metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)zinc(II) propane-1,3-diol solvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 17 April 2010; accepted 18 April 2010; online 24 April 2010)

In the title compound, [Zn(SO4)(C12H8N2)2]·C3H8O2, the Zn2+ ion (site symmetry 2) is coordinated by two chelating 1,10-phenanthroline ligands and an O,O′-bidentate sulfate ion (S site symmetry 2), resulting in a distorted cis-ZnO2N4 octa­hedral geometry for the metal ion. The complete propane-1,3-diol mol­ecule is generated by crystallographic twofold symmetry and two O—H⋯O hydrogen bonds are formed with the uncoordinated O atoms of the sulfate group.

Related literature

For related structures and background references, see: Zhong (2010a[Zhong, K.-L. (2010a). Acta Cryst. E66, m247.],b[Zhong, K.-L. (2010b). Acta Cryst. E66, m131.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C12H8N2)2]·C3H8O2

  • Mr = 597.96

  • Monoclinic, C 2/c

  • a = 18.330 (4) Å

  • b = 12.406 (3) Å

  • c = 13.215 (3) Å

  • β = 121.78 (3)°

  • V = 2554.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 223 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.790, Tmax = 1.000

  • 7464 measured reflections

  • 2241 independent reflections

  • 1932 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.08

  • 2241 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.145 (3)
Zn1—N1 2.147 (3)
Zn1—O1 2.174 (2)
N2—Zn1—N1 77.87 (10)
O1—Zn1—O1i 65.58 (11)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2 0.82 1.95 2.727 (4) 157

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was obtained unitentionally during an attempt to synthesize coordination polymers of Zn(II) with 1,10-phenanthroline as second ligand via a solvothermal reaction. It is isomorphous with the recently reported cobalt(II) structure (Zhong 2010a).

In this study, the structure of ZnII complexe with bidentate-chelating sulfate ligand, viz. [ZnSO4(phen)2].C3H8O2, has been characterized. each ZnII metal ion is six-coordinated in a distorted octahedral manner by four N atoms from two chelating phen ligands and two O atoms from a bidentate-chelating sulfate ligand. The formula unit lies on a twofold rotation axis [symmetry code: -x, y, - z + 1/2] passes through the ZnII and S atoms, and also through the central carbon of the propane-1,3-diol solvent molecule, in C/2c . Around the twofold axis two planar phen ligands are arranged in a propeller manner. Intermolecular O—H···O hydrogen bonds help to further stabilize the crystal structure(see Fig. 1). Selected coordination bond distances and angles in Table 1 and intermolecular hydrogen bond see Table 2.

We discuss the title complexe and compare it with the previously reported compound [ZnSO4(C10H8N2)2].C2H6O2, (II) (C10H8N2 is 2,2'-bipyridine; Zhong, 2010b). In (I), the ZnII metal ions has an octahedral coordinaiton environment is in good agreement with that observed in (II), The Zn—O bond distance [2.174 (2) Å] and the Zn—N bond distances [2.145 (3)-2.147 (3) Å] are close to those found in (II) [2.1811 (15)Å and 2.1287 (17)-2.1452 (17) Å; respectively]. The N—Zn—N angle [77.87 (10)°] and the O—Zn—O angle [65.58 (11)°] in (I) are also comparable with values reported in (II) [76.61 (7)° and 65.64 (8)° respectively], The dihedral angle (79.8°) between the two chelating NCCN groups is slightly less than that found in (II), 81.1 (1)°.

Related literature top

For related structures and background references, see: Zhong (2010a,b).

Experimental top

0.2 mmol phen, 0.1 mmol melamine, 0.1 mmol ZnO4.7H2O, 2.0 ml propane-1,3-diol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 96 h. After cooling, colorless blocks of (I) were obtained.

Refinement top

The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of central carbon of propane-1,3-diol were located in difference Fourier syntheses and were freely refined [C—H = 0.97 Å] and Uiso(H) = 1.2Ueq(C), whereas other H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

The title compound, (I), was obtained unitentionally during an attempt to synthesize coordination polymers of Zn(II) with 1,10-phenanthroline as second ligand via a solvothermal reaction. It is isomorphous with the recently reported cobalt(II) structure (Zhong 2010a).

In this study, the structure of ZnII complexe with bidentate-chelating sulfate ligand, viz. [ZnSO4(phen)2].C3H8O2, has been characterized. each ZnII metal ion is six-coordinated in a distorted octahedral manner by four N atoms from two chelating phen ligands and two O atoms from a bidentate-chelating sulfate ligand. The formula unit lies on a twofold rotation axis [symmetry code: -x, y, - z + 1/2] passes through the ZnII and S atoms, and also through the central carbon of the propane-1,3-diol solvent molecule, in C/2c . Around the twofold axis two planar phen ligands are arranged in a propeller manner. Intermolecular O—H···O hydrogen bonds help to further stabilize the crystal structure(see Fig. 1). Selected coordination bond distances and angles in Table 1 and intermolecular hydrogen bond see Table 2.

We discuss the title complexe and compare it with the previously reported compound [ZnSO4(C10H8N2)2].C2H6O2, (II) (C10H8N2 is 2,2'-bipyridine; Zhong, 2010b). In (I), the ZnII metal ions has an octahedral coordinaiton environment is in good agreement with that observed in (II), The Zn—O bond distance [2.174 (2) Å] and the Zn—N bond distances [2.145 (3)-2.147 (3) Å] are close to those found in (II) [2.1811 (15)Å and 2.1287 (17)-2.1452 (17) Å; respectively]. The N—Zn—N angle [77.87 (10)°] and the O—Zn—O angle [65.58 (11)°] in (I) are also comparable with values reported in (II) [76.61 (7)° and 65.64 (8)° respectively], The dihedral angle (79.8°) between the two chelating NCCN groups is slightly less than that found in (II), 81.1 (1)°.

For related structures and background references, see: Zhong (2010a,b).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related to the labelled atoms by the symmetry operator(-x, y, - z + 1/2).
Bis(1,10-phenanthroline-κ2N,N')(sulfato- κ2O,O')zinc(II) propane-1,3-diol solvate top
Crystal data top
[Zn(SO4)(C12H8N2)2]·C3H8O2F(000) = 1232
Mr = 597.96Dx = 1.555 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4259 reflections
a = 18.330 (4) Åθ = 3.2–27.5°
b = 12.406 (3) ŵ = 1.10 mm1
c = 13.215 (3) ÅT = 223 K
β = 121.78 (3)°Block, colourless
V = 2554.6 (13) Å30.25 × 0.20 × 0.12 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2241 independent reflections
Radiation source: fine-focus sealed tube1932 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.039
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 2115
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1413
Tmin = 0.790, Tmax = 1.000l = 1415
7464 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0559P)2 + 1.7701P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2241 reflectionsΔρmax = 0.63 e Å3
179 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Crystal data top
[Zn(SO4)(C12H8N2)2]·C3H8O2V = 2554.6 (13) Å3
Mr = 597.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.330 (4) ŵ = 1.10 mm1
b = 12.406 (3) ÅT = 223 K
c = 13.215 (3) Å0.25 × 0.20 × 0.12 mm
β = 121.78 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2241 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1932 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1.000Rint = 0.039
7464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 0.63 e Å3
2241 reflectionsΔρmin = 0.34 e Å3
179 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.31613 (4)0.25000.0275 (2)
S10.00000.53713 (8)0.25000.0261 (3)
O20.05644 (17)0.6038 (2)0.2306 (2)0.0501 (7)
O10.05155 (15)0.46343 (17)0.35278 (18)0.0386 (6)
N10.08295 (17)0.29637 (19)0.1822 (2)0.0279 (6)
N20.09735 (17)0.21096 (19)0.3797 (2)0.0271 (6)
C90.1742 (2)0.1058 (3)0.5575 (3)0.0365 (8)
H9A0.17840.08120.62680.044*
C50.2775 (2)0.1280 (3)0.2899 (3)0.0354 (8)
H5A0.31650.10840.26840.042*
C10.0755 (2)0.3403 (3)0.0849 (3)0.0347 (8)
H1A0.03100.38870.04080.042*
C70.2267 (2)0.1149 (2)0.4258 (2)0.0287 (7)
C20.1314 (2)0.3164 (3)0.0470 (3)0.0370 (8)
H2A0.12380.34790.02180.044*
C40.2084 (2)0.1990 (2)0.2154 (3)0.0302 (7)
C30.1975 (2)0.2465 (3)0.1113 (3)0.0374 (8)
H3A0.23530.23010.08670.045*
C60.2869 (2)0.0887 (3)0.3919 (3)0.0348 (8)
H6A0.33310.04400.44050.042*
C80.2340 (2)0.0767 (2)0.5317 (3)0.0336 (8)
H8A0.27940.03210.58310.040*
C120.14832 (19)0.2268 (2)0.2462 (2)0.0249 (6)
C100.1065 (2)0.1729 (3)0.4796 (3)0.0325 (7)
H10A0.06600.19180.49850.039*
C110.15675 (19)0.1826 (2)0.3525 (2)0.0246 (6)
O30.0629 (3)0.8156 (2)0.1807 (3)0.0736 (10)
H3B0.04620.75530.18450.110*
C140.00000.9448 (4)0.25000.0615 (17)
C130.0766 (4)0.8753 (4)0.2756 (5)0.0860 (17)
H13A0.12580.92170.30050.103*
H13B0.09050.82720.34120.103*
H14B0.01590.99060.18170.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0250 (3)0.0253 (3)0.0328 (3)0.0000.0157 (2)0.000
S10.0229 (6)0.0234 (5)0.0330 (6)0.0000.0153 (5)0.000
O20.0474 (16)0.0435 (14)0.0763 (18)0.0092 (13)0.0442 (14)0.0034 (13)
O10.0360 (14)0.0343 (12)0.0306 (12)0.0007 (11)0.0073 (10)0.0020 (9)
N10.0247 (14)0.0276 (13)0.0297 (13)0.0026 (11)0.0133 (11)0.0027 (10)
N20.0284 (15)0.0251 (13)0.0289 (13)0.0018 (11)0.0160 (11)0.0031 (10)
C90.045 (2)0.0368 (18)0.0274 (16)0.0002 (16)0.0188 (15)0.0027 (13)
C50.0276 (18)0.0409 (19)0.0379 (17)0.0037 (15)0.0175 (14)0.0052 (14)
C10.0340 (19)0.0337 (18)0.0326 (17)0.0015 (15)0.0150 (14)0.0038 (13)
C70.0282 (17)0.0241 (15)0.0268 (15)0.0022 (14)0.0096 (13)0.0039 (12)
C20.044 (2)0.0414 (18)0.0292 (16)0.0030 (17)0.0218 (15)0.0013 (14)
C40.0275 (17)0.0332 (17)0.0303 (16)0.0019 (14)0.0155 (14)0.0057 (12)
C30.037 (2)0.047 (2)0.0347 (17)0.0002 (17)0.0231 (15)0.0012 (15)
C60.0260 (17)0.0337 (17)0.0347 (17)0.0062 (15)0.0091 (14)0.0053 (13)
C80.0318 (18)0.0299 (17)0.0280 (16)0.0039 (15)0.0080 (14)0.0048 (12)
C120.0239 (16)0.0236 (14)0.0245 (14)0.0060 (13)0.0110 (12)0.0051 (12)
C100.0377 (19)0.0332 (17)0.0318 (16)0.0006 (15)0.0219 (15)0.0003 (13)
C110.0258 (16)0.0211 (14)0.0254 (14)0.0021 (13)0.0124 (12)0.0042 (11)
O30.122 (3)0.0507 (17)0.089 (2)0.0088 (18)0.084 (2)0.0004 (16)
C140.092 (5)0.032 (3)0.070 (4)0.0000.049 (4)0.000
C130.084 (4)0.086 (4)0.084 (3)0.031 (3)0.041 (3)0.005 (3)
Geometric parameters (Å, º) top
Zn1—N2i2.145 (3)C1—H1A0.9300
Zn1—N22.145 (3)C7—C111.407 (4)
Zn1—N12.147 (3)C7—C81.415 (4)
Zn1—N1i2.147 (3)C7—C61.429 (5)
Zn1—O12.174 (2)C2—C31.363 (5)
Zn1—O1i2.174 (2)C2—H2A0.9300
S1—O21.449 (2)C4—C121.403 (5)
S1—O2i1.449 (2)C4—C31.410 (4)
S1—O1i1.491 (2)C3—H3A0.9300
S1—O11.491 (2)C6—H6A0.9300
N1—C11.335 (4)C8—H8A0.9300
N1—C121.352 (4)C12—C111.439 (4)
N2—C101.327 (4)C10—H10A0.9300
N2—C111.360 (4)O3—C131.361 (6)
C9—C81.357 (5)O3—H3B0.8200
C9—C101.395 (5)C14—C13i1.527 (7)
C9—H9A0.9300C14—C131.527 (7)
C5—C61.356 (5)C14—H14B0.9728
C5—C41.427 (5)C13—H13A0.9700
C5—H5A0.9300C13—H13B0.9700
C1—C21.391 (5)
N2i—Zn1—N2105.08 (13)N1—C1—H1A118.7
N2i—Zn1—N194.08 (10)C2—C1—H1A118.7
N2—Zn1—N177.87 (10)C11—C7—C8117.3 (3)
N2i—Zn1—N1i77.87 (10)C11—C7—C6119.6 (3)
N2—Zn1—N1i94.08 (10)C8—C7—C6123.1 (3)
N1—Zn1—N1i166.89 (13)C3—C2—C1119.5 (3)
N2i—Zn1—O1156.26 (9)C3—C2—H2A120.3
N2—Zn1—O196.15 (9)C1—C2—H2A120.3
N1—Zn1—O1100.74 (9)C12—C4—C3116.7 (3)
N1i—Zn1—O190.32 (9)C12—C4—C5119.9 (3)
N2i—Zn1—O1i96.15 (9)C3—C4—C5123.4 (3)
N2—Zn1—O1i156.26 (9)C2—C3—C4119.9 (3)
N1—Zn1—O1i90.32 (9)C2—C3—H3A120.1
N1i—Zn1—O1i100.74 (9)C4—C3—H3A120.1
O1—Zn1—O1i65.58 (11)C5—C6—C7121.0 (3)
O2—S1—O2i110.4 (2)C5—C6—H6A119.5
O2—S1—O1i110.96 (14)C7—C6—H6A119.5
O2i—S1—O1i110.01 (15)C9—C8—C7119.4 (3)
O2—S1—O1110.01 (14)C9—C8—H8A120.3
O2i—S1—O1110.96 (14)C7—C8—H8A120.3
O1i—S1—O1104.33 (18)N1—C12—C4123.2 (3)
O2—S1—Zn1124.79 (11)N1—C12—C11117.2 (3)
O2i—S1—Zn1124.79 (11)C4—C12—C11119.5 (3)
O1i—S1—Zn152.17 (9)N2—C10—C9123.0 (3)
O1—S1—Zn152.17 (9)N2—C10—H10A118.5
S1—O1—Zn195.04 (11)C9—C10—H10A118.5
C1—N1—C12118.0 (3)N2—C11—C7122.6 (3)
C1—N1—Zn1128.2 (2)N2—C11—C12118.1 (3)
C12—N1—Zn1113.7 (2)C7—C11—C12119.3 (3)
C10—N2—C11118.1 (3)C13—O3—H3B109.5
C10—N2—Zn1128.9 (2)C13i—C14—C13111.2 (5)
C11—N2—Zn1113.02 (19)C13i—C14—H14B109.5
C8—C9—C10119.7 (3)C13—C14—H14B109.1
C8—C9—H9A120.2O3—C13—C14113.7 (4)
C10—C9—H9A120.2O3—C13—H13A108.8
C6—C5—C4120.7 (3)C14—C13—H13A108.8
C6—C5—H5A119.7O3—C13—H13B108.8
C4—C5—H5A119.7C14—C13—H13B108.8
N1—C1—C2122.6 (3)H13A—C13—H13B107.7
N2i—Zn1—S1—O2110.63 (16)O1i—Zn1—N2—C10114.9 (3)
N2—Zn1—S1—O269.37 (16)S1—Zn1—N2—C1087.6 (3)
N1—Zn1—S1—O210.36 (14)N2i—Zn1—N2—C1188.39 (19)
N1i—Zn1—S1—O2169.64 (14)N1—Zn1—N2—C112.61 (19)
O1—Zn1—S1—O289.31 (18)N1i—Zn1—N2—C11166.92 (19)
O1i—Zn1—S1—O290.69 (18)O1—Zn1—N2—C11102.3 (2)
N2i—Zn1—S1—O2i69.37 (16)O1i—Zn1—N2—C1164.3 (3)
N2—Zn1—S1—O2i110.63 (16)S1—Zn1—N2—C1191.61 (19)
N1—Zn1—S1—O2i169.64 (14)C12—N1—C1—C20.6 (5)
N1i—Zn1—S1—O2i10.36 (14)Zn1—N1—C1—C2176.5 (2)
O1—Zn1—S1—O2i90.69 (18)N1—C1—C2—C30.8 (5)
O1i—Zn1—S1—O2i89.31 (18)C6—C5—C4—C121.4 (5)
N2i—Zn1—S1—O1i19.95 (15)C6—C5—C4—C3176.9 (3)
N2—Zn1—S1—O1i160.05 (15)C1—C2—C3—C40.1 (5)
N1—Zn1—S1—O1i80.33 (14)C12—C4—C3—C20.6 (5)
N1i—Zn1—S1—O1i99.67 (14)C5—C4—C3—C2177.8 (3)
O1—Zn1—S1—O1i180.0C4—C5—C6—C71.7 (5)
N2i—Zn1—S1—O1160.05 (15)C11—C7—C6—C50.2 (5)
N2—Zn1—S1—O119.95 (15)C8—C7—C6—C5179.5 (3)
N1—Zn1—S1—O199.67 (14)C10—C9—C8—C70.1 (5)
N1i—Zn1—S1—O180.33 (14)C11—C7—C8—C90.4 (4)
O1i—Zn1—S1—O1180.0C6—C7—C8—C9179.7 (3)
O2—S1—O1—Zn1119.08 (14)C1—N1—C12—C40.2 (4)
O2i—S1—O1—Zn1118.43 (14)Zn1—N1—C12—C4177.7 (2)
O1i—S1—O1—Zn10.0C1—N1—C12—C11178.3 (3)
N2i—Zn1—O1—S142.3 (3)Zn1—N1—C12—C114.2 (3)
N2—Zn1—O1—S1164.20 (12)C3—C4—C12—N10.8 (4)
N1—Zn1—O1—S185.42 (13)C5—C4—C12—N1177.7 (3)
N1i—Zn1—O1—S1101.66 (13)C3—C4—C12—C11178.9 (3)
O1i—Zn1—O1—S10.0C5—C4—C12—C110.4 (4)
N2i—Zn1—N1—C176.3 (3)C11—N2—C10—C90.2 (5)
N2—Zn1—N1—C1179.1 (3)Zn1—N2—C10—C9179.0 (2)
N1i—Zn1—N1—C1127.8 (3)C8—C9—C10—N20.2 (5)
O1—Zn1—N1—C185.1 (3)C10—N2—C11—C70.2 (4)
O1i—Zn1—N1—C119.9 (3)Zn1—N2—C11—C7179.5 (2)
S1—Zn1—N1—C152.2 (3)C10—N2—C11—C12178.0 (3)
N2i—Zn1—N1—C12100.9 (2)Zn1—N2—C11—C121.3 (3)
N2—Zn1—N1—C123.66 (19)C8—C7—C11—N20.5 (4)
N1i—Zn1—N1—C1249.37 (19)C6—C7—C11—N2179.8 (3)
O1—Zn1—N1—C1297.7 (2)C8—C7—C11—C12177.7 (3)
O1i—Zn1—N1—C12162.9 (2)C6—C7—C11—C121.7 (4)
S1—Zn1—N1—C12130.63 (19)N1—C12—C11—N22.0 (4)
N2i—Zn1—N2—C1092.4 (3)C4—C12—C11—N2179.8 (3)
N1—Zn1—N2—C10176.6 (3)N1—C12—C11—C7176.3 (2)
N1i—Zn1—N2—C1013.9 (3)C4—C12—C11—C71.9 (4)
O1—Zn1—N2—C1076.9 (3)C13i—C14—C13—O365.1 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.952.727 (4)157

Experimental details

Crystal data
Chemical formula[Zn(SO4)(C12H8N2)2]·C3H8O2
Mr597.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.330 (4), 12.406 (3), 13.215 (3)
β (°) 121.78 (3)
V3)2554.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.790, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7464, 2241, 1932
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.08
No. of reflections2241
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.34

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N22.145 (3)Zn1—O12.174 (2)
Zn1—N12.147 (3)
N2—Zn1—N177.87 (10)O1—Zn1—O1i65.58 (11)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.952.727 (4)157
 

Acknowledgements

This work was supported by the Undergraduate Scientific and Technological Innovation Project of Nanjing College of Chemical Technology and the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

References

First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L. (2010a). Acta Cryst. E66, m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2010b). Acta Cryst. E66, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds