [Zn(C11H12NO2)2], the Zn2+ ion (site symmetry 2) is coordinated by two N,O-bidentate Schiff base ligands, generating a tetrahedral ZnO2N2 geometry for the metal ion.
Related literature
For background to zinc complexes with et al. (2008); Ali et al. (2004); Keypour et al. (2009); Osowole et al. (2008); Kulandaisamy & Thomas (2008). For related structures, see: Wei et al. (2007); Li & Zhang (2005); Parvez & Birdsall (1990); Cui et al. (2009).
see: MaximExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810013541/hb5404sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810013541/hb5404Isup2.hkl
2-Hydroxy-4-methoxybenzaldehyde (0.152 g, 1 mmol) and cyclopropylamine (0.057 g, 1 mmol) were mixed and refluxed in a methanol solution (50 ml) with stirring for 1 h. To the above solution was added a methanol solution (10 ml) of Zn(CH3COO)2.2H2O (0.110 g, 0.5 mmol). The mixture was stirred at reflux for another 1 h, and cooled to room temperature. After keeping the solution in air for a few days, colourless blocks of (I) were formed.
Hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances in the range 0.93-0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C).
Zinc complexes with
have attracted much attention in coordination chemistry and biological chemistry (Maxim et al., 2008; Ali et al., 2004; Keypour et al., 2009; Osowole et al., 2008; Kulandaisamy & Thomas, 2008). In the present paper, the title zinc(II) complex with the Schiff base 2-(cyclopropyliminomethyl)-5-methoxyphenol has been prepared and characterized by X-ray diffraction.The title zinc complex, Fig. 1, possesses crystallographic two-fold rotation axis symmetry. The Zn atom is coordinated by two phenolic oxygen and two imino N atoms from two Schiff base ligands, generating a tetrahedral geometry. The bond lengths and angles (Table 1) around the Zn atom are typical and comparable to those in other Schiff base zinc(II) complexes (Wei et al., 2007; Li & Zhang, 2005; Parvez & Birdsall, 1990; Cui et al., 2009).
For background to zinc complexes with
see: Maxim et al. (2008); Ali et al. (2004); Keypour et al. (2009); Osowole et al. (2008); Kulandaisamy & Thomas (2008). For related structures, see: Wei et al. (2007); Li & Zhang (2005); Parvez & Birdsall (1990); Cui et al. (2009).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Unlabeled atoms are at the symmetry position 1 - x, y, 3/2 - z. |
[Zn(C11H12NO2)2] | F(000) = 928 |
Mr = 445.80 | Dx = 1.390 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 1989 reflections |
a = 8.9646 (18) Å | θ = 2.7–24.5° |
b = 10.628 (2) Å | µ = 1.18 mm−1 |
c = 22.366 (4) Å | T = 298 K |
V = 2130.9 (7) Å3 | Block, colourless |
Z = 4 | 0.23 × 0.21 × 0.20 mm |
Bruker SMART CCD diffractometer | 2424 independent reflections |
Radiation source: fine-focus sealed tube | 1492 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→11 |
Tmin = 0.773, Tmax = 0.798 | k = −12→13 |
12146 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4149P] where P = (Fo2 + 2Fc2)/3 |
2424 reflections | (Δ/σ)max < 0.001 |
133 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Zn(C11H12NO2)2] | V = 2130.9 (7) Å3 |
Mr = 445.80 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 8.9646 (18) Å | µ = 1.18 mm−1 |
b = 10.628 (2) Å | T = 298 K |
c = 22.366 (4) Å | 0.23 × 0.21 × 0.20 mm |
Bruker SMART CCD diffractometer | 2424 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1492 reflections with I > 2σ(I) |
Tmin = 0.773, Tmax = 0.798 | Rint = 0.050 |
12146 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.43 e Å−3 |
2424 reflections | Δρmin = −0.31 e Å−3 |
133 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.55230 (4) | 0.7500 | 0.0614 (2) | |
N1 | 0.3162 (3) | 0.4471 (2) | 0.73578 (11) | 0.0623 (7) | |
O1 | 0.4246 (2) | 0.64630 (17) | 0.81662 (9) | 0.0670 (6) | |
O2 | 0.1210 (2) | 0.7046 (2) | 0.98928 (9) | 0.0731 (6) | |
C1 | 0.2075 (3) | 0.5152 (2) | 0.83071 (12) | 0.0514 (7) | |
C2 | 0.3079 (3) | 0.6121 (2) | 0.84814 (12) | 0.0516 (7) | |
C3 | 0.2785 (3) | 0.6755 (2) | 0.90190 (12) | 0.0552 (7) | |
H3 | 0.3418 | 0.7402 | 0.9139 | 0.066* | |
C4 | 0.1583 (3) | 0.6445 (3) | 0.93745 (12) | 0.0545 (7) | |
C5 | 0.0621 (4) | 0.5468 (3) | 0.92121 (13) | 0.0585 (7) | |
H5 | −0.0177 | 0.5243 | 0.9455 | 0.070* | |
C6 | 0.0882 (3) | 0.4853 (3) | 0.86889 (13) | 0.0569 (7) | |
H6 | 0.0240 | 0.4206 | 0.8579 | 0.068* | |
C7 | 0.2158 (4) | 0.4431 (2) | 0.77678 (15) | 0.0597 (7) | |
H7 | 0.1386 | 0.3860 | 0.7706 | 0.072* | |
C8 | 0.2943 (4) | 0.3637 (4) | 0.68479 (16) | 0.0864 (10) | |
H8 | 0.2062 | 0.3092 | 0.6868 | 0.104* | |
C9 | 0.4218 (5) | 0.3109 (5) | 0.6553 (2) | 0.1302 (19) | |
H9A | 0.4138 | 0.2255 | 0.6403 | 0.156* | |
H9B | 0.5198 | 0.3341 | 0.6700 | 0.156* | |
C10 | 0.3341 (6) | 0.4067 (5) | 0.6265 (2) | 0.1273 (17) | |
H10A | 0.3771 | 0.4901 | 0.6230 | 0.153* | |
H10B | 0.2711 | 0.3815 | 0.5933 | 0.153* | |
C11 | 0.1961 (5) | 0.8193 (3) | 1.00303 (15) | 0.0968 (12) | |
H11A | 0.3005 | 0.8029 | 1.0085 | 0.145* | |
H11B | 0.1555 | 0.8543 | 1.0391 | 0.145* | |
H11C | 0.1828 | 0.8778 | 0.9708 | 0.145* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0615 (4) | 0.0490 (3) | 0.0737 (4) | 0.000 | 0.0197 (2) | 0.000 |
N1 | 0.0615 (17) | 0.0554 (14) | 0.0701 (17) | 0.0017 (12) | 0.0063 (12) | −0.0116 (12) |
O1 | 0.0642 (13) | 0.0551 (11) | 0.0817 (14) | −0.0132 (10) | 0.0280 (11) | −0.0105 (10) |
O2 | 0.0773 (15) | 0.0828 (15) | 0.0593 (13) | −0.0106 (12) | 0.0155 (10) | −0.0056 (11) |
C1 | 0.0463 (16) | 0.0465 (14) | 0.0613 (17) | 0.0000 (12) | 0.0041 (13) | 0.0014 (13) |
C2 | 0.0491 (16) | 0.0423 (14) | 0.0636 (17) | 0.0024 (12) | 0.0075 (13) | 0.0035 (13) |
C3 | 0.0554 (17) | 0.0466 (15) | 0.0634 (17) | −0.0047 (13) | 0.0062 (13) | −0.0015 (13) |
C4 | 0.0557 (17) | 0.0542 (16) | 0.0537 (16) | 0.0038 (13) | 0.0006 (13) | 0.0056 (13) |
C5 | 0.0490 (16) | 0.0639 (18) | 0.0625 (18) | −0.0016 (14) | 0.0079 (14) | 0.0116 (15) |
C6 | 0.0468 (17) | 0.0561 (17) | 0.0677 (19) | −0.0050 (13) | 0.0014 (13) | 0.0055 (14) |
C7 | 0.0516 (18) | 0.0504 (16) | 0.0771 (19) | −0.0014 (14) | 0.0008 (16) | −0.0037 (15) |
C8 | 0.074 (2) | 0.102 (3) | 0.083 (2) | 0.007 (2) | 0.0097 (19) | −0.021 (2) |
C9 | 0.078 (3) | 0.156 (4) | 0.157 (4) | 0.030 (3) | −0.009 (3) | −0.095 (4) |
C10 | 0.127 (4) | 0.164 (5) | 0.091 (3) | −0.015 (4) | 0.004 (3) | −0.027 (3) |
C11 | 0.113 (3) | 0.097 (3) | 0.080 (3) | −0.024 (2) | 0.021 (2) | −0.031 (2) |
Zn1—O1 | 1.9169 (19) | C5—C6 | 1.360 (4) |
Zn1—O1i | 1.9169 (19) | C5—H5 | 0.9300 |
Zn1—N1i | 2.017 (3) | C6—H6 | 0.9300 |
Zn1—N1 | 2.017 (3) | C7—H7 | 0.9300 |
N1—C7 | 1.286 (4) | C8—C10 | 1.427 (5) |
N1—C8 | 1.458 (4) | C8—C9 | 1.434 (5) |
O1—C2 | 1.313 (3) | C8—H8 | 0.9800 |
O2—C4 | 1.366 (3) | C9—C10 | 1.439 (7) |
O2—C11 | 1.426 (4) | C9—H9A | 0.9700 |
C1—C6 | 1.405 (4) | C9—H9B | 0.9700 |
C1—C2 | 1.422 (4) | C10—H10A | 0.9700 |
C1—C7 | 1.431 (4) | C10—H10B | 0.9700 |
C2—C3 | 1.403 (4) | C11—H11A | 0.9600 |
C3—C4 | 1.380 (4) | C11—H11B | 0.9600 |
C3—H3 | 0.9300 | C11—H11C | 0.9600 |
C4—C5 | 1.398 (4) | ||
O1—Zn1—O1i | 117.19 (11) | C1—C6—H6 | 118.5 |
O1—Zn1—N1i | 117.02 (10) | N1—C7—C1 | 128.3 (3) |
O1i—Zn1—N1i | 97.10 (9) | N1—C7—H7 | 115.9 |
O1—Zn1—N1 | 97.10 (9) | C1—C7—H7 | 115.9 |
O1i—Zn1—N1 | 117.02 (10) | C10—C8—C9 | 60.4 (3) |
N1i—Zn1—N1 | 112.64 (14) | C10—C8—N1 | 119.1 (4) |
C7—N1—C8 | 116.3 (3) | C9—C8—N1 | 119.4 (3) |
C7—N1—Zn1 | 118.6 (2) | C10—C8—H8 | 115.6 |
C8—N1—Zn1 | 124.8 (2) | C9—C8—H8 | 115.6 |
C2—O1—Zn1 | 123.65 (17) | N1—C8—H8 | 115.6 |
C4—O2—C11 | 117.9 (2) | C8—C9—C10 | 59.6 (3) |
C6—C1—C2 | 118.6 (3) | C8—C9—H9A | 117.8 |
C6—C1—C7 | 115.5 (3) | C10—C9—H9A | 117.8 |
C2—C1—C7 | 125.9 (3) | C8—C9—H9B | 117.8 |
O1—C2—C3 | 118.5 (2) | C10—C9—H9B | 117.8 |
O1—C2—C1 | 123.9 (2) | H9A—C9—H9B | 115.0 |
C3—C2—C1 | 117.7 (2) | C8—C10—C9 | 60.0 (3) |
C4—C3—C2 | 121.7 (3) | C8—C10—H10A | 117.8 |
C4—C3—H3 | 119.1 | C9—C10—H10A | 117.8 |
C2—C3—H3 | 119.1 | C8—C10—H10B | 117.8 |
O2—C4—C3 | 124.7 (3) | C9—C10—H10B | 117.8 |
O2—C4—C5 | 114.7 (3) | H10A—C10—H10B | 114.9 |
C3—C4—C5 | 120.7 (3) | O2—C11—H11A | 109.5 |
C6—C5—C4 | 118.3 (3) | O2—C11—H11B | 109.5 |
C6—C5—H5 | 120.8 | H11A—C11—H11B | 109.5 |
C4—C5—H5 | 120.8 | O2—C11—H11C | 109.5 |
C5—C6—C1 | 123.1 (3) | H11A—C11—H11C | 109.5 |
C5—C6—H6 | 118.5 | H11B—C11—H11C | 109.5 |
Symmetry code: (i) −x+1, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C11H12NO2)2] |
Mr | 445.80 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 298 |
a, b, c (Å) | 8.9646 (18), 10.628 (2), 22.366 (4) |
V (Å3) | 2130.9 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.18 |
Crystal size (mm) | 0.23 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.773, 0.798 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12146, 2424, 1492 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.126, 1.02 |
No. of reflections | 2424 |
No. of parameters | 133 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.31 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Zn1—O1 | 1.9169 (19) | Zn1—N1 | 2.017 (3) |
O1—Zn1—O1i | 117.19 (11) | O1—Zn1—N1 | 97.10 (9) |
O1—Zn1—N1i | 117.02 (10) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Acknowledgements
The author acknowledges Qiqihar University for funding this work.
References
Ali, M. A., Mirza, A. H. & Fong, G. A. (2004). Transition Met. Chem. 29, 613–619. Web of Science CrossRef CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, Y.-M., Zhang, X., Liu, L. & Wang, Q. (2009). Acta Cryst. E65, m1151. Web of Science CSD CrossRef IUCr Journals Google Scholar
Keypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Mahmoudkhani, A. H. (2009). Polyhedron, 28, 3415–3418. Web of Science CSD CrossRef CAS Google Scholar
Kulandaisamy, A. & Thomas, M. (2008). Pol. J. Chem. 82, 469–480. CAS Google Scholar
Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, m1755–m1756. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maxim, C., Pasatoiu, T. D., Kravtsov, V. C., Shova, S., Muryn, C. A., Winpenny, R. E. P., Tuna, F. & Andruh, M. (2008). Inorg. Chim. Acta, 361, 14–15. Web of Science CSD CrossRef Google Scholar
Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046–1055. Web of Science CrossRef CAS Google Scholar
Parvez, M. & Birdsall, W. J. (1990). Acta Cryst. C46, 1434–1437. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Zinc complexes with Schiff bases have attracted much attention in coordination chemistry and biological chemistry (Maxim et al., 2008; Ali et al., 2004; Keypour et al., 2009; Osowole et al., 2008; Kulandaisamy & Thomas, 2008). In the present paper, the title zinc(II) complex with the Schiff base 2-(cyclopropyliminomethyl)-5-methoxyphenol has been prepared and characterized by X-ray diffraction.
The title zinc complex, Fig. 1, possesses crystallographic two-fold rotation axis symmetry. The Zn atom is coordinated by two phenolic oxygen and two imino N atoms from two Schiff base ligands, generating a tetrahedral geometry. The bond lengths and angles (Table 1) around the Zn atom are typical and comparable to those in other Schiff base zinc(II) complexes (Wei et al., 2007; Li & Zhang, 2005; Parvez & Birdsall, 1990; Cui et al., 2009).