organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Chloro­phen­yl)-3,6-di­phenyl-1,2,3,4,5,6,7,8-octa­hydro-9H-xanthene-1,8-dione

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: gf552002@yahoo.com.cn

(Received 20 April 2010; accepted 25 April 2010; online 30 April 2010)

In the title compound, C31H25ClO3, the central ring of the xanthene core shows a shallow boat conformation, while the outer six-membered rings display envelope conformations. The dihedral angle between the outer aromatic rings is 88.1 (3)° and the dihedral angles between the chloro­benzene ring and the two phenyl rings are 69.5 (2) and 69.6 (2)°.

Related literature

For the applications of 3,6,9-tris­ubstituted-1,2,3,4,5,6,7,8-octa­hydroxanthene-1,8(5H,9H)-dione derivatives, see: Ion et al. (1998[Ion, R. M., Frackowiak, D. & Planner, A. (1998). Acta Biochim. Pol. 45, 833-845.]); Ahmad et al. (2002[Ahmad, M., King, T. A., Ko, D. K. & Cha, B. H. (2002). J. Appl. Phys. 35, 1473-1476.]); Hunter & Beveridge (2005[Hunter, R. C. & Beveridge, T. J. (2005). Appl. Environ. Microbiol. 71, 2501-2510.]); Srihari et al. (2008[Srihari, P., Mandal, S. S. & Reddy, J. S. S. (2008). Chin. Chem. Lett. 19, 771-774.]).

[Scheme 1]

Experimental

Crystal data
  • C31H25ClO3

  • Mr = 480.96

  • Orthorhombic, P b c a

  • a = 9.7591 (14) Å

  • b = 22.133 (3) Å

  • c = 22.290 (3) Å

  • V = 4814.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.980

  • 24128 measured reflections

  • 4697 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.165

  • S = 1.02

  • 4697 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,6,9-trisubstituted-1,2,3,4,5,6,7,8-octahydroxanthene-1,8(5H,9H)-dione derivatives occupy a prominent position in medicinal chemistry (Ion et al., 1998), and have also been used as laser technology (Ahmad et al., 2002), and as pH-sensitive fluorescent materials (Hunter et al., 2005) and dyes(Srihari et al., 2008). As a contribution in this field, we report herein the crystal structure of the title compound.The title compound (Fig. 1) was synthesized by the condensation reaction of 5-phenyl-1, 3-cyclohexanedione with 4-chlorobenzaldehyde in the presence of dilute H2SO4 as a catalyst in water. In the xanthene core, the central pyran ring assumes a shallow boat conformation, with atoms C13 and O2 out of the plane through the remaining four atoms [maximum displacement 0.016 (4) Å] by 0.266 (4) and 0.135 (3) Å, respectively. The outer six-membered rings display a half-boat conformation, with atoms C8–C12 and C14–C16/C18/C19 forming a plane [maximum displacement 0.022 (4) and 0.039 (4)] and atoms C7 and C17 displaced by 0.628 (5) and 0.643 (5)Å respectively. The C1–C6, C20–C25 phenyl rings and the C26–C31 benzene ring are tilted with respect to the mean plane through the xanthene core by 79.60 (10)°, 26.34 (13)° and 87.20 (10)° respectively. In the crystal structure, there are weak offset face-to-face π-π stacking interactions with a centroid–centroid distance of 4.1184 (5) Å between the C1–C6 benzene rings and the C26–C31 benzene ring (and the minimum distance among the atoms is C3–C31, that is 3.538 Å)and the dihedral angle between the two benzene rings is 16.418°.

Related literature top

For the applications of 3,6,9-trisubstituted-1,2,3,4,5,6,7,8-octahydroxanthene-1,8(5H,9H)-dione derivatives, see: Ion et al. (1998); Ahmad et al. (2002); Hunter & Beveridge (2005); Srihari et al. (2008).

Experimental top

A mixture of a 5-phenyl-1,3-cyclohexanedione (10 mmol, 1.88 g), 4-chloro-benzaldehyde (5 mmol, 0.702 g), and H2SO4(0.1 ml) in water (40 ml) was stirred at 343-353 K for 2 h. Then the mixture was cooled to room temperature; solid was filtered off and washed with water. The crude products were purified by recrystallization from ethanol (95%). Then the pure products (1 mmol, 0.480 g) were dissolved in the mixtures of 20 ml ethanol and 5 ml N,N-dimethylformamide heating to 353 K to form a clear solution and filtering. The filtrate was cooled slowly to room temperature and colourless piece of (I) were formed after 15 days.

Refinement top

All H atoms were placed in calculated positions except H1, H2B, H14A and H14B, with C—H = 0.93-0.98 Å and N—H = 0.86 Å, and refined using a riding model, with Uiso(H)=1.2Ueq(C, N, O) or 1.5 Ueq(C) for methyl H atoms.H1, H2B, H14A and H14B were located in difference fourier maps.

Structure description top

3,6,9-trisubstituted-1,2,3,4,5,6,7,8-octahydroxanthene-1,8(5H,9H)-dione derivatives occupy a prominent position in medicinal chemistry (Ion et al., 1998), and have also been used as laser technology (Ahmad et al., 2002), and as pH-sensitive fluorescent materials (Hunter et al., 2005) and dyes(Srihari et al., 2008). As a contribution in this field, we report herein the crystal structure of the title compound.The title compound (Fig. 1) was synthesized by the condensation reaction of 5-phenyl-1, 3-cyclohexanedione with 4-chlorobenzaldehyde in the presence of dilute H2SO4 as a catalyst in water. In the xanthene core, the central pyran ring assumes a shallow boat conformation, with atoms C13 and O2 out of the plane through the remaining four atoms [maximum displacement 0.016 (4) Å] by 0.266 (4) and 0.135 (3) Å, respectively. The outer six-membered rings display a half-boat conformation, with atoms C8–C12 and C14–C16/C18/C19 forming a plane [maximum displacement 0.022 (4) and 0.039 (4)] and atoms C7 and C17 displaced by 0.628 (5) and 0.643 (5)Å respectively. The C1–C6, C20–C25 phenyl rings and the C26–C31 benzene ring are tilted with respect to the mean plane through the xanthene core by 79.60 (10)°, 26.34 (13)° and 87.20 (10)° respectively. In the crystal structure, there are weak offset face-to-face π-π stacking interactions with a centroid–centroid distance of 4.1184 (5) Å between the C1–C6 benzene rings and the C26–C31 benzene ring (and the minimum distance among the atoms is C3–C31, that is 3.538 Å)and the dihedral angle between the two benzene rings is 16.418°.

For the applications of 3,6,9-trisubstituted-1,2,3,4,5,6,7,8-octahydroxanthene-1,8(5H,9H)-dione derivatives, see: Ion et al. (1998); Ahmad et al. (2002); Hunter & Beveridge (2005); Srihari et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
9-(4-Chlorophenyl)-3,6-diphenyl-1,2,3,4,5,6,7,8-octahydro-9H-xanthene- 1,8-dione top
Crystal data top
C31H25ClO3F(000) = 2016
Mr = 480.96Dx = 1.327 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1380 reflections
a = 9.7591 (14) Åθ = 2.8–17.6°
b = 22.133 (3) ŵ = 0.19 mm1
c = 22.290 (3) ÅT = 291 K
V = 4814.7 (12) Å3Block, colourless
Z = 80.25 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
4697 independent reflections
Radiation source: sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1012
Tmin = 0.955, Tmax = 0.980k = 2726
24128 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
4697 reflections(Δ/σ)max = 0.008
316 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C31H25ClO3V = 4814.7 (12) Å3
Mr = 480.96Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.7591 (14) ŵ = 0.19 mm1
b = 22.133 (3) ÅT = 291 K
c = 22.290 (3) Å0.25 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
4697 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2200 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.980Rint = 0.094
24128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
4697 reflectionsΔρmin = 0.27 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5407 (5)0.39406 (18)0.3699 (2)0.0438 (12)
C20.4287 (5)0.4129 (2)0.3377 (2)0.0644 (15)
H2A0.39160.38700.30910.077*
C30.3694 (6)0.4681 (3)0.3460 (2)0.0804 (18)
H3A0.29360.47960.32350.097*
C40.4240 (7)0.5065 (2)0.3883 (3)0.087 (2)
H4A0.38620.54460.39410.104*
C50.5328 (7)0.4886 (2)0.4215 (3)0.0851 (19)
H5A0.56760.51450.45060.102*
C60.5935 (5)0.4326 (2)0.4132 (2)0.0625 (14)
H6A0.66850.42100.43620.075*
C70.6121 (5)0.33489 (18)0.3579 (2)0.0538 (13)
H7A0.68910.33300.38600.065*
C80.6723 (5)0.33250 (17)0.29750 (19)0.0569 (13)
H8A0.72780.36830.29130.068*
H8B0.59920.33290.26800.068*
C90.7607 (5)0.27671 (19)0.28747 (18)0.0454 (12)
C100.7150 (4)0.22155 (18)0.31741 (17)0.0367 (10)
C110.6030 (4)0.22346 (18)0.35110 (17)0.0376 (11)
C120.5260 (4)0.27893 (17)0.36980 (17)0.0429 (11)
H12A0.50410.27650.41220.052*
H12B0.44070.28150.34760.052*
C130.7974 (4)0.16464 (16)0.31002 (16)0.0357 (10)
H13A0.82890.16180.26840.043*
C140.9226 (4)0.16727 (16)0.35157 (17)0.0342 (10)
C150.9046 (5)0.16731 (19)0.41286 (19)0.0523 (13)
H15A0.81650.16480.42850.063*
C161.0139 (5)0.17096 (19)0.45124 (19)0.0548 (13)
H16A1.00040.16970.49250.066*
C171.1420 (4)0.17640 (17)0.42835 (19)0.0421 (11)
C181.1638 (4)0.17601 (18)0.36775 (19)0.0499 (12)
H18A1.25220.17910.35250.060*
C191.0548 (4)0.17107 (18)0.33007 (19)0.0456 (11)
H19A1.06980.17020.28890.055*
C200.7059 (4)0.11157 (18)0.32342 (17)0.0383 (11)
C210.7403 (5)0.05297 (19)0.29797 (19)0.0472 (12)
C220.6491 (5)0.00033 (18)0.3145 (2)0.0583 (13)
H22A0.58140.00510.28310.070*
H22B0.70450.03600.31600.070*
C230.5771 (5)0.00738 (18)0.3726 (2)0.0551 (13)
H23A0.64910.01120.40300.066*
C240.4988 (4)0.06699 (16)0.37386 (18)0.0444 (11)
H24A0.42060.06460.34710.053*
H24B0.46520.07460.41410.053*
C250.5903 (4)0.11740 (18)0.35479 (18)0.0403 (11)
C260.4916 (5)0.04687 (19)0.3914 (2)0.0517 (13)
C270.4901 (6)0.1005 (2)0.3610 (3)0.098 (2)
H27A0.53630.10360.32460.117*
C280.4208 (6)0.1505 (2)0.3833 (3)0.111 (2)
H28A0.42320.18660.36200.133*
C290.3517 (6)0.1480 (3)0.4342 (3)0.0870 (19)
H29A0.30900.18240.44930.104*
C300.3435 (7)0.0948 (3)0.4644 (2)0.104 (2)
H30A0.29020.09170.49890.125*
C310.4161 (6)0.0448 (2)0.4431 (2)0.0828 (19)
H31A0.41290.00890.46470.099*
Cl11.28146 (12)0.18272 (6)0.47779 (5)0.0683 (4)
O10.5432 (3)0.17227 (11)0.37532 (11)0.0434 (8)
O20.8609 (3)0.27660 (13)0.25570 (14)0.0682 (10)
O30.8359 (3)0.04721 (13)0.26316 (14)0.0641 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.028 (3)0.054 (3)0.000 (2)0.008 (3)0.006 (2)
C20.076 (4)0.052 (3)0.065 (4)0.010 (3)0.004 (3)0.005 (3)
C30.091 (5)0.075 (4)0.075 (4)0.031 (4)0.012 (4)0.015 (3)
C40.104 (6)0.040 (4)0.117 (6)0.014 (4)0.045 (5)0.002 (4)
C50.112 (6)0.049 (4)0.094 (5)0.015 (4)0.025 (4)0.026 (3)
C60.068 (4)0.052 (3)0.068 (3)0.003 (3)0.006 (3)0.004 (3)
C70.059 (3)0.036 (3)0.067 (3)0.008 (2)0.004 (3)0.004 (3)
C80.075 (4)0.035 (3)0.060 (3)0.005 (3)0.007 (3)0.013 (2)
C90.054 (3)0.042 (3)0.041 (3)0.005 (3)0.004 (2)0.005 (2)
C100.040 (3)0.038 (3)0.032 (2)0.002 (2)0.002 (2)0.002 (2)
C110.042 (3)0.032 (3)0.039 (2)0.000 (2)0.000 (2)0.002 (2)
C120.054 (3)0.036 (3)0.039 (2)0.004 (2)0.004 (2)0.001 (2)
C130.037 (3)0.039 (3)0.031 (2)0.001 (2)0.006 (2)0.001 (2)
C140.036 (3)0.027 (2)0.040 (2)0.004 (2)0.003 (2)0.000 (2)
C150.036 (3)0.078 (4)0.042 (3)0.006 (2)0.008 (2)0.001 (3)
C160.052 (3)0.077 (4)0.036 (3)0.007 (3)0.006 (3)0.000 (2)
C170.034 (3)0.042 (3)0.051 (3)0.006 (2)0.012 (2)0.004 (2)
C180.039 (3)0.065 (3)0.046 (3)0.004 (2)0.010 (2)0.002 (3)
C190.044 (3)0.054 (3)0.039 (2)0.001 (2)0.009 (2)0.002 (2)
C200.042 (3)0.038 (3)0.035 (2)0.002 (2)0.003 (2)0.001 (2)
C210.050 (3)0.040 (3)0.052 (3)0.005 (3)0.002 (3)0.007 (2)
C220.068 (4)0.032 (3)0.075 (4)0.003 (3)0.001 (3)0.008 (3)
C230.066 (3)0.034 (3)0.065 (3)0.002 (2)0.017 (3)0.007 (2)
C240.045 (3)0.032 (3)0.056 (3)0.001 (2)0.004 (3)0.005 (2)
C250.042 (3)0.034 (3)0.045 (3)0.008 (2)0.002 (2)0.003 (2)
C260.052 (3)0.034 (3)0.068 (3)0.008 (2)0.005 (3)0.001 (3)
C270.108 (5)0.055 (4)0.130 (5)0.026 (3)0.058 (4)0.027 (4)
C280.108 (6)0.051 (4)0.174 (7)0.030 (4)0.046 (5)0.021 (4)
C290.105 (5)0.041 (4)0.115 (5)0.022 (3)0.004 (4)0.014 (4)
C300.160 (7)0.075 (5)0.077 (4)0.048 (4)0.013 (4)0.017 (4)
C310.128 (6)0.056 (4)0.065 (4)0.048 (3)0.007 (4)0.003 (3)
Cl10.0482 (8)0.0933 (10)0.0634 (8)0.0105 (7)0.0103 (7)0.0026 (7)
O10.049 (2)0.0275 (16)0.0534 (18)0.0016 (14)0.0189 (15)0.0001 (14)
O20.068 (2)0.054 (2)0.083 (2)0.0053 (18)0.035 (2)0.0194 (18)
O30.061 (2)0.052 (2)0.079 (2)0.0029 (17)0.025 (2)0.0183 (17)
Geometric parameters (Å, º) top
C1—C21.373 (6)C16—C171.355 (5)
C1—C61.387 (6)C16—H16A0.9300
C1—C71.507 (5)C17—C181.367 (5)
C2—C31.364 (6)C17—Cl11.757 (4)
C2—H2A0.9300C18—C191.359 (5)
C3—C41.376 (7)C18—H18A0.9300
C3—H3A0.9300C19—H19A0.9300
C4—C51.353 (7)C20—C251.333 (5)
C4—H4A0.9300C20—C211.455 (5)
C5—C61.387 (6)C21—O31.221 (4)
C5—H5A0.9300C21—C221.511 (6)
C6—H6A0.9300C22—C231.484 (5)
C7—C81.470 (5)C22—H22A0.9700
C7—C121.520 (5)C22—H22B0.9700
C7—H7A0.9800C23—C261.520 (5)
C8—C91.523 (5)C23—C241.525 (5)
C8—H8A0.9700C23—H23A0.9800
C8—H8B0.9700C24—C251.491 (5)
C9—O21.208 (4)C24—H24A0.9700
C9—C101.461 (5)C24—H24B0.9700
C10—C111.327 (5)C25—O11.377 (4)
C10—C131.504 (5)C26—C271.367 (6)
C11—O11.384 (4)C26—C311.369 (6)
C11—C121.499 (5)C27—C281.390 (7)
C12—H12A0.9700C27—H27A0.9300
C12—H12B0.9700C28—C291.320 (7)
C13—C201.506 (5)C28—H28A0.9300
C13—C141.534 (5)C29—C301.359 (7)
C13—H13A0.9800C29—H29A0.9300
C14—C191.379 (5)C30—C311.398 (6)
C14—C151.378 (5)C30—H30A0.9300
C15—C161.370 (5)C31—H31A0.9300
C15—H15A0.9300
C2—C1—C6118.2 (4)C17—C16—H16A120.4
C2—C1—C7122.6 (4)C15—C16—H16A120.4
C6—C1—C7119.1 (4)C16—C17—C18121.0 (4)
C3—C2—C1122.6 (5)C16—C17—Cl1119.0 (3)
C3—C2—H2A118.7C18—C17—Cl1120.0 (4)
C1—C2—H2A118.7C19—C18—C17119.3 (4)
C2—C3—C4118.8 (6)C19—C18—H18A120.4
C2—C3—H3A120.6C17—C18—H18A120.4
C4—C3—H3A120.6C18—C19—C14121.5 (4)
C5—C4—C3119.9 (6)C18—C19—H19A119.3
C5—C4—H4A120.1C14—C19—H19A119.3
C3—C4—H4A120.1C25—C20—C21119.1 (4)
C4—C5—C6121.6 (6)C25—C20—C13122.0 (4)
C4—C5—H5A119.2C21—C20—C13118.7 (4)
C6—C5—H5A119.2O3—C21—C20121.2 (4)
C5—C6—C1118.9 (5)O3—C21—C22121.6 (4)
C5—C6—H6A120.5C20—C21—C22117.2 (4)
C1—C6—H6A120.5C23—C22—C21114.2 (4)
C8—C7—C1112.2 (4)C23—C22—H22A108.7
C8—C7—C12110.6 (3)C21—C22—H22A108.7
C1—C7—C12115.0 (4)C23—C22—H22B108.7
C8—C7—H7A106.1C21—C22—H22B108.7
C1—C7—H7A106.1H22A—C22—H22B107.6
C12—C7—H7A106.1C22—C23—C26114.6 (4)
C7—C8—C9113.0 (4)C22—C23—C24110.1 (4)
C7—C8—H8A109.0C26—C23—C24113.8 (4)
C9—C8—H8A109.0C22—C23—H23A105.8
C7—C8—H8B109.0C26—C23—H23A105.8
C9—C8—H8B109.0C24—C23—H23A105.8
H8A—C8—H8B107.8C25—C24—C23110.0 (4)
O2—C9—C10120.9 (4)C25—C24—H24A109.7
O2—C9—C8123.1 (4)C23—C24—H24A109.7
C10—C9—C8115.9 (4)C25—C24—H24B109.7
C11—C10—C9118.9 (4)C23—C24—H24B109.7
C11—C10—C13122.0 (4)H24A—C24—H24B108.2
C9—C10—C13119.1 (4)C20—C25—O1122.8 (4)
C10—C11—O1122.8 (4)C20—C25—C24125.7 (4)
C10—C11—C12126.6 (4)O1—C25—C24111.4 (4)
O1—C11—C12110.6 (3)C27—C26—C31116.1 (4)
C11—C12—C7110.0 (4)C27—C26—C23123.8 (5)
C11—C12—H12A109.7C31—C26—C23120.0 (4)
C7—C12—H12A109.7C26—C27—C28121.3 (5)
C11—C12—H12B109.7C26—C27—H27A119.4
C7—C12—H12B109.7C28—C27—H27A119.4
H12A—C12—H12B108.2C29—C28—C27121.5 (6)
C10—C13—C20108.3 (3)C29—C28—H28A119.2
C10—C13—C14109.2 (3)C27—C28—H28A119.2
C20—C13—C14112.5 (3)C28—C29—C30119.5 (6)
C10—C13—H13A108.9C28—C29—H29A120.2
C20—C13—H13A108.9C30—C29—H29A120.2
C14—C13—H13A108.9C29—C30—C31119.2 (6)
C19—C14—C15117.7 (4)C29—C30—H30A120.4
C19—C14—C13122.5 (4)C31—C30—H30A120.4
C15—C14—C13119.8 (4)C26—C31—C30122.2 (5)
C16—C15—C14121.3 (4)C26—C31—H31A118.9
C16—C15—H15A119.3C30—C31—H31A118.9
C14—C15—H15A119.3C25—O1—C11116.9 (3)
C17—C16—C15119.2 (4)
C6—C1—C2—C31.1 (7)C16—C17—C18—C191.1 (6)
C7—C1—C2—C3175.7 (4)Cl1—C17—C18—C19180.0 (3)
C1—C2—C3—C40.0 (8)C17—C18—C19—C140.9 (6)
C2—C3—C4—C51.3 (9)C15—C14—C19—C181.4 (6)
C3—C4—C5—C61.4 (9)C13—C14—C19—C18177.1 (4)
C4—C5—C6—C10.3 (8)C10—C13—C20—C2519.7 (5)
C2—C1—C6—C51.0 (7)C14—C13—C20—C25101.1 (4)
C7—C1—C6—C5176.0 (4)C10—C13—C20—C21156.3 (3)
C2—C1—C7—C863.1 (6)C14—C13—C20—C2183.0 (4)
C6—C1—C7—C8113.8 (5)C25—C20—C21—O3171.2 (4)
C2—C1—C7—C1264.5 (6)C13—C20—C21—O34.9 (6)
C6—C1—C7—C12118.7 (4)C25—C20—C21—C226.3 (6)
C1—C7—C8—C9172.4 (4)C13—C20—C21—C22177.6 (3)
C12—C7—C8—C957.8 (5)O3—C21—C22—C23156.9 (4)
C7—C8—C9—O2147.2 (4)C20—C21—C22—C2325.6 (6)
C7—C8—C9—C1034.6 (5)C21—C22—C23—C26176.6 (4)
O2—C9—C10—C11178.8 (4)C21—C22—C23—C2453.5 (5)
C8—C9—C10—C110.6 (6)C22—C23—C24—C2549.5 (5)
O2—C9—C10—C132.2 (6)C26—C23—C24—C25179.9 (4)
C8—C9—C10—C13179.6 (3)C21—C20—C25—O1173.4 (3)
C9—C10—C11—O1172.2 (3)C13—C20—C25—O12.5 (6)
C13—C10—C11—O18.9 (6)C21—C20—C25—C248.7 (6)
C9—C10—C11—C129.6 (6)C13—C20—C25—C24175.4 (4)
C13—C10—C11—C12169.4 (4)C23—C24—C25—C2020.0 (6)
C10—C11—C12—C713.8 (6)C23—C24—C25—O1158.1 (3)
O1—C11—C12—C7164.6 (3)C22—C23—C26—C276.2 (7)
C8—C7—C12—C1146.5 (5)C24—C23—C26—C27134.2 (5)
C1—C7—C12—C11174.9 (4)C22—C23—C26—C31177.4 (5)
C11—C10—C13—C2022.8 (5)C24—C23—C26—C3149.4 (6)
C9—C10—C13—C20158.3 (3)C31—C26—C27—C283.0 (9)
C11—C10—C13—C14100.0 (4)C23—C26—C27—C28173.5 (5)
C9—C10—C13—C1478.9 (4)C26—C27—C28—C291.3 (11)
C10—C13—C14—C19113.0 (4)C27—C28—C29—C302.5 (11)
C20—C13—C14—C19126.8 (4)C28—C29—C30—C314.2 (10)
C10—C13—C14—C1565.4 (5)C27—C26—C31—C301.2 (8)
C20—C13—C14—C1554.8 (5)C23—C26—C31—C30175.4 (5)
C19—C14—C15—C160.0 (6)C29—C30—C31—C262.4 (9)
C13—C14—C15—C16178.5 (4)C20—C25—O1—C1114.2 (5)
C14—C15—C16—C171.9 (7)C24—C25—O1—C11167.6 (3)
C15—C16—C17—C182.5 (7)C10—C11—O1—C2511.0 (5)
C15—C16—C17—Cl1178.6 (3)C12—C11—O1—C25170.5 (3)

Experimental details

Crystal data
Chemical formulaC31H25ClO3
Mr480.96
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)9.7591 (14), 22.133 (3), 22.290 (3)
V3)4814.7 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.955, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
24128, 4697, 2200
Rint0.094
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.165, 1.02
No. of reflections4697
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology.

References

First citationAhmad, M., King, T. A., Ko, D. K. & Cha, B. H. (2002). J. Appl. Phys. 35, 1473–1476.  CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, R. C. & Beveridge, T. J. (2005). Appl. Environ. Microbiol. 71, 2501–2510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIon, R. M., Frackowiak, D. & Planner, A. (1998). Acta Biochim. Pol. 45, 833–845.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrihari, P., Mandal, S. S. & Reddy, J. S. S. (2008). Chin. Chem. Lett. 19, 771–774.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds