organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3,5-Bis(eth­oxy­carbon­yl)-2,6-di­methyl-4-pyrid­yl]pyridinium nitrate

aDepartment of Chemistry, Dezhou University, Shandong 253023, People's Republic of China
*Correspondence e-mail: liyumei_dzc@yahoo.com.cn

(Received 22 April 2010; accepted 24 April 2010; online 30 April 2010)

In the title mol­ecular salt, C18H21N2O4+·NO3, the dihedral angle between the two pyridine rings is 61.24 (8)°. In the crystal, the cation and anion are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to metal-organic frameworks, see: Zhang et al. (2003[Zhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181-1185.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N2O4+·NO3

  • Mr = 391.38

  • Orthorhombic, P n a 21

  • a = 9.075 (9) Å

  • b = 15.496 (15) Å

  • c = 14.125 (13) Å

  • V = 1987 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.33 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.975

  • 9196 measured reflections

  • 3395 independent reflections

  • 2877 reflections with I > 2σ(I)

  • Rint = 0.156

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.00

  • 3395 reflections

  • 258 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 1.90 2.752 (3) 171
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and construction of metal-organic frameworks through the coordination of metal ions with multifunctional organic ligands have received extensive attention due to their impressive structural diversities in architectures and their potential applications as functional materials (Zhang et al., 2003). Whereas, it is more important to design the novel organic ligand. Here, we describe the recystallization and structural characterization of the title compound.

The molecular structure is shown in Fig 1. The dihedral angle between the two pyridine rings is 61.24 (8) °. N—H···O and N—H···N hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 1).

Related literature top

For general background to metal-organic frameworks, see: Zhang et al. (2003).

Experimental top

A mixture of 2,6-dimethyl-4-(4-pyridyl)pyridine-3,5-dicarboxylate (1 mmol, 0.39 g) and ammonium nitrate (2 mmol, 0.16 g) in 20 ml ethanol was refluxed for half an hour. The obtained filtrate was evaporated in one open flask at room temperature. One week later, yellow blocks of (I) were obained. Anal. C20H22NO7: C, 55.61; H, 5.41; N, 7.21 %. Found: C, 55.56; H, 5.33; N, 7.10 %.

Refinement top

The absolute structure of (I) is indeterminate based on the present model. All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N).

Structure description top

In recent years, the design and construction of metal-organic frameworks through the coordination of metal ions with multifunctional organic ligands have received extensive attention due to their impressive structural diversities in architectures and their potential applications as functional materials (Zhang et al., 2003). Whereas, it is more important to design the novel organic ligand. Here, we describe the recystallization and structural characterization of the title compound.

The molecular structure is shown in Fig 1. The dihedral angle between the two pyridine rings is 61.24 (8) °. N—H···O and N—H···N hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 1).

For general background to metal-organic frameworks, see: Zhang et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The moleular structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
4-[3,5-Bis(ethoxycarbonyl)-2,6-dimethyl-4-pyridyl]pyridinium nitrate top
Crystal data top
C18H21N2O4+·NO3F(000) = 824
Mr = 391.38Dx = 1.309 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3948 reflections
a = 9.075 (9) Åθ = 2.2–25.9°
b = 15.496 (15) ŵ = 0.10 mm1
c = 14.125 (13) ÅT = 296 K
V = 1987 (3) Å3Block, yellow
Z = 40.37 × 0.33 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
3395 independent reflections
Radiation source: fine-focus sealed tube2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.156
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.963, Tmax = 0.975k = 1810
9196 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3395 reflectionsΔρmax = 0.17 e Å3
258 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0134 (12)
Crystal data top
C18H21N2O4+·NO3V = 1987 (3) Å3
Mr = 391.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.075 (9) ŵ = 0.10 mm1
b = 15.496 (15) ÅT = 296 K
c = 14.125 (13) Å0.37 × 0.33 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
3395 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2877 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.975Rint = 0.156
9196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
3395 reflectionsΔρmin = 0.21 e Å3
258 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10369 (19)1.05766 (11)0.20140 (17)0.0498 (5)
H10.20221.07380.19790.060*
C20.06618 (18)0.97534 (10)0.22947 (15)0.0460 (5)
H20.13930.93610.24600.055*
C30.08043 (17)0.95128 (10)0.23295 (14)0.0372 (4)
C40.18687 (19)1.01225 (10)0.20996 (15)0.0476 (5)
H40.28630.99800.21280.057*
C50.14389 (18)1.09410 (11)0.18284 (16)0.0496 (5)
H50.21451.13520.16710.060*
C60.12219 (17)0.86086 (9)0.26006 (13)0.0352 (4)
C70.20576 (18)0.84398 (10)0.34073 (13)0.0389 (4)
C80.24140 (19)0.75802 (10)0.36386 (14)0.0420 (4)
C90.10982 (18)0.70663 (10)0.23457 (14)0.0404 (4)
C100.07328 (16)0.79095 (9)0.20499 (13)0.0365 (4)
C110.0619 (2)0.62888 (10)0.1782 (2)0.0585 (6)
H11A0.07330.57780.21610.088*
H11B0.12140.62410.12230.088*
H11C0.03970.63520.16050.088*
C120.3328 (3)0.73555 (13)0.44732 (18)0.0596 (6)
H12A0.34630.67420.44980.089*
H12B0.28420.75460.50390.089*
H12C0.42700.76330.44220.089*
C130.00568 (19)0.80402 (10)0.11383 (15)0.0428 (5)
C140.0243 (3)0.85562 (17)0.0438 (2)0.0784 (7)
H14A0.06050.90810.07310.094*
H14B0.08250.85710.04470.094*
C150.0777 (6)0.77990 (19)0.0969 (3)0.1235 (14)
H15A0.18340.77830.09490.185*
H15B0.04550.78380.16150.185*
H15C0.03880.72820.06890.185*
C160.2496 (2)0.91621 (11)0.40602 (15)0.0482 (5)
C170.4449 (3)1.00763 (16)0.4561 (2)0.0846 (8)
H17A0.39351.06110.44280.102*
H17B0.42910.99310.52210.102*
C180.5981 (3)1.0179 (2)0.4383 (3)0.1241 (13)
H18A0.64780.96420.44940.186*
H18B0.63731.06130.47980.186*
H18C0.61261.03520.37370.186*
N30.53347 (15)0.16998 (8)0.17481 (14)0.0488 (4)
N10.19326 (16)0.69168 (8)0.31060 (12)0.0440 (4)
N20.00187 (16)1.11408 (8)0.17919 (14)0.0484 (4)
H2A0.02311.16520.16190.058*
O10.12303 (17)0.77548 (12)0.09504 (13)0.0770 (5)
O20.07701 (15)0.85022 (8)0.05417 (12)0.0595 (4)
O30.38730 (15)0.93821 (9)0.39511 (13)0.0643 (4)
O40.16624 (19)0.94931 (12)0.46120 (15)0.0888 (6)
O50.43298 (14)0.21643 (8)0.14155 (13)0.0615 (4)
O60.64708 (15)0.20368 (9)0.20110 (18)0.0856 (6)
O70.51772 (17)0.09067 (8)0.17934 (19)0.0873 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (8)0.0371 (9)0.0676 (15)0.0042 (7)0.0064 (9)0.0048 (9)
C20.0444 (8)0.0322 (8)0.0613 (13)0.0021 (7)0.0003 (9)0.0025 (9)
C30.0448 (8)0.0281 (7)0.0388 (10)0.0001 (6)0.0026 (7)0.0020 (7)
C40.0435 (8)0.0332 (8)0.0660 (14)0.0010 (6)0.0001 (9)0.0057 (8)
C50.0494 (8)0.0338 (8)0.0657 (14)0.0061 (7)0.0023 (10)0.0049 (9)
C60.0384 (7)0.0260 (7)0.0411 (11)0.0003 (6)0.0040 (7)0.0009 (7)
C70.0420 (8)0.0316 (7)0.0429 (11)0.0000 (6)0.0031 (8)0.0030 (7)
C80.0477 (8)0.0370 (8)0.0414 (11)0.0053 (7)0.0047 (8)0.0016 (8)
C90.0439 (8)0.0279 (7)0.0495 (12)0.0014 (6)0.0080 (8)0.0044 (7)
C100.0386 (7)0.0275 (7)0.0434 (11)0.0017 (6)0.0034 (7)0.0042 (7)
C110.0677 (11)0.0310 (8)0.0768 (16)0.0052 (7)0.0037 (12)0.0144 (9)
C120.0761 (13)0.0506 (11)0.0519 (14)0.0082 (9)0.0100 (11)0.0058 (10)
C130.0418 (8)0.0355 (8)0.0513 (12)0.0007 (7)0.0003 (8)0.0081 (8)
C140.0979 (16)0.0791 (14)0.0582 (17)0.0109 (13)0.0182 (13)0.0275 (13)
C150.211 (4)0.095 (2)0.064 (2)0.013 (2)0.011 (3)0.0004 (19)
C160.0559 (10)0.0384 (8)0.0502 (12)0.0046 (7)0.0052 (9)0.0088 (9)
C170.0961 (17)0.0685 (13)0.089 (2)0.0206 (13)0.0115 (15)0.0356 (13)
C180.0940 (18)0.126 (2)0.153 (3)0.0447 (18)0.001 (2)0.069 (2)
N30.0451 (7)0.0320 (6)0.0694 (12)0.0002 (6)0.0099 (8)0.0050 (8)
N10.0547 (8)0.0281 (6)0.0493 (10)0.0016 (6)0.0050 (7)0.0034 (7)
N20.0615 (9)0.0258 (6)0.0578 (11)0.0058 (6)0.0071 (8)0.0018 (7)
O10.0578 (8)0.1056 (12)0.0677 (12)0.0226 (8)0.0104 (8)0.0015 (9)
O20.0662 (8)0.0590 (7)0.0533 (10)0.0079 (7)0.0060 (7)0.0137 (7)
O30.0663 (8)0.0602 (7)0.0664 (11)0.0137 (6)0.0004 (8)0.0270 (8)
O40.0803 (10)0.0871 (10)0.0990 (14)0.0011 (8)0.0135 (10)0.0543 (10)
O50.0521 (7)0.0398 (6)0.0925 (13)0.0035 (5)0.0088 (7)0.0036 (7)
O60.0535 (7)0.0432 (7)0.1601 (19)0.0011 (6)0.0234 (10)0.0018 (10)
O70.0748 (8)0.0284 (6)0.159 (2)0.0030 (6)0.0012 (12)0.0025 (9)
Geometric parameters (Å, º) top
C1—N21.334 (2)C12—H12B0.9600
C1—C21.379 (3)C12—H12C0.9600
C1—H10.9300C13—O11.183 (2)
C2—C31.383 (3)C13—O21.336 (2)
C2—H20.9300C14—O21.466 (3)
C3—C41.390 (2)C14—C151.474 (5)
C3—C61.501 (2)C14—H14A0.9700
C4—C51.381 (3)C14—H14B0.9700
C4—H40.9300C15—H15A0.9600
C5—N21.327 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.394 (3)C16—O41.201 (3)
C6—C101.406 (2)C16—O31.304 (3)
C7—C81.409 (3)C17—C181.422 (4)
C7—C161.504 (3)C17—O31.474 (3)
C8—N11.347 (2)C17—H17A0.9700
C8—C121.483 (3)C17—H17B0.9700
C9—N11.334 (3)C18—H18A0.9600
C9—C101.411 (2)C18—H18B0.9600
C9—C111.508 (3)C18—H18C0.9600
C10—C131.488 (3)N3—O61.214 (2)
C11—H11A0.9600N3—O71.239 (2)
C11—H11B0.9600N3—O51.253 (2)
C11—H11C0.9600N2—H2A0.8600
C12—H12A0.9600
N2—C1—C2119.78 (16)H12B—C12—H12C109.5
N2—C1—H1120.1O1—C13—O2124.4 (2)
C2—C1—H1120.1O1—C13—C10125.22 (19)
C1—C2—C3119.82 (16)O2—C13—C10110.38 (15)
C1—C2—H2120.1O2—C14—C15109.1 (2)
C3—C2—H2120.1O2—C14—H14A109.9
C2—C3—C4118.51 (16)C15—C14—H14A109.9
C2—C3—C6120.24 (14)O2—C14—H14B109.9
C4—C3—C6121.24 (15)C15—C14—H14B109.9
C5—C4—C3119.53 (16)H14A—C14—H14B108.3
C5—C4—H4120.2C14—C15—H15A109.5
C3—C4—H4120.2C14—C15—H15B109.5
N2—C5—C4119.97 (15)H15A—C15—H15B109.5
N2—C5—H5120.0C14—C15—H15C109.5
C4—C5—H5120.0H15A—C15—H15C109.5
C7—C6—C10118.67 (14)H15B—C15—H15C109.5
C7—C6—C3121.41 (14)O4—C16—O3124.64 (19)
C10—C6—C3119.90 (16)O4—C16—C7123.29 (18)
C6—C7—C8119.46 (15)O3—C16—C7112.07 (16)
C6—C7—C16120.38 (15)C18—C17—O3109.0 (2)
C8—C7—C16120.04 (17)C18—C17—H17A109.9
N1—C8—C7121.18 (18)O3—C17—H17A109.9
N1—C8—C12116.50 (16)C18—C17—H17B109.9
C7—C8—C12122.32 (17)O3—C17—H17B109.9
N1—C9—C10122.17 (15)H17A—C17—H17B108.3
N1—C9—C11116.72 (16)C17—C18—H18A109.5
C10—C9—C11121.04 (18)C17—C18—H18B109.5
C6—C10—C9118.39 (17)H18A—C18—H18B109.5
C6—C10—C13121.75 (15)C17—C18—H18C109.5
C9—C10—C13119.71 (15)H18A—C18—H18C109.5
C9—C11—H11A109.5H18B—C18—H18C109.5
C9—C11—H11B109.5O6—N3—O7120.59 (16)
H11A—C11—H11B109.5O6—N3—O5119.06 (15)
C9—C11—H11C109.5O7—N3—O5120.34 (16)
H11A—C11—H11C109.5C9—N1—C8120.07 (14)
H11B—C11—H11C109.5C5—N2—C1122.38 (15)
C8—C12—H12A109.5C5—N2—H2A118.8
C8—C12—H12B109.5C1—N2—H2A118.8
H12A—C12—H12B109.5C13—O2—C14116.27 (18)
C8—C12—H12C109.5C16—O3—C17117.49 (18)
H12A—C12—H12C109.5
N2—C1—C2—C31.1 (3)C11—C9—C10—C6179.48 (17)
C1—C2—C3—C41.6 (3)N1—C9—C10—C13173.11 (15)
C1—C2—C3—C6177.80 (19)C11—C9—C10—C133.8 (2)
C2—C3—C4—C51.1 (3)C6—C10—C13—O1124.4 (2)
C6—C3—C4—C5178.22 (19)C9—C10—C13—O160.1 (3)
C3—C4—C5—N20.2 (3)C6—C10—C13—O257.8 (2)
C2—C3—C6—C7117.5 (2)C9—C10—C13—O2117.67 (17)
C4—C3—C6—C763.1 (3)C6—C7—C16—O476.4 (3)
C2—C3—C6—C1060.7 (3)C8—C7—C16—O499.8 (2)
C4—C3—C6—C10118.7 (2)C6—C7—C16—O3103.4 (2)
C10—C6—C7—C81.3 (2)C8—C7—C16—O380.4 (2)
C3—C6—C7—C8179.50 (16)C10—C9—N1—C82.3 (3)
C10—C6—C7—C16174.90 (16)C11—C9—N1—C8179.39 (17)
C3—C6—C7—C163.3 (2)C7—C8—N1—C90.2 (3)
C6—C7—C8—N11.6 (3)C12—C8—N1—C9179.67 (17)
C16—C7—C8—N1174.62 (16)C4—C5—N2—C10.3 (3)
C6—C7—C8—C12178.55 (17)C2—C1—N2—C50.1 (3)
C16—C7—C8—C125.3 (3)O1—C13—O2—C147.9 (3)
C7—C6—C10—C90.7 (2)C10—C13—O2—C14169.90 (17)
C3—C6—C10—C9177.59 (15)C15—C14—O2—C1385.5 (3)
C7—C6—C10—C13174.87 (15)O4—C16—O3—C171.1 (3)
C3—C6—C10—C136.9 (2)C7—C16—O3—C17179.12 (19)
N1—C9—C10—C62.5 (2)C18—C17—O3—C16176.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.861.902.752 (3)171
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC18H21N2O4+·NO3
Mr391.38
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.075 (9), 15.496 (15), 14.125 (13)
V3)1987 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.33 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.963, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9196, 3395, 2877
Rint0.156
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.00
No. of reflections3395
No. of parameters258
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.861.902.752 (3)171
Symmetry code: (i) x1/2, y+3/2, z.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181–1185.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds