metal-organic compounds
Tetrakis(μ2-2,2-dimethylpropanoato-κ2O,O′)bis[(pyridine-κN)copper(II)]: a monoclinic polymorph
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The structure of the dinuclear title complex, [Cu2(C5H9O2)4(C5H5N)2], represents a monoclinic polymorph of the previously reported triclinic form [Blewett et al. (2006). Acta Cryst. E62, m420–m422]. Each carboxylate group is bidentate bridging and the distorted octahedral geometry about each CuII atom is completed by a pyridine N atom and the other Cu atom [Cu⋯Cu = 2.6139 (7) Å]. In the crystal, molecules are connected into supramolecular chains via π–π interactions formed by the pyridine rings [centroid–centroid distance = 3.552 (3) Å] and these are connected into a two-dimensional array in the ac plane by C—H⋯π contacts. One of the tert-butyl groups is disordered over two orientations in a 0.734 (6):0.266 (6) ratio.
Related literature
For the structure of the triclinic polymorph of the title compound, see: Blewett et al. (2006). For background to copper(II) carboxylates, see: Attard & Cullum (1990); Kato et al. (1964); Melnik et al. (1984); Kawata et al. (1992).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810015060/hb5416sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015060/hb5416Isup2.hkl
An aqueous solution (50 ml) of sodium carbonate (5.2 g, 0.049 mol) was added to an aqueous solution (50 ml) of 2,2-dimethylpropionic acid (10 g, 0.098 mol) and the mixture was stirred at 323 K. After 30 min, a solution of CuCl2.2H2O (8.33 g, 0.049 mol) dissolved in a minimum amount of water was added followed by addition of several drops of pyridine. The mixture was stirred for another 30 min. and then set aside at room temperature for a week whereupon green blocks of (I) were obtained. Both DSC and TGA data indicate that the material did not melt, but decomposed at 408 K. CHN analyses (%), Found: C, 52.17; H, 6.75; N, 4.16. Calc'd: C, 52.23; H, 6.72; N, 4.05.
Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). One of the tert-butyl groups was found to be disordered with two positions being resolved for each of the methyl groups. From anisotropic the major component of the disorder had a site occupancy factor = 0.734 (6). The C–C bond distances for the disordered group were refined with the distance restraint 1.52±0.01 Å, and the anisotropic displacement parameters for pairs of disordered atoms were constrained to be equivalent with the EADP command in SHELXL-97 (Sheldrick, 2008). The maximum and minimum residual electron density peaks of 1.26 and 0.75 e Å-3, respectively, were located 1.43 Å and 0.24 Å from the H29 and C19b atoms, respectively.Research on copper(II) carboxylates focuses upon their metallomesogenic properties (Attard & Cullum, 1990) and interesting magneto-structural relationship (Kato et al., 1964; Melnik et al., 1984; Kawata et al., 1992). However, the practical use of these complexes is hindered by their high melting points (greater than 523 K) and which are accompanied by thermal decomposition. Our research interest is to develop low-temperature copper(II) carboxylates as functional materials for use in the fields of catalysis, photonics, spintronics, and electronics. To realise this, we adopted the concepts of symmetry reduction by mixed ligands and the use of highly-branched alkylcarboxylates. This contribution reports the
of one of the starting materials to be used in the synthesis of such complexes, i.e. the title compound, (I).The dinuclear structure of (I), Fig. 1, features two Cu atoms, separated by 2.6139 (7) Å, connected by four bidentate bridging carboxylate ligands. The final position in the disordered octahedral trans-CuNO4 donor set is occupied by a pyridine-N atom in each case. The structure resembles closely that described for the triclinic polymorph but with the latter being disposed about a centre of inversion (Blewett et al., 2006). The primary differences between the molecules is found in the relative disposition of the pyridine groups. In (I), the dihedral angles formed between the least-squares planes through the four O atoms and pyridine ring = 81.5 (1) ° for Cu1 and 88.6 (1) ° for Cu2, which compares to 89.38 (8) ° found in the triclinic structure. These differences are reflected in the dihedral angle of 12.93 (15) ° formed between the pyridine rings in (I) compared to 0 ° (from symmetry) in the triclinic polymorph. These differences not withstanding, the Cu–O bond distances are experimentally equivalent in the two forms but it is noted these cover are broader range in (I), i.e. 1.950 (3) to 1.987 (3) Å, compared with 1.963 (2) to 1.977 (2) Å; the Cu–N distances are indistinguishable. The Cu···Cu distance in (I), 2.6139 (7) Å, is shorter than 2.6229 (9) Å in the triclinic form.
A common feature of the crystal packing of both forms is the presence of significant π–π interactions between the pyridine rings. In (I), these [ring centroid(N1,C21—C25)···ring centroid(N2,C26—C30)i = 3.552 (3) Å, angle between planes = 9.2 (2) °, for i: 1/2+x, 1/2-y, 1/2+z] lead to supramolecular chains which are connected into a 2-D array in the ac plane by C–H···π contacts involving methyl-H atoms (one being derived from a disordered tert-butyl residue), Fig. 2 & Table 1. The layers are stacked along the b direction as illustrated in Fig. 3.
For the structure of the triclinic polymorph of the title compound, see: Blewett et al. (2006). For background to copper(II) carboxylates, see: Attard & Cullum (1990); Kato et al. (1964); Melnik et al. (1984); Kawata et al. (1992).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2(C5H9O2)4(C5H5N)2] | F(000) = 1448 |
Mr = 689.80 | Dx = 1.340 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6465 reflections |
a = 9.4758 (6) Å | θ = 2.2–28.4° |
b = 20.0192 (12) Å | µ = 1.29 mm−1 |
c = 18.6136 (10) Å | T = 100 K |
β = 104.515 (3)° | Block, green |
V = 3418.3 (4) Å3 | 0.32 × 0.26 × 0.16 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 7077 independent reflections |
Radiation source: fine-focus sealed tube | 5583 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ω scans | θmax = 26.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.682, Tmax = 0.820 | k = −25→25 |
28775 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0532P)2 + 12.7516P] where P = (Fo2 + 2Fc2)/3 |
7077 reflections | (Δ/σ)max = 0.001 |
404 parameters | Δρmax = 1.26 e Å−3 |
12 restraints | Δρmin = −0.75 e Å−3 |
[Cu2(C5H9O2)4(C5H5N)2] | V = 3418.3 (4) Å3 |
Mr = 689.80 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4758 (6) Å | µ = 1.29 mm−1 |
b = 20.0192 (12) Å | T = 100 K |
c = 18.6136 (10) Å | 0.32 × 0.26 × 0.16 mm |
β = 104.515 (3)° |
Bruker SMART APEX CCD diffractometer | 7077 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 5583 reflections with I > 2σ(I) |
Tmin = 0.682, Tmax = 0.820 | Rint = 0.060 |
28775 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 12 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0532P)2 + 12.7516P] where P = (Fo2 + 2Fc2)/3 |
7077 reflections | Δρmax = 1.26 e Å−3 |
404 parameters | Δρmin = −0.75 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.45858 (5) | 0.21308 (2) | 0.12035 (3) | 0.01076 (14) | |
Cu2 | 0.26828 (5) | 0.28113 (2) | 0.02145 (3) | 0.01059 (14) | |
O1 | 0.2929 (3) | 0.15985 (17) | 0.13229 (18) | 0.0249 (8) | |
O2 | 0.1310 (3) | 0.21490 (17) | 0.04446 (18) | 0.0234 (7) | |
O3 | 0.4621 (4) | 0.15777 (16) | 0.03288 (17) | 0.0246 (8) | |
O4 | 0.3063 (4) | 0.21771 (15) | −0.05224 (16) | 0.0206 (7) | |
O5 | 0.4194 (4) | 0.27884 (16) | 0.19295 (16) | 0.0227 (7) | |
O6 | 0.2568 (3) | 0.33601 (16) | 0.10715 (16) | 0.0219 (7) | |
O7 | 0.5986 (3) | 0.27532 (16) | 0.09663 (18) | 0.0233 (7) | |
O8 | 0.4386 (3) | 0.33408 (16) | 0.01196 (18) | 0.0217 (7) | |
N1 | 0.6203 (4) | 0.15694 (17) | 0.19951 (18) | 0.0127 (7) | |
N2 | 0.1082 (4) | 0.34034 (17) | −0.05504 (18) | 0.0114 (7) | |
C1 | 0.1662 (5) | 0.1693 (2) | 0.0920 (2) | 0.0162 (9) | |
C2 | 0.0475 (5) | 0.1208 (2) | 0.1027 (3) | 0.0229 (10) | |
C3 | 0.0191 (7) | 0.1362 (4) | 0.1771 (3) | 0.0458 (16) | |
H3A | −0.0212 | 0.1813 | 0.1763 | 0.069* | |
H3B | 0.1106 | 0.1334 | 0.2157 | 0.069* | |
H3C | −0.0507 | 0.1038 | 0.1876 | 0.069* | |
C4 | 0.1053 (7) | 0.0488 (3) | 0.1029 (4) | 0.0405 (14) | |
H4A | 0.1948 | 0.0440 | 0.1426 | 0.061* | |
H4B | 0.1262 | 0.0393 | 0.0549 | 0.061* | |
H4C | 0.0317 | 0.0175 | 0.1112 | 0.061* | |
C5 | −0.0901 (6) | 0.1281 (4) | 0.0406 (4) | 0.0524 (19) | |
H5A | −0.1589 | 0.0925 | 0.0446 | 0.079* | |
H5B | −0.0656 | 0.1246 | −0.0074 | 0.079* | |
H5C | −0.1347 | 0.1716 | 0.0444 | 0.079* | |
C6 | 0.3892 (4) | 0.1687 (2) | −0.0318 (2) | 0.0134 (8) | |
C7 | 0.3937 (5) | 0.1150 (2) | −0.0905 (2) | 0.0151 (9) | |
C8 | 0.5456 (5) | 0.0838 (3) | −0.0754 (3) | 0.0260 (11) | |
H8A | 0.5710 | 0.0643 | −0.0255 | 0.039* | |
H8B | 0.6170 | 0.1183 | −0.0789 | 0.039* | |
H8C | 0.5462 | 0.0488 | −0.1121 | 0.039* | |
C9 | 0.2810 (5) | 0.0621 (2) | −0.0821 (3) | 0.0232 (10) | |
H9A | 0.3111 | 0.0419 | −0.0326 | 0.035* | |
H9B | 0.2749 | 0.0273 | −0.1199 | 0.035* | |
H9C | 0.1854 | 0.0832 | −0.0884 | 0.035* | |
C10 | 0.3515 (5) | 0.1443 (2) | −0.1687 (2) | 0.0230 (10) | |
H10A | 0.3551 | 0.1091 | −0.2049 | 0.035* | |
H10B | 0.4198 | 0.1800 | −0.1728 | 0.035* | |
H10C | 0.2525 | 0.1625 | −0.1787 | 0.035* | |
C11 | 0.3319 (5) | 0.3263 (2) | 0.1724 (2) | 0.0146 (8) | |
C12 | 0.3165 (5) | 0.3794 (2) | 0.2300 (2) | 0.0188 (9) | |
C13 | 0.1568 (6) | 0.3994 (3) | 0.2176 (3) | 0.0307 (12) | |
H13A | 0.1483 | 0.4348 | 0.2526 | 0.046* | |
H13B | 0.0997 | 0.3605 | 0.2256 | 0.046* | |
H13C | 0.1200 | 0.4156 | 0.1667 | 0.046* | |
C14 | 0.4075 (6) | 0.4394 (3) | 0.2171 (3) | 0.0332 (12) | |
H14A | 0.3725 | 0.4548 | 0.1657 | 0.050* | |
H14B | 0.5100 | 0.4262 | 0.2263 | 0.050* | |
H14C | 0.3980 | 0.4756 | 0.2510 | 0.050* | |
C15 | 0.3755 (5) | 0.3530 (3) | 0.3093 (2) | 0.0244 (10) | |
H15A | 0.3713 | 0.3886 | 0.3449 | 0.037* | |
H15B | 0.4767 | 0.3385 | 0.3160 | 0.037* | |
H15C | 0.3161 | 0.3151 | 0.3177 | 0.037* | |
C16 | 0.5650 (5) | 0.3216 (2) | 0.0502 (2) | 0.0140 (8) | |
C17A | 0.6897 (5) | 0.3671 (2) | 0.0410 (2) | 0.0239 (10) | 0.734 (6) |
C18A | 0.8277 (7) | 0.3287 (4) | 0.0437 (5) | 0.0402 (19) | 0.734 (6) |
H18A | 0.8152 | 0.3020 | −0.0016 | 0.060* | 0.734 (6) |
H18B | 0.8489 | 0.2990 | 0.0870 | 0.060* | 0.734 (6) |
H18C | 0.9087 | 0.3600 | 0.0475 | 0.060* | 0.734 (6) |
C19A | 0.6466 (8) | 0.4147 (4) | −0.0237 (4) | 0.0373 (19) | 0.734 (6) |
H19A | 0.7232 | 0.4483 | −0.0203 | 0.056* | 0.734 (6) |
H19B | 0.5550 | 0.4369 | −0.0226 | 0.056* | 0.734 (6) |
H19C | 0.6336 | 0.3898 | −0.0702 | 0.056* | 0.734 (6) |
C20A | 0.7221 (9) | 0.4117 (4) | 0.1122 (4) | 0.0397 (19) | 0.734 (6) |
H20A | 0.7620 | 0.3840 | 0.1559 | 0.060* | 0.734 (6) |
H20B | 0.6317 | 0.4329 | 0.1169 | 0.060* | 0.734 (6) |
H20C | 0.7930 | 0.4463 | 0.1082 | 0.060* | 0.734 (6) |
C17B | 0.6897 (5) | 0.3671 (2) | 0.0410 (2) | 0.0239 (10) | 0.266 (6) |
C18B | 0.8322 (14) | 0.3532 (12) | 0.0968 (11) | 0.0402 (19) | 0.266 (6) |
H18D | 0.9104 | 0.3785 | 0.0835 | 0.060* | 0.266 (6) |
H18E | 0.8540 | 0.3053 | 0.0969 | 0.060* | 0.266 (6) |
H18F | 0.8247 | 0.3666 | 0.1464 | 0.060* | 0.266 (6) |
C19B | 0.711 (2) | 0.3343 (10) | −0.0311 (8) | 0.0373 (19) | 0.266 (6) |
H19D | 0.6414 | 0.3536 | −0.0741 | 0.056* | 0.266 (6) |
H19E | 0.6943 | 0.2860 | −0.0295 | 0.056* | 0.266 (6) |
H19F | 0.8106 | 0.3425 | −0.0353 | 0.056* | 0.266 (6) |
C20B | 0.636 (2) | 0.4363 (6) | 0.0178 (13) | 0.0397 (19) | 0.266 (6) |
H20D | 0.5969 | 0.4566 | 0.0568 | 0.060* | 0.266 (6) |
H20E | 0.5582 | 0.4339 | −0.0283 | 0.060* | 0.266 (6) |
H20F | 0.7162 | 0.4635 | 0.0097 | 0.060* | 0.266 (6) |
C21 | 0.6186 (5) | 0.0903 (2) | 0.2011 (3) | 0.0212 (10) | |
H21 | 0.5543 | 0.0671 | 0.1615 | 0.025* | |
C22 | 0.7063 (6) | 0.0535 (2) | 0.2577 (3) | 0.0266 (11) | |
H22 | 0.7017 | 0.0061 | 0.2572 | 0.032* | |
C23 | 0.8012 (5) | 0.0870 (3) | 0.3153 (2) | 0.0247 (11) | |
H23 | 0.8628 | 0.0629 | 0.3549 | 0.030* | |
C24 | 0.8046 (5) | 0.1551 (3) | 0.3142 (2) | 0.0234 (10) | |
H24 | 0.8681 | 0.1793 | 0.3531 | 0.028* | |
C25 | 0.7131 (5) | 0.1884 (2) | 0.2548 (2) | 0.0215 (10) | |
H25 | 0.7170 | 0.2358 | 0.2536 | 0.026* | |
C26 | 0.0947 (5) | 0.4055 (2) | −0.0447 (2) | 0.0173 (9) | |
H26 | 0.1561 | 0.4256 | −0.0020 | 0.021* | |
C27 | −0.0046 (5) | 0.4454 (2) | −0.0933 (3) | 0.0246 (10) | |
H27 | −0.0134 | 0.4915 | −0.0833 | 0.030* | |
C28 | −0.0911 (5) | 0.4162 (3) | −0.1571 (3) | 0.0259 (11) | |
H28 | −0.1586 | 0.4425 | −0.1922 | 0.031* | |
C29 | −0.0778 (5) | 0.3487 (3) | −0.1689 (3) | 0.0242 (10) | |
H29 | −0.1361 | 0.3276 | −0.2119 | 0.029* | |
C30 | 0.0230 (5) | 0.3123 (2) | −0.1163 (2) | 0.0182 (9) | |
H30 | 0.0320 | 0.2657 | −0.1239 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0098 (2) | 0.0124 (3) | 0.0083 (2) | −0.00001 (19) | −0.00105 (18) | 0.00013 (18) |
Cu2 | 0.0095 (2) | 0.0119 (3) | 0.0086 (2) | −0.00012 (19) | −0.00098 (18) | 0.00001 (18) |
O1 | 0.0145 (16) | 0.0320 (19) | 0.0222 (17) | −0.0075 (14) | −0.0069 (13) | 0.0127 (14) |
O2 | 0.0133 (15) | 0.0284 (18) | 0.0257 (17) | −0.0046 (13) | −0.0005 (13) | 0.0113 (14) |
O3 | 0.0311 (19) | 0.0243 (18) | 0.0120 (15) | 0.0147 (14) | −0.0063 (13) | −0.0042 (13) |
O4 | 0.0292 (18) | 0.0195 (16) | 0.0103 (14) | 0.0108 (14) | −0.0002 (13) | −0.0005 (12) |
O5 | 0.0270 (18) | 0.0248 (18) | 0.0126 (15) | 0.0133 (14) | −0.0021 (13) | −0.0028 (13) |
O6 | 0.0237 (17) | 0.0254 (17) | 0.0123 (15) | 0.0105 (14) | −0.0032 (13) | −0.0040 (13) |
O7 | 0.0134 (15) | 0.0272 (18) | 0.0266 (17) | −0.0039 (13) | −0.0001 (13) | 0.0112 (14) |
O8 | 0.0130 (15) | 0.0225 (17) | 0.0266 (17) | −0.0031 (13) | −0.0010 (13) | 0.0084 (13) |
N1 | 0.0112 (17) | 0.0171 (18) | 0.0079 (16) | 0.0042 (14) | −0.0012 (13) | −0.0012 (13) |
N2 | 0.0096 (16) | 0.0158 (17) | 0.0089 (16) | −0.0004 (13) | 0.0022 (13) | 0.0010 (13) |
C1 | 0.019 (2) | 0.019 (2) | 0.0090 (19) | −0.0055 (17) | 0.0001 (16) | −0.0002 (16) |
C2 | 0.017 (2) | 0.029 (3) | 0.021 (2) | −0.0090 (19) | 0.0013 (18) | 0.0088 (19) |
C3 | 0.036 (3) | 0.072 (5) | 0.037 (3) | −0.017 (3) | 0.023 (3) | −0.005 (3) |
C4 | 0.046 (4) | 0.026 (3) | 0.052 (4) | −0.013 (3) | 0.017 (3) | 0.006 (3) |
C5 | 0.027 (3) | 0.060 (4) | 0.055 (4) | −0.026 (3) | −0.018 (3) | 0.026 (3) |
C6 | 0.013 (2) | 0.014 (2) | 0.0116 (19) | −0.0021 (16) | 0.0015 (16) | 0.0010 (16) |
C7 | 0.014 (2) | 0.019 (2) | 0.0113 (19) | 0.0026 (17) | 0.0004 (16) | −0.0039 (16) |
C8 | 0.025 (3) | 0.028 (3) | 0.024 (2) | 0.010 (2) | 0.003 (2) | −0.005 (2) |
C9 | 0.031 (3) | 0.018 (2) | 0.020 (2) | −0.006 (2) | 0.006 (2) | −0.0052 (18) |
C10 | 0.029 (3) | 0.026 (3) | 0.012 (2) | 0.008 (2) | 0.0003 (19) | −0.0005 (18) |
C11 | 0.015 (2) | 0.016 (2) | 0.014 (2) | 0.0002 (17) | 0.0057 (17) | −0.0002 (16) |
C12 | 0.026 (2) | 0.014 (2) | 0.015 (2) | 0.0071 (18) | 0.0036 (18) | 0.0018 (17) |
C13 | 0.028 (3) | 0.044 (3) | 0.019 (2) | 0.020 (2) | 0.003 (2) | 0.000 (2) |
C14 | 0.047 (3) | 0.022 (3) | 0.029 (3) | −0.008 (2) | 0.008 (2) | −0.007 (2) |
C15 | 0.031 (3) | 0.030 (3) | 0.010 (2) | 0.012 (2) | 0.0025 (19) | −0.0015 (18) |
C16 | 0.014 (2) | 0.020 (2) | 0.0075 (18) | −0.0022 (17) | 0.0009 (16) | −0.0057 (16) |
C17A | 0.015 (2) | 0.035 (3) | 0.022 (2) | −0.002 (2) | 0.0027 (19) | 0.007 (2) |
C18A | 0.021 (3) | 0.044 (5) | 0.062 (5) | 0.001 (3) | 0.022 (4) | 0.008 (4) |
C19A | 0.019 (3) | 0.048 (4) | 0.041 (4) | −0.011 (3) | 0.001 (3) | 0.021 (4) |
C20A | 0.039 (4) | 0.047 (5) | 0.035 (4) | −0.028 (4) | 0.012 (3) | −0.013 (3) |
C17B | 0.015 (2) | 0.035 (3) | 0.022 (2) | −0.002 (2) | 0.0027 (19) | 0.007 (2) |
C18B | 0.021 (3) | 0.044 (5) | 0.062 (5) | 0.001 (3) | 0.022 (4) | 0.008 (4) |
C19B | 0.019 (3) | 0.048 (4) | 0.041 (4) | −0.011 (3) | 0.001 (3) | 0.021 (4) |
C20B | 0.039 (4) | 0.047 (5) | 0.035 (4) | −0.028 (4) | 0.012 (3) | −0.013 (3) |
C21 | 0.024 (2) | 0.017 (2) | 0.020 (2) | 0.0008 (19) | 0.0002 (18) | −0.0012 (18) |
C22 | 0.033 (3) | 0.018 (2) | 0.027 (3) | 0.008 (2) | 0.003 (2) | 0.0081 (19) |
C23 | 0.017 (2) | 0.039 (3) | 0.015 (2) | 0.012 (2) | −0.0027 (18) | 0.011 (2) |
C24 | 0.017 (2) | 0.040 (3) | 0.010 (2) | 0.004 (2) | −0.0015 (17) | −0.0037 (19) |
C25 | 0.019 (2) | 0.023 (2) | 0.018 (2) | 0.0034 (19) | −0.0050 (18) | −0.0082 (18) |
C26 | 0.016 (2) | 0.017 (2) | 0.016 (2) | −0.0021 (17) | −0.0009 (17) | 0.0010 (17) |
C27 | 0.023 (2) | 0.019 (2) | 0.030 (3) | 0.0036 (19) | 0.003 (2) | 0.004 (2) |
C28 | 0.023 (2) | 0.036 (3) | 0.016 (2) | 0.008 (2) | 0.0007 (19) | 0.009 (2) |
C29 | 0.016 (2) | 0.036 (3) | 0.017 (2) | 0.006 (2) | −0.0017 (18) | −0.004 (2) |
C30 | 0.013 (2) | 0.024 (2) | 0.015 (2) | 0.0032 (18) | −0.0026 (17) | −0.0068 (17) |
Cu1—O7 | 1.950 (3) | C13—H13A | 0.9800 |
Cu1—O1 | 1.956 (3) | C13—H13B | 0.9800 |
Cu1—O3 | 1.976 (3) | C13—H13C | 0.9800 |
Cu1—O5 | 1.987 (3) | C14—H14A | 0.9800 |
Cu1—N1 | 2.157 (3) | C14—H14B | 0.9800 |
Cu1—Cu2 | 2.6139 (7) | C14—H14C | 0.9800 |
Cu2—O6 | 1.962 (3) | C15—H15A | 0.9800 |
Cu2—O4 | 1.968 (3) | C15—H15B | 0.9800 |
Cu2—O8 | 1.976 (3) | C15—H15C | 0.9800 |
Cu2—O2 | 1.978 (3) | C16—C17B | 1.535 (6) |
Cu2—N2 | 2.157 (3) | C16—C17A | 1.535 (6) |
O1—C1 | 1.261 (5) | C17A—C18A | 1.506 (7) |
O2—C1 | 1.257 (5) | C17A—C19A | 1.510 (6) |
O3—C6 | 1.247 (5) | C17A—C20A | 1.563 (7) |
O4—C6 | 1.255 (5) | C18A—H18A | 0.9800 |
O5—C11 | 1.256 (5) | C18A—H18B | 0.9800 |
O6—C11 | 1.260 (5) | C18A—H18C | 0.9800 |
O7—C16 | 1.253 (5) | C19A—H19A | 0.9800 |
O8—C16 | 1.255 (5) | C19A—H19B | 0.9800 |
N1—C25 | 1.332 (5) | C19A—H19C | 0.9800 |
N1—C21 | 1.335 (6) | C20A—H20A | 0.9800 |
N2—C26 | 1.329 (5) | C20A—H20B | 0.9800 |
N2—C30 | 1.343 (5) | C20A—H20C | 0.9800 |
C1—C2 | 1.535 (6) | C17B—C20B | 1.503 (10) |
C2—C3 | 1.506 (7) | C17B—C18B | 1.508 (9) |
C2—C5 | 1.518 (7) | C17B—C19B | 1.553 (9) |
C2—C4 | 1.541 (8) | C18B—H18D | 0.9800 |
C3—H3A | 0.9800 | C18B—H18E | 0.9800 |
C3—H3B | 0.9800 | C18B—H18F | 0.9800 |
C3—H3C | 0.9800 | C19B—H19D | 0.9800 |
C4—H4A | 0.9800 | C19B—H19E | 0.9800 |
C4—H4B | 0.9800 | C19B—H19F | 0.9800 |
C4—H4C | 0.9800 | C20B—H20D | 0.9800 |
C5—H5A | 0.9800 | C20B—H20E | 0.9800 |
C5—H5B | 0.9800 | C20B—H20F | 0.9800 |
C5—H5C | 0.9800 | C21—C22 | 1.379 (6) |
C6—C7 | 1.541 (6) | C21—H21 | 0.9500 |
C7—C10 | 1.527 (6) | C22—C23 | 1.388 (7) |
C7—C8 | 1.530 (6) | C22—H22 | 0.9500 |
C7—C9 | 1.540 (6) | C23—C24 | 1.364 (7) |
C8—H8A | 0.9800 | C23—H23 | 0.9500 |
C8—H8B | 0.9800 | C24—C25 | 1.392 (6) |
C8—H8C | 0.9800 | C24—H24 | 0.9500 |
C9—H9A | 0.9800 | C25—H25 | 0.9500 |
C9—H9B | 0.9800 | C26—C27 | 1.383 (6) |
C9—H9C | 0.9800 | C26—H26 | 0.9500 |
C10—H10A | 0.9800 | C27—C28 | 1.391 (7) |
C10—H10B | 0.9800 | C27—H27 | 0.9500 |
C10—H10C | 0.9800 | C28—C29 | 1.380 (7) |
C11—C12 | 1.542 (6) | C28—H28 | 0.9500 |
C12—C13 | 1.526 (6) | C29—C30 | 1.391 (6) |
C12—C14 | 1.532 (7) | C29—H29 | 0.9500 |
C12—C15 | 1.535 (6) | C30—H30 | 0.9500 |
O7—Cu1—O1 | 170.12 (13) | C7—C10—H10C | 109.5 |
O7—Cu1—O3 | 91.07 (15) | H10A—C10—H10C | 109.5 |
O1—Cu1—O3 | 88.17 (15) | H10B—C10—H10C | 109.5 |
O7—Cu1—O5 | 89.11 (15) | O5—C11—O6 | 125.5 (4) |
O1—Cu1—O5 | 89.51 (15) | O5—C11—C12 | 118.7 (4) |
O3—Cu1—O5 | 167.45 (12) | O6—C11—C12 | 115.8 (4) |
O7—Cu1—N1 | 94.62 (13) | C13—C12—C14 | 110.2 (4) |
O1—Cu1—N1 | 95.25 (13) | C13—C12—C15 | 110.1 (4) |
O3—Cu1—N1 | 96.60 (13) | C14—C12—C15 | 109.7 (4) |
O5—Cu1—N1 | 95.89 (12) | C13—C12—C11 | 109.8 (4) |
O7—Cu1—Cu2 | 84.03 (9) | C14—C12—C11 | 106.1 (4) |
O1—Cu1—Cu2 | 86.11 (9) | C15—C12—C11 | 110.9 (3) |
O3—Cu1—Cu2 | 82.12 (9) | C12—C13—H13A | 109.5 |
O5—Cu1—Cu2 | 85.42 (9) | C12—C13—H13B | 109.5 |
N1—Cu1—Cu2 | 178.11 (9) | H13A—C13—H13B | 109.5 |
O6—Cu2—O4 | 170.13 (12) | C12—C13—H13C | 109.5 |
O6—Cu2—O8 | 89.16 (14) | H13A—C13—H13C | 109.5 |
O4—Cu2—O8 | 89.27 (14) | H13B—C13—H13C | 109.5 |
O6—Cu2—O2 | 91.47 (14) | C12—C14—H14A | 109.5 |
O4—Cu2—O2 | 87.93 (14) | C12—C14—H14B | 109.5 |
O8—Cu2—O2 | 167.25 (13) | H14A—C14—H14B | 109.5 |
O6—Cu2—N2 | 93.19 (13) | C12—C14—H14C | 109.5 |
O4—Cu2—N2 | 96.66 (12) | H14A—C14—H14C | 109.5 |
O8—Cu2—N2 | 95.82 (12) | H14B—C14—H14C | 109.5 |
O2—Cu2—N2 | 96.86 (13) | C12—C15—H15A | 109.5 |
O6—Cu2—Cu1 | 83.59 (9) | C12—C15—H15B | 109.5 |
O4—Cu2—Cu1 | 86.57 (9) | H15A—C15—H15B | 109.5 |
O8—Cu2—Cu1 | 84.71 (9) | C12—C15—H15C | 109.5 |
O2—Cu2—Cu1 | 82.71 (9) | H15A—C15—H15C | 109.5 |
N2—Cu2—Cu1 | 176.73 (9) | H15B—C15—H15C | 109.5 |
C1—O1—Cu1 | 121.5 (3) | O7—C16—O8 | 125.4 (4) |
C1—O2—Cu2 | 124.5 (3) | O7—C16—C17B | 116.5 (4) |
C6—O3—Cu1 | 125.2 (3) | O8—C16—C17B | 118.1 (4) |
C6—O4—Cu2 | 120.2 (3) | O7—C16—C17A | 116.5 (4) |
C11—O5—Cu1 | 121.1 (3) | O8—C16—C17A | 118.1 (4) |
C11—O6—Cu2 | 124.4 (3) | C18A—C17A—C19A | 114.0 (5) |
C16—O7—Cu1 | 124.0 (3) | C18A—C17A—C16 | 112.3 (4) |
C16—O8—Cu2 | 121.8 (3) | C19A—C17A—C16 | 113.6 (4) |
C25—N1—C21 | 117.7 (4) | C18A—C17A—C20A | 106.2 (5) |
C25—N1—Cu1 | 120.0 (3) | C19A—C17A—C20A | 105.8 (6) |
C21—N1—Cu1 | 121.7 (3) | C16—C17A—C20A | 103.8 (4) |
C26—N2—C30 | 118.3 (4) | C20B—C17B—C18B | 123.4 (12) |
C26—N2—Cu2 | 121.4 (3) | C20B—C17B—C16 | 111.2 (9) |
C30—N2—Cu2 | 120.3 (3) | C18B—C17B—C16 | 113.3 (9) |
O2—C1—O1 | 124.9 (4) | C20B—C17B—C19B | 104.5 (12) |
O2—C1—C2 | 118.5 (4) | C18B—C17B—C19B | 103.3 (12) |
O1—C1—C2 | 116.6 (4) | C16—C17B—C19B | 96.6 (8) |
C3—C2—C5 | 111.3 (5) | C17B—C18B—H18D | 109.5 |
C3—C2—C1 | 107.2 (4) | C17B—C18B—H18E | 109.5 |
C5—C2—C1 | 111.0 (4) | H18D—C18B—H18E | 109.5 |
C3—C2—C4 | 109.5 (5) | C17B—C18B—H18F | 109.5 |
C5—C2—C4 | 109.1 (5) | H18D—C18B—H18F | 109.5 |
C1—C2—C4 | 108.7 (4) | H18E—C18B—H18F | 109.5 |
C2—C3—H3A | 109.5 | C17B—C19B—H19D | 109.5 |
C2—C3—H3B | 109.5 | C17B—C19B—H19E | 109.5 |
H3A—C3—H3B | 109.5 | H19D—C19B—H19E | 109.5 |
C2—C3—H3C | 109.5 | C17B—C19B—H19F | 109.5 |
H3A—C3—H3C | 109.5 | H19D—C19B—H19F | 109.5 |
H3B—C3—H3C | 109.5 | H19E—C19B—H19F | 109.5 |
C2—C4—H4A | 109.5 | C17B—C20B—H20D | 109.5 |
C2—C4—H4B | 109.5 | C17B—C20B—H20E | 109.5 |
H4A—C4—H4B | 109.5 | H20D—C20B—H20E | 109.5 |
C2—C4—H4C | 109.5 | C17B—C20B—H20F | 109.5 |
H4A—C4—H4C | 109.5 | H20D—C20B—H20F | 109.5 |
H4B—C4—H4C | 109.5 | H20E—C20B—H20F | 109.5 |
C2—C5—H5A | 109.5 | N1—C21—C22 | 122.8 (4) |
C2—C5—H5B | 109.5 | N1—C21—H21 | 118.6 |
H5A—C5—H5B | 109.5 | C22—C21—H21 | 118.6 |
C2—C5—H5C | 109.5 | C21—C22—C23 | 118.9 (4) |
H5A—C5—H5C | 109.5 | C21—C22—H22 | 120.6 |
H5B—C5—H5C | 109.5 | C23—C22—H22 | 120.6 |
O3—C6—O4 | 125.6 (4) | C24—C23—C22 | 118.9 (4) |
O3—C6—C7 | 117.1 (4) | C24—C23—H23 | 120.5 |
O4—C6—C7 | 117.2 (3) | C22—C23—H23 | 120.5 |
C10—C7—C8 | 110.0 (4) | C23—C24—C25 | 118.5 (4) |
C10—C7—C9 | 109.8 (4) | C23—C24—H24 | 120.7 |
C8—C7—C9 | 110.2 (4) | C25—C24—H24 | 120.7 |
C10—C7—C6 | 111.2 (4) | N1—C25—C24 | 123.1 (4) |
C8—C7—C6 | 110.3 (3) | N1—C25—H25 | 118.4 |
C9—C7—C6 | 105.3 (3) | C24—C25—H25 | 118.4 |
C7—C8—H8A | 109.5 | N2—C26—C27 | 123.2 (4) |
C7—C8—H8B | 109.5 | N2—C26—H26 | 118.4 |
H8A—C8—H8B | 109.5 | C27—C26—H26 | 118.4 |
C7—C8—H8C | 109.5 | C26—C27—C28 | 118.3 (4) |
H8A—C8—H8C | 109.5 | C26—C27—H27 | 120.9 |
H8B—C8—H8C | 109.5 | C28—C27—H27 | 120.9 |
C7—C9—H9A | 109.5 | C29—C28—C27 | 119.3 (4) |
C7—C9—H9B | 109.5 | C29—C28—H28 | 120.4 |
H9A—C9—H9B | 109.5 | C27—C28—H28 | 120.4 |
C7—C9—H9C | 109.5 | C28—C29—C30 | 118.4 (4) |
H9A—C9—H9C | 109.5 | C28—C29—H29 | 120.8 |
H9B—C9—H9C | 109.5 | C30—C29—H29 | 120.8 |
C7—C10—H10A | 109.5 | N2—C30—C29 | 122.6 (4) |
C7—C10—H10B | 109.5 | N2—C30—H30 | 118.7 |
H10A—C10—H10B | 109.5 | C29—C30—H30 | 118.7 |
O7—Cu1—Cu2—O6 | −89.67 (15) | Cu2—O2—C1—C2 | −179.0 (3) |
O1—Cu1—Cu2—O6 | 89.73 (15) | Cu1—O1—C1—O2 | −4.5 (6) |
O3—Cu1—Cu2—O6 | 178.42 (15) | Cu1—O1—C1—C2 | 175.5 (3) |
O5—Cu1—Cu2—O6 | −0.09 (15) | O2—C1—C2—C3 | −109.5 (5) |
O7—Cu1—Cu2—O4 | 89.67 (15) | O1—C1—C2—C3 | 70.5 (6) |
O1—Cu1—Cu2—O4 | −90.93 (15) | O2—C1—C2—C5 | 12.2 (7) |
O3—Cu1—Cu2—O4 | −2.25 (15) | O1—C1—C2—C5 | −167.8 (5) |
O5—Cu1—Cu2—O4 | 179.25 (14) | O2—C1—C2—C4 | 132.2 (5) |
O7—Cu1—Cu2—O8 | 0.08 (14) | O1—C1—C2—C4 | −47.8 (6) |
O1—Cu1—Cu2—O8 | 179.48 (15) | Cu1—O3—C6—O4 | 3.0 (7) |
O3—Cu1—Cu2—O8 | −91.83 (15) | Cu1—O3—C6—C7 | −172.9 (3) |
O5—Cu1—Cu2—O8 | 89.66 (15) | Cu2—O4—C6—O3 | −5.9 (6) |
O7—Cu1—Cu2—O2 | 178.01 (15) | Cu2—O4—C6—C7 | 170.0 (3) |
O1—Cu1—Cu2—O2 | −2.58 (15) | O3—C6—C7—C10 | −158.3 (4) |
O3—Cu1—Cu2—O2 | 86.10 (15) | O4—C6—C7—C10 | 25.4 (5) |
O5—Cu1—Cu2—O2 | −92.41 (15) | O3—C6—C7—C8 | −36.1 (5) |
O3—Cu1—O1—C1 | −77.8 (4) | O4—C6—C7—C8 | 147.7 (4) |
O5—Cu1—O1—C1 | 89.8 (4) | O3—C6—C7—C9 | 82.8 (5) |
N1—Cu1—O1—C1 | −174.3 (4) | O4—C6—C7—C9 | −93.5 (4) |
Cu2—Cu1—O1—C1 | 4.4 (3) | Cu1—O5—C11—O6 | 3.2 (6) |
O6—Cu2—O2—C1 | −81.5 (4) | Cu1—O5—C11—C12 | −174.4 (3) |
O4—Cu2—O2—C1 | 88.6 (4) | Cu2—O6—C11—O5 | −3.4 (7) |
O8—Cu2—O2—C1 | 11.2 (9) | Cu2—O6—C11—C12 | 174.2 (3) |
N2—Cu2—O2—C1 | −174.9 (4) | O5—C11—C12—C13 | −140.4 (4) |
Cu1—Cu2—O2—C1 | 1.8 (3) | O6—C11—C12—C13 | 41.7 (5) |
O7—Cu1—O3—C6 | −83.2 (4) | O5—C11—C12—C14 | 100.5 (5) |
O1—Cu1—O3—C6 | 87.0 (4) | O6—C11—C12—C14 | −77.4 (5) |
O5—Cu1—O3—C6 | 7.5 (9) | O5—C11—C12—C15 | −18.6 (6) |
N1—Cu1—O3—C6 | −178.0 (4) | O6—C11—C12—C15 | 163.6 (4) |
Cu2—Cu1—O3—C6 | 0.6 (4) | Cu1—O7—C16—O8 | −0.9 (6) |
O8—Cu2—O4—C6 | 89.4 (3) | Cu1—O7—C16—C17B | 177.9 (3) |
O2—Cu2—O4—C6 | −78.2 (3) | Cu1—O7—C16—C17A | 177.9 (3) |
N2—Cu2—O4—C6 | −174.8 (3) | Cu2—O8—C16—O7 | 1.0 (6) |
Cu1—Cu2—O4—C6 | 4.7 (3) | Cu2—O8—C16—C17B | −177.8 (3) |
O7—Cu1—O5—C11 | 82.7 (4) | Cu2—O8—C16—C17A | −177.8 (3) |
O1—Cu1—O5—C11 | −87.5 (4) | O7—C16—C17A—C18A | 39.7 (6) |
O3—Cu1—O5—C11 | −8.2 (9) | O8—C16—C17A—C18A | −141.4 (5) |
N1—Cu1—O5—C11 | 177.2 (4) | C17B—C16—C17A—C18A | 0 (100) |
Cu2—Cu1—O5—C11 | −1.4 (3) | O7—C16—C17A—C19A | 171.0 (5) |
O8—Cu2—O6—C11 | −83.1 (4) | O8—C16—C17A—C19A | −10.1 (7) |
O2—Cu2—O6—C11 | 84.2 (4) | C17B—C16—C17A—C19A | 0 (82) |
N2—Cu2—O6—C11 | −178.9 (4) | O7—C16—C17A—C20A | −74.6 (6) |
Cu1—Cu2—O6—C11 | 1.7 (3) | O8—C16—C17A—C20A | 104.2 (5) |
O3—Cu1—O7—C16 | 82.3 (4) | C17B—C16—C17A—C20A | 0 (100) |
O5—Cu1—O7—C16 | −85.1 (4) | O7—C16—C17B—C20B | −150.8 (10) |
N1—Cu1—O7—C16 | 179.0 (3) | O8—C16—C17B—C20B | 28.1 (11) |
Cu2—Cu1—O7—C16 | 0.3 (3) | C17A—C16—C17B—C20B | 0 (4) |
O6—Cu2—O8—C16 | 83.1 (3) | O7—C16—C17B—C18B | −6.7 (11) |
O4—Cu2—O8—C16 | −87.2 (3) | O8—C16—C17B—C18B | 172.2 (11) |
O2—Cu2—O8—C16 | −9.9 (9) | C17A—C16—C17B—C18B | 0 (100) |
N2—Cu2—O8—C16 | 176.2 (3) | O7—C16—C17B—C19B | 100.8 (8) |
Cu1—Cu2—O8—C16 | −0.5 (3) | O8—C16—C17B—C19B | −80.3 (9) |
O7—Cu1—N1—C25 | 52.8 (3) | C17A—C16—C17B—C19B | 0 (100) |
O1—Cu1—N1—C25 | −126.9 (3) | C25—N1—C21—C22 | 1.2 (7) |
O3—Cu1—N1—C25 | 144.4 (3) | Cu1—N1—C21—C22 | −169.9 (4) |
O5—Cu1—N1—C25 | −36.8 (4) | N1—C21—C22—C23 | −0.5 (8) |
O7—Cu1—N1—C21 | −136.4 (4) | C21—C22—C23—C24 | 0.1 (7) |
O1—Cu1—N1—C21 | 44.0 (4) | C22—C23—C24—C25 | −0.4 (7) |
O3—Cu1—N1—C21 | −44.8 (4) | C21—N1—C25—C24 | −1.6 (7) |
O5—Cu1—N1—C21 | 134.0 (3) | Cu1—N1—C25—C24 | 169.6 (4) |
O6—Cu2—N2—C26 | 32.0 (3) | C23—C24—C25—N1 | 1.2 (7) |
O4—Cu2—N2—C26 | −147.4 (3) | C30—N2—C26—C27 | 1.2 (6) |
O8—Cu2—N2—C26 | −57.5 (3) | Cu2—N2—C26—C27 | 178.6 (3) |
O2—Cu2—N2—C26 | 123.9 (3) | N2—C26—C27—C28 | −2.1 (7) |
O6—Cu2—N2—C30 | −150.6 (3) | C26—C27—C28—C29 | 1.6 (7) |
O4—Cu2—N2—C30 | 29.9 (3) | C27—C28—C29—C30 | −0.4 (7) |
O8—Cu2—N2—C30 | 119.9 (3) | C26—N2—C30—C29 | 0.1 (6) |
O2—Cu2—N2—C30 | −58.8 (3) | Cu2—N2—C30—C29 | −177.4 (3) |
Cu2—O2—C1—O1 | 1.0 (7) | C28—C29—C30—N2 | −0.5 (7) |
Cg1 and Cg2 are the centroids of the N1,C21–C25 and N2,C26–C30 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3c···Cg1i | 0.98 | 2.90 | 3.609 (7) | 130 |
C19b—H19f···Cg2ii | 0.98 | 2.64 | 3.554 (19) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C5H9O2)4(C5H5N)2] |
Mr | 689.80 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.4758 (6), 20.0192 (12), 18.6136 (10) |
β (°) | 104.515 (3) |
V (Å3) | 3418.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.32 × 0.26 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.682, 0.820 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28775, 7077, 5583 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.156, 1.13 |
No. of reflections | 7077 |
No. of parameters | 404 |
No. of restraints | 12 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0532P)2 + 12.7516P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.26, −0.75 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cu1—O7 | 1.950 (3) | Cu2—O6 | 1.962 (3) |
Cu1—O1 | 1.956 (3) | Cu2—O4 | 1.968 (3) |
Cu1—O3 | 1.976 (3) | Cu2—O8 | 1.976 (3) |
Cu1—O5 | 1.987 (3) | Cu2—O2 | 1.978 (3) |
Cu1—N1 | 2.157 (3) | Cu2—N2 | 2.157 (3) |
Cg1 and Cg2 are the centroids of the N1,C21–C25 and N2,C26–C30 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3c···Cg1i | 0.98 | 2.90 | 3.609 (7) | 130 |
C19b—H19f···Cg2ii | 0.98 | 2.64 | 3.554 (19) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Footnotes
‡Additional correspondence author, e-mail: norbania@um.edu.my.
Acknowledgements
The authors thank the University of Malaya for funding this study through PPP (PS345/2010 A) and the Research University Fund (TA021/2009 A).
References
Attard, G. S. & Cullum, P. R. (1990). Liq. Cryst. 8, 299–309. CrossRef CAS Web of Science Google Scholar
Blewett, G., Esterhuysen, C., Bredenkamp, M. W. & Koch, K. R. (2006). Acta Cryst. E62, m420–m422. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kato, M., Jonassen, H. B., Fanning, J. C. & Cusachs, L. C. (1964). Chem. Rev. 64, 99–128. CrossRef CAS Web of Science Google Scholar
Kawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. & Kato, M. (1992). Acta Cryst. B48, 253–261. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Melnik, M., Dunaj-Jurco, M. & Handlovic, M. (1984). Inorg. Chim. Acta, 86, 185–190. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research on copper(II) carboxylates focuses upon their metallomesogenic properties (Attard & Cullum, 1990) and interesting magneto-structural relationship (Kato et al., 1964; Melnik et al., 1984; Kawata et al., 1992). However, the practical use of these complexes is hindered by their high melting points (greater than 523 K) and which are accompanied by thermal decomposition. Our research interest is to develop low-temperature copper(II) carboxylates as functional materials for use in the fields of catalysis, photonics, spintronics, and electronics. To realise this, we adopted the concepts of symmetry reduction by mixed ligands and the use of highly-branched alkylcarboxylates. This contribution reports the crystal structure of one of the starting materials to be used in the synthesis of such complexes, i.e. the title compound, (I).
The dinuclear structure of (I), Fig. 1, features two Cu atoms, separated by 2.6139 (7) Å, connected by four bidentate bridging carboxylate ligands. The final position in the disordered octahedral trans-CuNO4 donor set is occupied by a pyridine-N atom in each case. The structure resembles closely that described for the triclinic polymorph but with the latter being disposed about a centre of inversion (Blewett et al., 2006). The primary differences between the molecules is found in the relative disposition of the pyridine groups. In (I), the dihedral angles formed between the least-squares planes through the four O atoms and pyridine ring = 81.5 (1) ° for Cu1 and 88.6 (1) ° for Cu2, which compares to 89.38 (8) ° found in the triclinic structure. These differences are reflected in the dihedral angle of 12.93 (15) ° formed between the pyridine rings in (I) compared to 0 ° (from symmetry) in the triclinic polymorph. These differences not withstanding, the Cu–O bond distances are experimentally equivalent in the two forms but it is noted these cover are broader range in (I), i.e. 1.950 (3) to 1.987 (3) Å, compared with 1.963 (2) to 1.977 (2) Å; the Cu–N distances are indistinguishable. The Cu···Cu distance in (I), 2.6139 (7) Å, is shorter than 2.6229 (9) Å in the triclinic form.
A common feature of the crystal packing of both forms is the presence of significant π–π interactions between the pyridine rings. In (I), these [ring centroid(N1,C21—C25)···ring centroid(N2,C26—C30)i = 3.552 (3) Å, angle between planes = 9.2 (2) °, for i: 1/2+x, 1/2-y, 1/2+z] lead to supramolecular chains which are connected into a 2-D array in the ac plane by C–H···π contacts involving methyl-H atoms (one being derived from a disordered tert-butyl residue), Fig. 2 & Table 1. The layers are stacked along the b direction as illustrated in Fig. 3.