metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­methyl­formamide-κO)[2-meth­­oxy-6-(2-pyridylmethyl­imino­meth­yl)phenolato-κ3N,N′,O1](thio­cyanato-κN)copper(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 16 April 2010; accepted 18 April 2010; online 24 April 2010)

In the title compound, [Cu(C14H13N2O2)(NCS)(C3H7NO)], the Cu2+ ion is coordinated by an N,N′,O-tridentate 2-meth­oxy-6-(2-pyridylmethyl­imino­meth­yl)phenolate ligand, an N-bonded thio­cyanate ion and an O-bonded dimethyl­formamide (DMF) mol­ecule, resulting in a distorted CuN3O2 square-based pyramidal geometry for the metal ion, with the DMF O atom in the apical site. The dihedral angle between the aromatic rings in the ligand is 8.70 (16)°. The S atom is disordered over two positions in a 0.901 (6):0.099 (6) ratio. In the crystal, mol­ecules inter­act by way of ππ stacking inter­actions [centroid–centroid separation = 3.720 (2) Å].

Related literature

For the synthesis, see: Pointeau et al. (1986[Pointeau, P., Patin, H., Mousser, A. & le Marouile, J.-Y. (1986). J. Organomet. Chem. 312, 263-276.]). For related structures, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H13N2O2)(NCS)(C3H7NO)]

  • Mr = 435.98

  • Triclinic, [P \overline 1]

  • a = 8.6768 (9) Å

  • b = 10.9310 (11) Å

  • c = 11.0689 (12) Å

  • α = 83.251 (2)°

  • β = 72.023 (1)°

  • γ = 79.530 (1)°

  • V = 979.84 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 298 K

  • 0.20 × 0.12 × 0.09 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.737, Tmax = 0.868

  • 5129 measured reflections

  • 3392 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.09

  • 3392 reflections

  • 251 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.905 (2)
Cu1—N1 1.942 (2)
Cu1—N3 1.971 (3)
Cu1—N2 2.012 (2)
Cu1—O3 2.392 (2)
O1—Cu1—N1 92.88 (9)
O1—Cu1—N3 90.19 (9)
N1—Cu1—N3 168.56 (9)
O1—Cu1—N2 173.84 (9)
N1—Cu1—N2 82.13 (10)
N3—Cu1—N2 94.01 (10)
O1—Cu1—O3 93.96 (8)
N1—Cu1—O3 96.07 (8)
N3—Cu1—O3 94.71 (9)
N2—Cu1—O3 90.18 (8)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For the synthesis, see: Pointeau et al. (1986). For related structures, see: Li & Zhang (2004); You & Zhu (2004).

Experimental top

3-Methoxysalicylaldehyde (0.0152 g, 0.1 mmol) dissolved in methanol (5 ml) was added to a methanol solution (5 ml) of 2-aminopyridine (0.0108 g, 0.1 mmol) with slowly stirring. The resulting yellow solution was continuously stirred for about 1 h, then CuCl2.2H2O (0.017 g, 0.1 mmol) in 5 ml water and potassium thiocyanate (0.019 g, 0.2 mmol) in 2 ml methanol were added with stirring. The precipitate was collected by filtration, dissolved with N,N-dimethyllformamide. Brown prisms of (I) were obtained by slow evaporation at room temperature over several days.

Refinement top

H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.94Å and Uiso(H) =1.2Ueq(C).

Structure description top

For the synthesis, see: Pointeau et al. (1986). For related structures, see: Li & Zhang (2004); You & Zhu (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
(Dimethylformamide-κO)[2-methoxy-6-(2- pyridylmethyliminomethyl)phenolato- κ3N,N,O1](thiocyanato-κN)copper(II) top
Crystal data top
[Cu(C14H13N2O2)(NCS)(C3H7NO)]Z = 2
Mr = 435.98F(000) = 450
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6768 (9) ÅCell parameters from 13380 reflections
b = 10.9310 (11) Åθ = 3.0–27.6°
c = 11.0689 (12) ŵ = 1.25 mm1
α = 83.251 (2)°T = 298 K
β = 72.023 (1)°Prism, dark brown
γ = 79.530 (1)°0.20 × 0.12 × 0.09 mm
V = 979.84 (18) Å3
Data collection top
Rigaku SCXmini
diffractometer
3392 independent reflections
Radiation source: fine-focus sealed tube2679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.9°
Thin–slice ω scansh = 910
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 137
Tmin = 0.737, Tmax = 0.868l = 1213
5129 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.039P)2 + 0.2715P]
where P = (Fo2 + 2Fc2)/3
3392 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C14H13N2O2)(NCS)(C3H7NO)]γ = 79.530 (1)°
Mr = 435.98V = 979.84 (18) Å3
Triclinic, P1Z = 2
a = 8.6768 (9) ÅMo Kα radiation
b = 10.9310 (11) ŵ = 1.25 mm1
c = 11.0689 (12) ÅT = 298 K
α = 83.251 (2)°0.20 × 0.12 × 0.09 mm
β = 72.023 (1)°
Data collection top
Rigaku SCXmini
diffractometer
3392 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2679 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.868Rint = 0.016
5129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
3392 reflectionsΔρmin = 0.37 e Å3
251 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.63382 (4)0.88140 (3)0.58156 (3)0.03823 (14)
S10.1914 (3)0.73555 (19)0.89276 (15)0.0641 (6)0.901 (6)
S1'0.255 (2)0.6960 (16)0.9198 (14)0.0641 (6)0.099 (6)
N10.7507 (3)0.9830 (2)0.4385 (2)0.0367 (5)
N20.6888 (3)1.0010 (2)0.6814 (2)0.0386 (6)
N30.4812 (3)0.8079 (2)0.7321 (2)0.0450 (6)
N40.9692 (3)0.5684 (2)0.7084 (3)0.0512 (7)
O10.5788 (2)0.78300 (18)0.47433 (19)0.0442 (5)
O20.4899 (3)0.61550 (19)0.3729 (2)0.0514 (6)
O30.8691 (3)0.73557 (19)0.5981 (2)0.0545 (6)
C10.7883 (3)0.9606 (3)0.3205 (3)0.0405 (7)
H10.85351.01230.26180.049*
C20.7394 (3)0.8639 (3)0.2710 (3)0.0385 (7)
C30.6353 (3)0.7818 (3)0.3508 (3)0.0385 (7)
C40.5880 (4)0.6919 (3)0.2902 (3)0.0430 (7)
C50.6418 (4)0.6871 (3)0.1600 (3)0.0514 (8)
H50.60840.62910.12230.062*
C60.7457 (4)0.7678 (3)0.0834 (3)0.0575 (9)
H60.78180.76280.00440.069*
C70.7939 (4)0.8537 (3)0.1377 (3)0.0507 (8)
H70.86390.90660.08630.061*
C80.4532 (5)0.5136 (3)0.3227 (4)0.0697 (11)
H8A0.37920.54450.27320.105*
H8B0.40320.45790.39140.105*
H8C0.55260.46980.26960.105*
C90.8024 (4)1.0923 (3)0.4699 (3)0.0417 (7)
H9A0.73971.16770.44330.050*
H9B0.91751.09360.42520.050*
C100.7757 (3)1.0878 (3)0.6111 (3)0.0388 (7)
C110.8352 (4)1.1694 (3)0.6660 (3)0.0479 (8)
H110.89731.22770.61550.058*
C120.8012 (4)1.1628 (3)0.7959 (3)0.0525 (8)
H120.83931.21730.83450.063*
C130.7099 (4)1.0746 (3)0.8691 (3)0.0550 (9)
H130.68501.06920.95730.066*
C140.6569 (4)0.9956 (3)0.8089 (3)0.0496 (8)
H140.59640.93560.85790.059*
C150.3643 (4)0.7751 (3)0.7999 (3)0.0399 (7)
C160.8581 (4)0.6634 (3)0.6928 (3)0.0490 (8)
H160.76230.67690.75990.059*
C170.9490 (5)0.4915 (4)0.8262 (4)0.0790 (12)
H17A1.02810.50390.86620.118*
H17B0.96490.40550.80870.118*
H17C0.84050.51420.88200.118*
C181.1236 (5)0.5440 (4)0.6098 (4)0.0901 (14)
H18A1.11350.58660.53100.135*
H18B1.15220.45590.59960.135*
H18C1.20770.57310.63330.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0348 (2)0.0348 (2)0.0399 (2)0.00972 (15)0.00338 (15)0.00433 (15)
S10.0534 (10)0.0732 (10)0.0568 (7)0.0317 (8)0.0074 (7)0.0010 (6)
S1'0.0534 (10)0.0732 (10)0.0568 (7)0.0317 (8)0.0074 (7)0.0010 (6)
N10.0332 (13)0.0317 (13)0.0418 (15)0.0070 (10)0.0076 (11)0.0055 (10)
N20.0333 (13)0.0359 (14)0.0412 (15)0.0073 (10)0.0041 (11)0.0034 (11)
N30.0414 (14)0.0411 (15)0.0473 (16)0.0123 (12)0.0039 (13)0.0023 (12)
N40.0492 (16)0.0414 (16)0.0636 (18)0.0062 (13)0.0228 (14)0.0096 (13)
O10.0451 (12)0.0429 (12)0.0410 (13)0.0173 (9)0.0029 (10)0.0004 (9)
O20.0515 (13)0.0434 (13)0.0574 (14)0.0159 (10)0.0072 (11)0.0065 (10)
O30.0445 (13)0.0485 (14)0.0601 (15)0.0008 (10)0.0118 (11)0.0156 (11)
C10.0311 (15)0.0377 (17)0.0450 (19)0.0043 (13)0.0058 (13)0.0120 (13)
C20.0321 (15)0.0351 (16)0.0425 (18)0.0011 (12)0.0070 (13)0.0034 (13)
C30.0310 (15)0.0325 (16)0.0461 (19)0.0040 (12)0.0092 (13)0.0006 (13)
C40.0359 (16)0.0380 (17)0.052 (2)0.0006 (13)0.0120 (14)0.0023 (14)
C50.052 (2)0.050 (2)0.054 (2)0.0060 (16)0.0167 (17)0.0080 (16)
C60.065 (2)0.063 (2)0.0405 (19)0.0064 (18)0.0121 (17)0.0028 (16)
C70.0478 (19)0.054 (2)0.0447 (19)0.0083 (15)0.0085 (15)0.0073 (15)
C80.071 (2)0.055 (2)0.084 (3)0.0228 (19)0.012 (2)0.021 (2)
C90.0393 (16)0.0373 (17)0.0471 (19)0.0141 (13)0.0109 (14)0.0100 (13)
C100.0282 (14)0.0326 (16)0.0502 (19)0.0010 (12)0.0074 (13)0.0014 (13)
C110.0413 (17)0.0449 (19)0.056 (2)0.0119 (14)0.0129 (15)0.0064 (15)
C120.052 (2)0.050 (2)0.060 (2)0.0109 (16)0.0202 (17)0.0063 (16)
C130.059 (2)0.058 (2)0.046 (2)0.0076 (17)0.0131 (17)0.0038 (16)
C140.0510 (19)0.0473 (19)0.047 (2)0.0154 (15)0.0074 (16)0.0042 (15)
C150.0478 (18)0.0331 (16)0.0367 (17)0.0109 (14)0.0066 (15)0.0022 (13)
C160.0421 (18)0.0425 (19)0.059 (2)0.0060 (15)0.0104 (16)0.0016 (16)
C170.090 (3)0.068 (3)0.080 (3)0.016 (2)0.039 (2)0.032 (2)
C180.061 (2)0.090 (3)0.092 (3)0.024 (2)0.012 (2)0.016 (2)
Geometric parameters (Å, º) top
Cu1—O11.905 (2)C5—H50.9300
Cu1—N11.942 (2)C6—C71.358 (5)
Cu1—N31.971 (3)C6—H60.9300
Cu1—N22.012 (2)C7—H70.9300
Cu1—O32.392 (2)C8—H8A0.9600
S1—C151.635 (3)C8—H8B0.9600
S1'—C151.633 (13)C8—H8C0.9600
N1—C11.287 (4)C9—C101.504 (4)
N1—C91.463 (3)C9—H9A0.9700
N2—C101.342 (4)C9—H9B0.9700
N2—C141.347 (4)C10—C111.385 (4)
N3—C151.149 (4)C11—C121.372 (4)
N4—C161.317 (4)C11—H110.9300
N4—C181.447 (5)C12—C131.383 (4)
N4—C171.447 (4)C12—H120.9300
O1—C31.304 (3)C13—C141.368 (4)
O2—C41.364 (4)C13—H130.9300
O2—C81.426 (4)C14—H140.9300
O3—C161.225 (4)C16—H160.9300
C1—C21.427 (4)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C71.416 (4)C17—H17C0.9600
C2—C31.420 (4)C18—H18A0.9600
C3—C41.433 (4)C18—H18B0.9600
C4—C51.375 (4)C18—H18C0.9600
C5—C61.397 (5)
O1—Cu1—N192.88 (9)O2—C8—H8B109.5
O1—Cu1—N390.19 (9)H8A—C8—H8B109.5
N1—Cu1—N3168.56 (9)O2—C8—H8C109.5
O1—Cu1—N2173.84 (9)H8A—C8—H8C109.5
N1—Cu1—N282.13 (10)H8B—C8—H8C109.5
N3—Cu1—N294.01 (10)N1—C9—C10109.5 (2)
O1—Cu1—O393.96 (8)N1—C9—H9A109.8
N1—Cu1—O396.07 (8)C10—C9—H9A109.8
N3—Cu1—O394.71 (9)N1—C9—H9B109.8
N2—Cu1—O390.18 (8)C10—C9—H9B109.8
C1—N1—C9118.2 (2)H9A—C9—H9B108.2
C1—N1—Cu1125.6 (2)N2—C10—C11121.8 (3)
C9—N1—Cu1116.20 (18)N2—C10—C9116.1 (3)
C10—N2—C14118.4 (3)C11—C10—C9122.2 (3)
C10—N2—Cu1115.2 (2)C12—C11—C10119.0 (3)
C14—N2—Cu1126.2 (2)C12—C11—H11120.5
C15—N3—Cu1161.4 (3)C10—C11—H11120.5
C16—N4—C18120.1 (3)C11—C12—C13119.5 (3)
C16—N4—C17122.3 (3)C11—C12—H12120.2
C18—N4—C17117.5 (3)C13—C12—H12120.2
C3—O1—Cu1127.30 (19)C14—C13—C12118.5 (3)
C4—O2—C8117.7 (3)C14—C13—H13120.7
C16—O3—Cu1119.2 (2)C12—C13—H13120.7
N1—C1—C2126.2 (3)N2—C14—C13122.7 (3)
N1—C1—H1116.9N2—C14—H14118.6
C2—C1—H1116.9C13—C14—H14118.6
C7—C2—C3119.9 (3)N3—C15—S1'156.9 (9)
C7—C2—C1118.0 (3)N3—C15—S1176.5 (3)
C3—C2—C1122.1 (3)S1'—C15—S126.5 (8)
O1—C3—C2124.9 (3)O3—C16—N4126.1 (3)
O1—C3—C4117.8 (3)O3—C16—H16116.9
C2—C3—C4117.3 (3)N4—C16—H16116.9
O2—C4—C5125.5 (3)N4—C17—H17A109.5
O2—C4—C3113.9 (3)N4—C17—H17B109.5
C5—C4—C3120.6 (3)H17A—C17—H17B109.5
C4—C5—C6121.2 (3)N4—C17—H17C109.5
C4—C5—H5119.4H17A—C17—H17C109.5
C6—C5—H5119.4H17B—C17—H17C109.5
C7—C6—C5119.8 (3)N4—C18—H18A109.5
C7—C6—H6120.1N4—C18—H18B109.5
C5—C6—H6120.1H18A—C18—H18B109.5
C6—C7—C2121.2 (3)N4—C18—H18C109.5
C6—C7—H7119.4H18A—C18—H18C109.5
C2—C7—H7119.4H18B—C18—H18C109.5
O2—C8—H8A109.5

Experimental details

Crystal data
Chemical formula[Cu(C14H13N2O2)(NCS)(C3H7NO)]
Mr435.98
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6768 (9), 10.9310 (11), 11.0689 (12)
α, β, γ (°)83.251 (2), 72.023 (1), 79.530 (1)
V3)979.84 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.20 × 0.12 × 0.09
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.737, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
5129, 3392, 2679
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.09
No. of reflections3392
No. of parameters251
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.905 (2)Cu1—N22.012 (2)
Cu1—N11.942 (2)Cu1—O32.392 (2)
Cu1—N31.971 (3)
O1—Cu1—N192.88 (9)N3—Cu1—N294.01 (10)
O1—Cu1—N390.19 (9)O1—Cu1—O393.96 (8)
N1—Cu1—N3168.56 (9)N1—Cu1—O396.07 (8)
O1—Cu1—N2173.84 (9)N3—Cu1—O394.71 (9)
N1—Cu1—N282.13 (10)N2—Cu1—O390.18 (8)
 

References

First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPointeau, P., Patin, H., Mousser, A. & le Marouile, J.-Y. (1986). J. Organomet. Chem. 312, 263–276.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754–2760.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds