metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(cyclo­propyl­imino­meth­yl)-5-meth­oxy­phenolato]zinc(II)

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: bailiming68@yahoo.com.cn

(Received 12 April 2010; accepted 12 April 2010; online 17 April 2010)

In the title complex, [Zn(C11H12NO2)2], the Zn2+ ion (site symmetry 2) is coordinated by two N,O-bidentate Schiff base ligands, generating a tetra­hedral ZnO2N2 geometry for the metal ion.

Related literature

For background to zinc complexes with Schiff bases, see: Maxim et al. (2008[Maxim, C., Pasatoiu, T. D., Kravtsov, V. C., Shova, S., Muryn, C. A., Winpenny, R. E. P., Tuna, F. & Andruh, M. (2008). Inorg. Chim. Acta, 361, 14-15.]); Ali et al. (2004[Ali, M. A., Mirza, A. H. & Fong, G. A. (2004). Transition Met. Chem. 29, 613-619.]); Keypour et al. (2009[Keypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Mahmoudkhani, A. H. (2009). Polyhedron, 28, 3415-3418.]); Osowole et al. (2008[Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046-1055.]); Kulandaisamy & Thomas (2008[Kulandaisamy, A. & Thomas, M. (2008). Pol. J. Chem. 82, 469-480.]). For related structures, see: Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.]); Li & Zhang (2005[Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, m1755-m1756.]); Parvez & Birdsall (1990[Parvez, M. & Birdsall, W. J. (1990). Acta Cryst. C46, 1434-1437.]); Cui et al. (2009[Cui, Y.-M., Zhang, X., Liu, L. & Wang, Q. (2009). Acta Cryst. E65, m1151.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H12NO2)2]

  • Mr = 445.80

  • Orthorhombic, P b c n

  • a = 8.9646 (18) Å

  • b = 10.628 (2) Å

  • c = 22.366 (4) Å

  • V = 2130.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.773, Tmax = 0.798

  • 12146 measured reflections

  • 2424 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.02

  • 2424 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9169 (19)
Zn1—N1 2.017 (3)
O1—Zn1—O1i 117.19 (11)
O1—Zn1—N1i 117.02 (10)
O1—Zn1—N1 97.10 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc complexes with Schiff bases have attracted much attention in coordination chemistry and biological chemistry (Maxim et al., 2008; Ali et al., 2004; Keypour et al., 2009; Osowole et al., 2008; Kulandaisamy & Thomas, 2008). In the present paper, the title zinc(II) complex with the Schiff base 2-(cyclopropyliminomethyl)-5-methoxyphenol has been prepared and characterized by X-ray diffraction.

The title zinc complex, Fig. 1, possesses crystallographic two-fold rotation axis symmetry. The Zn atom is coordinated by two phenolic oxygen and two imino N atoms from two Schiff base ligands, generating a tetrahedral geometry. The bond lengths and angles (Table 1) around the Zn atom are typical and comparable to those in other Schiff base zinc(II) complexes (Wei et al., 2007; Li & Zhang, 2005; Parvez & Birdsall, 1990; Cui et al., 2009).

Related literature top

For background to zinc complexes with Schiff bases, see: Maxim et al. (2008); Ali et al. (2004); Keypour et al. (2009); Osowole et al. (2008); Kulandaisamy & Thomas (2008). For related structures, see: Wei et al. (2007); Li & Zhang (2005); Parvez & Birdsall (1990); Cui et al. (2009).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (0.152 g, 1 mmol) and cyclopropylamine (0.057 g, 1 mmol) were mixed and refluxed in a methanol solution (50 ml) with stirring for 1 h. To the above solution was added a methanol solution (10 ml) of Zn(CH3COO)2.2H2O (0.110 g, 0.5 mmol). The mixture was stirred at reflux for another 1 h, and cooled to room temperature. After keeping the solution in air for a few days, colourless blocks of (I) were formed.

Refinement top

Hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances in the range 0.93-0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C).

Structure description top

Zinc complexes with Schiff bases have attracted much attention in coordination chemistry and biological chemistry (Maxim et al., 2008; Ali et al., 2004; Keypour et al., 2009; Osowole et al., 2008; Kulandaisamy & Thomas, 2008). In the present paper, the title zinc(II) complex with the Schiff base 2-(cyclopropyliminomethyl)-5-methoxyphenol has been prepared and characterized by X-ray diffraction.

The title zinc complex, Fig. 1, possesses crystallographic two-fold rotation axis symmetry. The Zn atom is coordinated by two phenolic oxygen and two imino N atoms from two Schiff base ligands, generating a tetrahedral geometry. The bond lengths and angles (Table 1) around the Zn atom are typical and comparable to those in other Schiff base zinc(II) complexes (Wei et al., 2007; Li & Zhang, 2005; Parvez & Birdsall, 1990; Cui et al., 2009).

For background to zinc complexes with Schiff bases, see: Maxim et al. (2008); Ali et al. (2004); Keypour et al. (2009); Osowole et al. (2008); Kulandaisamy & Thomas (2008). For related structures, see: Wei et al. (2007); Li & Zhang (2005); Parvez & Birdsall (1990); Cui et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Unlabeled atoms are at the symmetry position 1 - x, y, 3/2 - z.
Bis[2-(cyclopropyliminomethyl)-5-methoxyphenolato]zinc(II) top
Crystal data top
[Zn(C11H12NO2)2]F(000) = 928
Mr = 445.80Dx = 1.390 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1989 reflections
a = 8.9646 (18) Åθ = 2.7–24.5°
b = 10.628 (2) ŵ = 1.18 mm1
c = 22.366 (4) ÅT = 298 K
V = 2130.9 (7) Å3Block, colourless
Z = 40.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2424 independent reflections
Radiation source: fine-focus sealed tube1492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 711
Tmin = 0.773, Tmax = 0.798k = 1213
12146 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4149P]
where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C11H12NO2)2]V = 2130.9 (7) Å3
Mr = 445.80Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 8.9646 (18) ŵ = 1.18 mm1
b = 10.628 (2) ÅT = 298 K
c = 22.366 (4) Å0.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2424 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1492 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.798Rint = 0.050
12146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
2424 reflectionsΔρmin = 0.31 e Å3
133 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.55230 (4)0.75000.0614 (2)
N10.3162 (3)0.4471 (2)0.73578 (11)0.0623 (7)
O10.4246 (2)0.64630 (17)0.81662 (9)0.0670 (6)
O20.1210 (2)0.7046 (2)0.98928 (9)0.0731 (6)
C10.2075 (3)0.5152 (2)0.83071 (12)0.0514 (7)
C20.3079 (3)0.6121 (2)0.84814 (12)0.0516 (7)
C30.2785 (3)0.6755 (2)0.90190 (12)0.0552 (7)
H30.34180.74020.91390.066*
C40.1583 (3)0.6445 (3)0.93745 (12)0.0545 (7)
C50.0621 (4)0.5468 (3)0.92121 (13)0.0585 (7)
H50.01770.52430.94550.070*
C60.0882 (3)0.4853 (3)0.86889 (13)0.0569 (7)
H60.02400.42060.85790.068*
C70.2158 (4)0.4431 (2)0.77678 (15)0.0597 (7)
H70.13860.38600.77060.072*
C80.2943 (4)0.3637 (4)0.68479 (16)0.0864 (10)
H80.20620.30920.68680.104*
C90.4218 (5)0.3109 (5)0.6553 (2)0.1302 (19)
H9A0.41380.22550.64030.156*
H9B0.51980.33410.67000.156*
C100.3341 (6)0.4067 (5)0.6265 (2)0.1273 (17)
H10A0.37710.49010.62300.153*
H10B0.27110.38150.59330.153*
C110.1961 (5)0.8193 (3)1.00303 (15)0.0968 (12)
H11A0.30050.80291.00850.145*
H11B0.15550.85431.03910.145*
H11C0.18280.87780.97080.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0615 (4)0.0490 (3)0.0737 (4)0.0000.0197 (2)0.000
N10.0615 (17)0.0554 (14)0.0701 (17)0.0017 (12)0.0063 (12)0.0116 (12)
O10.0642 (13)0.0551 (11)0.0817 (14)0.0132 (10)0.0280 (11)0.0105 (10)
O20.0773 (15)0.0828 (15)0.0593 (13)0.0106 (12)0.0155 (10)0.0056 (11)
C10.0463 (16)0.0465 (14)0.0613 (17)0.0000 (12)0.0041 (13)0.0014 (13)
C20.0491 (16)0.0423 (14)0.0636 (17)0.0024 (12)0.0075 (13)0.0035 (13)
C30.0554 (17)0.0466 (15)0.0634 (17)0.0047 (13)0.0062 (13)0.0015 (13)
C40.0557 (17)0.0542 (16)0.0537 (16)0.0038 (13)0.0006 (13)0.0056 (13)
C50.0490 (16)0.0639 (18)0.0625 (18)0.0016 (14)0.0079 (14)0.0116 (15)
C60.0468 (17)0.0561 (17)0.0677 (19)0.0050 (13)0.0014 (13)0.0055 (14)
C70.0516 (18)0.0504 (16)0.0771 (19)0.0014 (14)0.0008 (16)0.0037 (15)
C80.074 (2)0.102 (3)0.083 (2)0.007 (2)0.0097 (19)0.021 (2)
C90.078 (3)0.156 (4)0.157 (4)0.030 (3)0.009 (3)0.095 (4)
C100.127 (4)0.164 (5)0.091 (3)0.015 (4)0.004 (3)0.027 (3)
C110.113 (3)0.097 (3)0.080 (3)0.024 (2)0.021 (2)0.031 (2)
Geometric parameters (Å, º) top
Zn1—O11.9169 (19)C5—C61.360 (4)
Zn1—O1i1.9169 (19)C5—H50.9300
Zn1—N1i2.017 (3)C6—H60.9300
Zn1—N12.017 (3)C7—H70.9300
N1—C71.286 (4)C8—C101.427 (5)
N1—C81.458 (4)C8—C91.434 (5)
O1—C21.313 (3)C8—H80.9800
O2—C41.366 (3)C9—C101.439 (7)
O2—C111.426 (4)C9—H9A0.9700
C1—C61.405 (4)C9—H9B0.9700
C1—C21.422 (4)C10—H10A0.9700
C1—C71.431 (4)C10—H10B0.9700
C2—C31.403 (4)C11—H11A0.9600
C3—C41.380 (4)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.398 (4)
O1—Zn1—O1i117.19 (11)C1—C6—H6118.5
O1—Zn1—N1i117.02 (10)N1—C7—C1128.3 (3)
O1i—Zn1—N1i97.10 (9)N1—C7—H7115.9
O1—Zn1—N197.10 (9)C1—C7—H7115.9
O1i—Zn1—N1117.02 (10)C10—C8—C960.4 (3)
N1i—Zn1—N1112.64 (14)C10—C8—N1119.1 (4)
C7—N1—C8116.3 (3)C9—C8—N1119.4 (3)
C7—N1—Zn1118.6 (2)C10—C8—H8115.6
C8—N1—Zn1124.8 (2)C9—C8—H8115.6
C2—O1—Zn1123.65 (17)N1—C8—H8115.6
C4—O2—C11117.9 (2)C8—C9—C1059.6 (3)
C6—C1—C2118.6 (3)C8—C9—H9A117.8
C6—C1—C7115.5 (3)C10—C9—H9A117.8
C2—C1—C7125.9 (3)C8—C9—H9B117.8
O1—C2—C3118.5 (2)C10—C9—H9B117.8
O1—C2—C1123.9 (2)H9A—C9—H9B115.0
C3—C2—C1117.7 (2)C8—C10—C960.0 (3)
C4—C3—C2121.7 (3)C8—C10—H10A117.8
C4—C3—H3119.1C9—C10—H10A117.8
C2—C3—H3119.1C8—C10—H10B117.8
O2—C4—C3124.7 (3)C9—C10—H10B117.8
O2—C4—C5114.7 (3)H10A—C10—H10B114.9
C3—C4—C5120.7 (3)O2—C11—H11A109.5
C6—C5—C4118.3 (3)O2—C11—H11B109.5
C6—C5—H5120.8H11A—C11—H11B109.5
C4—C5—H5120.8O2—C11—H11C109.5
C5—C6—C1123.1 (3)H11A—C11—H11C109.5
C5—C6—H6118.5H11B—C11—H11C109.5
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C11H12NO2)2]
Mr445.80
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)8.9646 (18), 10.628 (2), 22.366 (4)
V3)2130.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.773, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
12146, 2424, 1492
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.02
No. of reflections2424
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.9169 (19)Zn1—N12.017 (3)
O1—Zn1—O1i117.19 (11)O1—Zn1—N197.10 (9)
O1—Zn1—N1i117.02 (10)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

The author acknowledges Qiqihar University for funding this work.

References

First citationAli, M. A., Mirza, A. H. & Fong, G. A. (2004). Transition Met. Chem. 29, 613–619.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y.-M., Zhang, X., Liu, L. & Wang, Q. (2009). Acta Cryst. E65, m1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKeypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Mahmoudkhani, A. H. (2009). Polyhedron, 28, 3415–3418.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulandaisamy, A. & Thomas, M. (2008). Pol. J. Chem. 82, 469–480.  CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, m1755–m1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaxim, C., Pasatoiu, T. D., Kravtsov, V. C., Shova, S., Muryn, C. A., Winpenny, R. E. P., Tuna, F. & Andruh, M. (2008). Inorg. Chim. Acta, 361, 14–15.  Web of Science CSD CrossRef Google Scholar
First citationOsowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046–1055.  Web of Science CrossRef CAS Google Scholar
First citationParvez, M. & Birdsall, W. J. (1990). Acta Cryst. C46, 1434–1437.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds