metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­(di-2-pyridylamine-κ2N,N′)nickel(II)]-μ-fumarato-κ2O1:O4] tetra­hydrate]

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia, and bFachbereich Chemie der Philipps Universität, Hans-Meerwein Strasse, D-35032 Marburg, Germany
*Correspondence e-mail: juraj.cernak@upjs.sk

(Received 22 March 2010; accepted 31 March 2010; online 10 April 2010)

In the crystal structure of the title compound, {[Ni(C4H2O4)(C10H9N3)(H2O)2]·4H2O}n, zigzag chains are built up from cis-[Ni(dpya)(H2O)2]2+ cations (dpya is di-2-pyridylamine) linked by bis-monodentate coordinated bridging fumarate ligands. The NiII atom is coordinated by one chelating dpya ligand, two aqua ligands in trans positions and two monodentate fumarate ligands in cis positions in the form of a deformed octa­hedron. The water mol­ecules, O atoms of the fumarate carboxyl­ate groups and the amine group of the dpya ligand are involved in an extended network of intra- and inter­molecular O—H⋯O hydrogen bonds. Moreover, ππ inter­actions between the pyridine rings of the dpya ligand contribute to the stability of the structure. Two of the five uncoordinated water molecules are half-occupied.

Related literature

Several crystal structures of NiII fumarato (fum) complexes with bridging fumarato ligands have been reported in the literature, e.g. [Ni2(phen)4(fumarate)(H2O)2]fumarate·16H2O (phen = 1,10-phenantroline) (Ma et al., 2003[Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900-m902.]) with a dinuclear structure, [Ni(py)3(fumarate)2py (py= pyridine (Mori et al., 2004[Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Micropor. Mesopor. Mater. 73, 31-46.]) and [Ni(fumarate)(H2O)4] (Xie et al., 2003[Xie, H. Z., Zheng, Y. Q. & Wu, Q. S. (2003). Z. Kristallogr. New Cryst. Struct. 218, 111-112.]), both forming chain-like structures, or [Ni(phen)fum)] exhibiting a two-dimensional structure (Černák et al., 2009[Černák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, 28, 2893-2898.]). For structurally characterized complexes of NiII containing the dpya ligand (dpya = 2,2′-dipyridylamine), see, for example: [Ni(dpya)(ox)]n (ox = oxalato) (Lu et al., 2001[Lu, J. Y., Schroeder, T. J., Babb, A. M. & Olmstead, M. (2001). Polyhedron, 20, 2445-2449.]) or [Ni(dpya)2(dca)2] (dca = dicyanamidato) complexes (Huang et al., 2006[Huang, C.-Y., Fang, Y., Gu, Y.-P., Zhang, L.-C. & You, W.-S. (2006). Acta Cryst. E62, m3068-m3070.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H2O4)(C10H9N3)(H2O)2]·4H2O

  • Mr = 450.03

  • Monoclinic, P 21 /c

  • a = 12.1421 (12) Å

  • b = 12.4034 (8) Å

  • c = 12.8701 (13) Å

  • β = 96.138 (12)°

  • V = 1927.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 193 K

  • 0.42 × 0.36 × 0.16 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: gaussian (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.750, Tmax = 0.836

  • 13672 measured reflections

  • 3397 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 0.90

  • 3397 reflections

  • 280 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.85 1.87 2.713 (2) 175
O5—H5B⋯O11ii 0.85 2.01 2.859 (3) 177
O6—H6B⋯O2 0.85 1.88 2.693 (2) 161
O6—H6A⋯O4 0.85 1.88 2.706 (2) 165
O7—H7B⋯O11iii 0.85 2.32 2.988 (4) 136
O7—H7A⋯O9ii 0.85 1.94 2.700 (7) 148
O10—H10B⋯O2iii 0.85 1.98 2.777 (3) 155
O10—H10A⋯O8 0.85 2.36 2.987 (6) 131
O10—H10A⋯O9 0.85 1.83 2.588 (6) 147
O11—H11A⋯O5iv 0.85 2.43 3.116 (3) 138
O11—H11B⋯O10 0.85 2.14 2.870 (4) 144
N3—H3N⋯O7v 0.89 (1) 2.03 (1) 2.917 (3) 175 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: IPDS (Stoe & Cie, 1996[Stoe & Cie (1996). IPDS. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our studies on syntheses, crystal structures and relationship structure vs. magnetic properties of low-dimensional magnetic materials [Černák et al., 2009] we have occasionally isolated a crystal of the title compound 1. Its crystal structure is polymeric and is composed of zig–zag chains and water molecules of crystallization (Fig. 1, 2, 3). The chains are formed by octahedrally coordinated NiII atoms linked by two bis(monodentate) fumarato ligands (Fig. 1, 2). Similar chain-like structure was observed in an another fumarato complex, [Ni(py)3(fumarate)2].py (py= pyridine) in which the NiII atoms are bridged alternatively by bis(monodentate) and bis(bidentate) bonded fumarato ligands [Mori et al., 2004].

The heteroleptic coordination sphere of the NiII atom beside two fumarato ligands is completed by one bidentate chelate bonded dpya ligand and two aqua ligands placed in trans positions (Fig. 1). As can be seen from the values of the bond angles (Table 2), the octahedron around the NiII atom is somewhat deformed. The mean Ni–N bond lengths is 2.059 (3) Å, and the Ni–O bond lengths exhibit values from the range 2.048 (2) – 2.099 (2) Å. Similar values of Ni–N and Ni–O bond distances were observed in complexes [Ni(dpya)(ox)]n (Ni–N: 2.046 (2) Å) (Lu et al., 2001) and [Ni(fumarate)(H2O)4] (Ni–O: 2.064 (2) Å) (Xie et al., 2003).

The same type of bridging formed by bis(monodentato) fumarate ligand was already observed in dinuclear [Ni2(phen)4(fumarate)(H2O)2]fumarate.16H2O complex (phen = 1,10-phenantroline) (Ma et al., 2003). The observed geometric parameters associated with the fumarate ligand in 1 are similar to those found in the previously mentioned dinuclear complex (Ma et al., 2003) or in ionic.

The geometric parameters associated with dpya and aqua ligands are normal [Lu et al., 2001; Huang et al., 2006]. There are five general crystallographically distinct positions in the unit cell occupied by not coordinated water molecules. Among these two positions (O8 and O9) are partially occupied with s.o.f. put to half as required by proximity of symmetry (-1) related positions of O8 and proximity of the O9 water oxygen to O8, respectively. The water molecules along with the not coordinated oxygen atoms from carboxylate groups are involved in hydrogen bonds of the O—H···O type; some of these HBs are intramolecular (Fig. 2, Table 3). In the hydrogen bonding system is involved also the dpyaligand through N—H···O type hydrogen bond (Fig. 2, Table 3). Between pairs of dpya ligands ππ interactions operate which further stabilize the structure (Fig. 3). The Cg1···Cg2i distance (symmetry code (i) -x, 0.5+y, 0.5-z, where Cg1 and Cg2 are centroids of the rings (N1/C1—C5) and (N2/C6—C10), respectively) between the aromatic rings is 3.723 (1) Å; these interactions links the {Ni(dpya)} units into layers lying in the bc plane.

Related literature top

Several crystal structures of NiII fumarato (fum) complexes with bridging fumarato ligands are reported in the literature, e.g. [Ni2(phen)4(fumarate)(H2O)2]fumarate.16H2O ( phen = 1,10-phenantroline) (Ma et al., 2003) with dinuclear structure, [Ni(py)3(fumarate)2].py (py= pyridine (Mori et al., 2004) and [Ni(fumarate)(H2O)4] (Xie et al., 2003), both forming chain-like structures, or [Ni(phen)fum)] exhibiting a two-dimensional structure (Černák et al., 2009). For structurally characterized complexes of NiII containing the dpya ligand (dpya = 2,2'-dipyidylamine), see, for example: [Ni(dpya)(ox)]n (ox = oxalato) (Lu et al., 2001) or [Ni(dpya)2(dca)2] (dca = dicyanamidato) complexes (Huang et al., 2006).

Experimental top

With the exception of dpya, which was of purum quality, the other reagents were of analytical grade and all were used without further purification. The title complex was prepared using the following procedure. An aqueous solution of Ni(CH3COO)2.4H2O(248 mg, 1 mmol in 30 cm3 H2O) and a solution of 171 mg (1 mmol) dpya ligand in 40 cm3of EtOH (96 %vv) were mixed firstly. To the formed azure hot (90 °C) solution solid fumaric acid (116 mg, 1 mmol) and aqueous solution of NaOH (2 cm3, 1 M) were added successively and the reaction mixture was stirred 60 minutes at 90 °C. The formed blue solution was left to evaporate slowly at room temperature. Within a week, in one of several reaction attempts, few blue plates of the title compound appeared. One crystal was picked off for X-ray structure analysis. After disturbing the mother liquor immediate jellification started which prevented isolation of further crystals.

Refinement top

All H atoms linked to aromatic carbon atoms were positioned geometrically, with C–H = 0.96Å and refined as riding with Uiso(H) = 1.2Ueq(C). The hydrogen atom H3N bonded to amine nitrogen atom N3 was refined with restrained distance N—H 0.89 Å and with Uiso(H) = 1.2Ueq(N). The hydrogen atoms from water molecules with full oxygen atom occupancies were located using the CALC-OH program within WinGX package (Farrugia, 1999) and refined with constrained geometric parameters (O—H, 0.85 Å and H···H, 1.334 Å); their thermal parameters were tied with parent oxygen atom(Uiso(H) = 1.5Ueq(O)).

Structure description top

As a continuation of our studies on syntheses, crystal structures and relationship structure vs. magnetic properties of low-dimensional magnetic materials [Černák et al., 2009] we have occasionally isolated a crystal of the title compound 1. Its crystal structure is polymeric and is composed of zig–zag chains and water molecules of crystallization (Fig. 1, 2, 3). The chains are formed by octahedrally coordinated NiII atoms linked by two bis(monodentate) fumarato ligands (Fig. 1, 2). Similar chain-like structure was observed in an another fumarato complex, [Ni(py)3(fumarate)2].py (py= pyridine) in which the NiII atoms are bridged alternatively by bis(monodentate) and bis(bidentate) bonded fumarato ligands [Mori et al., 2004].

The heteroleptic coordination sphere of the NiII atom beside two fumarato ligands is completed by one bidentate chelate bonded dpya ligand and two aqua ligands placed in trans positions (Fig. 1). As can be seen from the values of the bond angles (Table 2), the octahedron around the NiII atom is somewhat deformed. The mean Ni–N bond lengths is 2.059 (3) Å, and the Ni–O bond lengths exhibit values from the range 2.048 (2) – 2.099 (2) Å. Similar values of Ni–N and Ni–O bond distances were observed in complexes [Ni(dpya)(ox)]n (Ni–N: 2.046 (2) Å) (Lu et al., 2001) and [Ni(fumarate)(H2O)4] (Ni–O: 2.064 (2) Å) (Xie et al., 2003).

The same type of bridging formed by bis(monodentato) fumarate ligand was already observed in dinuclear [Ni2(phen)4(fumarate)(H2O)2]fumarate.16H2O complex (phen = 1,10-phenantroline) (Ma et al., 2003). The observed geometric parameters associated with the fumarate ligand in 1 are similar to those found in the previously mentioned dinuclear complex (Ma et al., 2003) or in ionic.

The geometric parameters associated with dpya and aqua ligands are normal [Lu et al., 2001; Huang et al., 2006]. There are five general crystallographically distinct positions in the unit cell occupied by not coordinated water molecules. Among these two positions (O8 and O9) are partially occupied with s.o.f. put to half as required by proximity of symmetry (-1) related positions of O8 and proximity of the O9 water oxygen to O8, respectively. The water molecules along with the not coordinated oxygen atoms from carboxylate groups are involved in hydrogen bonds of the O—H···O type; some of these HBs are intramolecular (Fig. 2, Table 3). In the hydrogen bonding system is involved also the dpyaligand through N—H···O type hydrogen bond (Fig. 2, Table 3). Between pairs of dpya ligands ππ interactions operate which further stabilize the structure (Fig. 3). The Cg1···Cg2i distance (symmetry code (i) -x, 0.5+y, 0.5-z, where Cg1 and Cg2 are centroids of the rings (N1/C1—C5) and (N2/C6—C10), respectively) between the aromatic rings is 3.723 (1) Å; these interactions links the {Ni(dpya)} units into layers lying in the bc plane.

Several crystal structures of NiII fumarato (fum) complexes with bridging fumarato ligands are reported in the literature, e.g. [Ni2(phen)4(fumarate)(H2O)2]fumarate.16H2O ( phen = 1,10-phenantroline) (Ma et al., 2003) with dinuclear structure, [Ni(py)3(fumarate)2].py (py= pyridine (Mori et al., 2004) and [Ni(fumarate)(H2O)4] (Xie et al., 2003), both forming chain-like structures, or [Ni(phen)fum)] exhibiting a two-dimensional structure (Černák et al., 2009). For structurally characterized complexes of NiII containing the dpya ligand (dpya = 2,2'-dipyidylamine), see, for example: [Ni(dpya)(ox)]n (ox = oxalato) (Lu et al., 2001) or [Ni(dpya)2(dca)2] (dca = dicyanamidato) complexes (Huang et al., 2006).

Computing details top

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS (Stoe & Cie, 1996); data reduction: IPDS (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the crystal structure 1. The thermal ellipsoids are drawn at 30 % probability level. Symmetry codes: i: 1 - x, -0.5 + y, 0.5 - z, ii: 1 - x, 0.5 + y, 0.5 - z.
[Figure 2] Fig. 2. Chain-like structure of 1 along with intramolecular and intermolecular hydrogen bonds (dashed lines). The bonds within the chain propagation are dark grey. The oxygen atoms with half ocupancy are drawn as half-transparent balls. Symmetry codes: i: 1 - x, 0.5 + y, 0.5 - z; ii: 1 - x, -0.5 + y, 0.5 - z; iii: x, 1.5 - y, -0.5 - z; iv: 1 - x, 1 - y, - z; v: 1 - x, 2 - y, - z; vi: - x, -0.5 + y, 0.5 - z.
[Figure 3] Fig. 3. Scheme of π-π-interactions in 1. For the sake of clarity only the {Ni(dpya)} structural units are shown without hydrogen atoms. Symmetry codes: i: - x, 0.5 + y, 0.5 - z; ii: - x, -0.5 + y, 0.5 - z; iii: -x, 1 - y, 1 - z; iv: x, 1.5 - y, 0.5 + z.
catena-Poly[[[diaqua(di-2-pyridylamine- κ2N,N')nickel(II)]-µ-fumarato- κ2O1:O4] tetrahydrate] top
Crystal data top
[Ni(C4H2O4)(C10H9N3)(H2O)2]·4H2OF(000) = 936
Mr = 450.03Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 12.1421 (12) Åθ = 2.3–25.0°
b = 12.4034 (8) ŵ = 1.06 mm1
c = 12.8701 (13) ÅT = 193 K
β = 96.138 (12)°Plates, blue
V = 1927.2 (3) Å30.42 × 0.36 × 0.16 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
3397 independent reflections
Radiation source: fine-focus sealed tube2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: gaussian
(WinGX; Farrugia, 1999)
h = 1414
Tmin = 0.750, Tmax = 0.836k = 1414
13672 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0432P)2]
where P = (Fo2 + 2Fc2)/3
3397 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.42 e Å3
16 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni(C4H2O4)(C10H9N3)(H2O)2]·4H2OV = 1927.2 (3) Å3
Mr = 450.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1421 (12) ŵ = 1.06 mm1
b = 12.4034 (8) ÅT = 193 K
c = 12.8701 (13) Å0.42 × 0.36 × 0.16 mm
β = 96.138 (12)°
Data collection top
Stoe IPDS
diffractometer
3397 independent reflections
Absorption correction: gaussian
(WinGX; Farrugia, 1999)
2538 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.836Rint = 0.048
13672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02916 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.42 e Å3
3397 reflectionsΔρmin = 0.31 e Å3
280 parameters
Special details top

Experimental. Absorption correction: a grid of 8 x 8 x 8 = 512 sampling points was used

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.24621 (2)0.59939 (2)0.31901 (2)0.01368 (9)
N10.15403 (15)0.73037 (15)0.35699 (14)0.0191 (4)
N20.12272 (15)0.50121 (15)0.36286 (14)0.0179 (4)
N30.01512 (15)0.63520 (17)0.32761 (16)0.0237 (5)
H3N0.0882 (3)0.644 (2)0.317 (2)0.028*
C10.2063 (2)0.82458 (19)0.38251 (18)0.0237 (5)
H10.28330.82480.39120.028*
C20.1523 (2)0.9199 (2)0.3963 (2)0.0310 (6)
H20.19170.98270.41410.037*
C30.0372 (2)0.9198 (2)0.3831 (2)0.0336 (7)
H30.00200.98350.38980.040*
C40.0179 (2)0.8252 (2)0.35992 (19)0.0286 (6)
H40.09490.82360.35190.034*
C50.04309 (19)0.73020 (19)0.34832 (18)0.0204 (5)
C60.01564 (18)0.53059 (19)0.35449 (18)0.0197 (5)
C70.0681 (2)0.4572 (2)0.37210 (19)0.0278 (6)
H70.14190.47870.36490.033*
C80.0401 (2)0.3536 (2)0.4000 (2)0.0321 (6)
H80.09490.30380.41110.039*
C90.0702 (2)0.3232 (2)0.4115 (2)0.0298 (6)
H90.09090.25350.43180.036*
C100.14803 (19)0.3986 (2)0.39222 (18)0.0232 (5)
H100.22210.37820.39970.028*
C110.35852 (19)0.41929 (18)0.21127 (18)0.0211 (5)
C120.4552 (2)0.34435 (19)0.2153 (2)0.0237 (5)
H120.46470.30380.15610.028*
C130.52676 (19)0.33281 (19)0.29733 (19)0.0219 (5)
H130.51690.37250.35690.026*
C140.37611 (18)0.75874 (18)0.20000 (18)0.0194 (5)
O10.34712 (13)0.47257 (12)0.29159 (12)0.0215 (4)
O20.29572 (18)0.42549 (19)0.12676 (16)0.0551 (7)
O30.37265 (13)0.69567 (13)0.27580 (13)0.0232 (4)
O40.30434 (14)0.76425 (15)0.12189 (13)0.0321 (4)
O50.33762 (13)0.59538 (13)0.46659 (12)0.0219 (3)
H5A0.32400.63660.51640.033*
H5B0.35680.53600.49620.033*
O60.17160 (12)0.59825 (13)0.16421 (12)0.0175 (3)
H6A0.20570.65100.14030.026*
H6B0.20050.54280.13930.026*
O70.25446 (19)0.1566 (3)0.2196 (3)0.0818 (9)
H7A0.30020.11050.24750.123*
H7B0.26800.15970.15620.123*
O80.4461 (4)0.5742 (5)0.0058 (5)0.0810 (18)0.50
O90.5592 (5)0.5821 (4)0.1705 (5)0.0784 (17)0.50
O100.6567 (2)0.6997 (2)0.04168 (19)0.0643 (7)
H10B0.68510.67690.01170.096*
H10A0.62240.64550.06270.096*
O110.58881 (17)0.89674 (18)0.0632 (2)0.0576 (6)
H11A0.52190.89390.09030.086*
H11B0.59190.85260.01240.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01153 (14)0.01349 (14)0.01623 (15)0.00042 (12)0.00244 (10)0.00048 (13)
N10.0205 (10)0.0199 (10)0.0169 (10)0.0030 (8)0.0016 (8)0.0003 (8)
N20.0179 (9)0.0190 (10)0.0168 (10)0.0008 (8)0.0028 (8)0.0003 (8)
N30.0118 (9)0.0314 (11)0.0281 (11)0.0050 (8)0.0038 (8)0.0010 (9)
C10.0292 (13)0.0187 (12)0.0225 (13)0.0014 (10)0.0008 (10)0.0014 (10)
C20.0468 (16)0.0206 (13)0.0245 (13)0.0045 (11)0.0013 (12)0.0031 (11)
C30.0504 (17)0.0292 (15)0.0216 (13)0.0210 (12)0.0059 (12)0.0001 (11)
C40.0291 (13)0.0361 (15)0.0209 (13)0.0158 (12)0.0033 (11)0.0010 (12)
C50.0200 (12)0.0263 (13)0.0152 (11)0.0073 (10)0.0034 (9)0.0029 (10)
C60.0165 (11)0.0283 (13)0.0151 (11)0.0024 (10)0.0046 (9)0.0017 (10)
C70.0182 (12)0.0417 (16)0.0241 (13)0.0099 (11)0.0052 (10)0.0056 (12)
C80.0348 (15)0.0390 (15)0.0239 (14)0.0195 (13)0.0088 (11)0.0038 (12)
C90.0435 (16)0.0223 (13)0.0244 (14)0.0089 (11)0.0079 (12)0.0034 (11)
C100.0255 (12)0.0232 (12)0.0211 (12)0.0002 (11)0.0032 (10)0.0036 (11)
C110.0189 (11)0.0212 (13)0.0230 (12)0.0044 (9)0.0004 (10)0.0053 (10)
C120.0246 (13)0.0235 (13)0.0231 (13)0.0075 (10)0.0032 (11)0.0082 (10)
C130.0211 (12)0.0238 (12)0.0212 (13)0.0062 (10)0.0038 (10)0.0070 (10)
C140.0178 (11)0.0204 (12)0.0205 (13)0.0017 (9)0.0046 (10)0.0007 (10)
O10.0214 (8)0.0229 (9)0.0204 (9)0.0079 (7)0.0028 (7)0.0021 (7)
O20.0490 (12)0.0711 (16)0.0394 (12)0.0426 (11)0.0229 (10)0.0330 (11)
O30.0168 (8)0.0257 (9)0.0263 (9)0.0048 (7)0.0010 (7)0.0096 (8)
O40.0302 (10)0.0396 (11)0.0245 (10)0.0173 (8)0.0065 (8)0.0124 (8)
O50.0287 (9)0.0184 (8)0.0177 (8)0.0061 (8)0.0018 (7)0.0021 (7)
O60.0152 (7)0.0167 (7)0.0208 (8)0.0001 (7)0.0022 (6)0.0009 (7)
O70.0263 (12)0.090 (2)0.127 (3)0.0084 (13)0.0006 (15)0.001 (2)
O80.050 (3)0.098 (4)0.093 (4)0.020 (3)0.002 (3)0.052 (3)
O90.079 (4)0.048 (3)0.115 (5)0.000 (3)0.043 (3)0.012 (3)
O100.0457 (14)0.100 (2)0.0457 (14)0.0087 (14)0.0023 (10)0.0358 (15)
O110.0310 (11)0.0421 (13)0.096 (2)0.0019 (10)0.0092 (11)0.0267 (13)
Geometric parameters (Å, º) top
Ni—O12.0475 (15)C8—H80.9300
Ni—N22.0569 (18)C9—C101.371 (3)
Ni—N12.0611 (19)C9—H90.9300
Ni—O32.0676 (15)C10—H100.9300
Ni—O52.0955 (16)C11—O11.247 (3)
Ni—O62.0986 (16)C11—O21.262 (3)
N1—C51.340 (3)C11—C121.493 (3)
N1—C11.353 (3)C12—C131.302 (3)
N2—C61.343 (3)C12—H120.9300
N2—C101.353 (3)C13—C14i1.492 (3)
N3—C61.384 (3)C13—H130.9300
N3—C51.385 (3)C14—O31.255 (3)
N3—H3N0.8899 (10)C14—O41.260 (3)
C1—C21.372 (3)C14—C13ii1.492 (3)
C1—H10.9300O5—H5A0.8499
C2—C31.390 (4)O5—H5B0.8499
C2—H20.9300O6—H6A0.8499
C3—C41.368 (4)O6—H6B0.8499
C3—H30.9300O7—H7A0.8499
C4—C51.408 (3)O7—H7B0.8500
C4—H40.9300O10—H10B0.8500
C6—C71.401 (3)O10—H10A0.8499
C7—C81.367 (4)O11—H11A0.8499
C7—H70.9300O11—H11B0.8500
C8—C91.384 (4)
O1—Ni—N293.42 (7)N2—C6—N3120.5 (2)
O1—Ni—N1175.24 (7)N2—C6—C7121.6 (2)
N2—Ni—N188.36 (8)N3—C6—C7117.9 (2)
O1—Ni—O385.53 (7)C8—C7—C6119.2 (2)
N2—Ni—O3178.84 (7)C8—C7—H7120.4
N1—Ni—O392.65 (7)C6—C7—H7120.4
O1—Ni—O582.49 (6)C7—C8—C9119.7 (2)
N2—Ni—O593.92 (7)C7—C8—H8120.2
N1—Ni—O592.99 (7)C9—C8—H8120.2
O3—Ni—O585.46 (6)C10—C9—C8118.2 (2)
O1—Ni—O692.10 (6)C10—C9—H9120.9
N2—Ni—O690.18 (7)C8—C9—H9120.9
N1—Ni—O692.30 (7)N2—C10—C9123.5 (2)
O3—Ni—O690.35 (6)N2—C10—H10118.3
O5—Ni—O6173.40 (6)C9—C10—H10118.3
C5—N1—C1117.6 (2)O1—C11—O2124.9 (2)
C5—N1—Ni123.07 (16)O1—C11—C12117.2 (2)
C1—N1—Ni119.05 (15)O2—C11—C12117.9 (2)
C6—N2—C10117.80 (19)C13—C12—C11123.4 (2)
C6—N2—Ni123.03 (15)C13—C12—H12118.3
C10—N2—Ni118.87 (15)C11—C12—H12118.3
C6—N3—C5129.1 (2)C12—C13—C14i123.0 (2)
C6—N3—H3N113.0 (18)C12—C13—H13118.5
C5—N3—H3N114.0 (18)C14i—C13—H13118.5
N1—C1—C2123.8 (2)O3—C14—O4125.2 (2)
N1—C1—H1118.1O3—C14—C13ii117.3 (2)
C2—C1—H1118.1O4—C14—C13ii117.5 (2)
C1—C2—C3118.2 (2)C11—O1—Ni132.19 (15)
C1—C2—H2120.9C14—O3—Ni131.06 (14)
C3—C2—H2120.9Ni—O5—H5A122.8
C4—C3—C2119.2 (2)Ni—O5—H5B121.3
C4—C3—H3120.4H5A—O5—H5B104.5
C2—C3—H3120.4Ni—O6—H6A99.3
C3—C4—C5119.4 (2)Ni—O6—H6B102.1
C3—C4—H4120.3H6A—O6—H6B104.5
C5—C4—H4120.3H7A—O7—H7B104.5
N1—C5—N3120.3 (2)H10B—O10—H10A104.5
N1—C5—C4121.7 (2)H11A—O11—H11B104.5
N3—C5—C4118.0 (2)
N2—Ni—N1—C530.95 (18)C10—N2—C6—N3178.2 (2)
O3—Ni—N1—C5149.62 (18)Ni—N2—C6—N38.2 (3)
O5—Ni—N1—C5124.78 (18)C10—N2—C6—C72.0 (3)
O6—Ni—N1—C559.16 (18)Ni—N2—C6—C7171.57 (17)
N2—Ni—N1—C1155.52 (18)C5—N3—C6—N230.8 (4)
O3—Ni—N1—C123.91 (18)C5—N3—C6—C7149.4 (2)
O5—Ni—N1—C161.69 (18)N2—C6—C7—C81.0 (4)
O6—Ni—N1—C1114.37 (17)N3—C6—C7—C8179.2 (2)
O1—Ni—N2—C6154.26 (18)C6—C7—C8—C90.7 (4)
N1—Ni—N2—C630.16 (18)C7—C8—C9—C101.3 (4)
O5—Ni—N2—C6123.05 (18)C6—N2—C10—C91.4 (3)
O6—Ni—N2—C662.14 (18)Ni—N2—C10—C9172.42 (19)
O1—Ni—N2—C1019.27 (17)C8—C9—C10—N20.2 (4)
N1—Ni—N2—C10156.31 (17)O1—C11—C12—C130.2 (4)
O5—Ni—N2—C1063.42 (17)O2—C11—C12—C13178.6 (3)
O6—Ni—N2—C10111.39 (17)C11—C12—C13—C14i179.2 (2)
C5—N1—C1—C22.3 (3)O2—C11—O1—Ni9.5 (4)
Ni—N1—C1—C2171.57 (19)C12—C11—O1—Ni169.25 (15)
N1—C1—C2—C30.2 (4)N2—Ni—O1—C1191.7 (2)
C1—C2—C3—C41.9 (4)O3—Ni—O1—C1188.8 (2)
C2—C3—C4—C51.1 (4)O5—Ni—O1—C11174.8 (2)
C1—N1—C5—N3176.7 (2)O6—Ni—O1—C111.4 (2)
Ni—N1—C5—N39.7 (3)O4—C14—O3—Ni12.0 (4)
C1—N1—C5—C43.2 (3)C13ii—C14—O3—Ni168.21 (15)
Ni—N1—C5—C4170.46 (17)O1—Ni—O3—C14115.7 (2)
C6—N3—C5—N129.9 (4)N1—Ni—O3—C1468.7 (2)
C6—N3—C5—C4150.0 (2)O5—Ni—O3—C14161.5 (2)
C3—C4—C5—N11.6 (4)O6—Ni—O3—C1423.6 (2)
C3—C4—C5—N3178.3 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.851.872.713 (2)175
O5—H5B···O11i0.852.012.859 (3)177
O6—H6B···O20.851.882.693 (2)161
O6—H6A···O40.851.882.706 (2)165
O7—H7B···O11iv0.852.322.988 (4)136
O7—H7A···O9i0.851.942.700 (7)148
O10—H10B···O2iv0.851.982.777 (3)155
O10—H10A···O80.852.362.987 (6)131
O10—H10A···O90.851.832.588 (6)147
O11—H11A···O5v0.852.433.116 (3)138
O11—H11B···O100.852.142.870 (4)144
N3—H3N···O7vi0.89 (1)2.03 (1)2.917 (3)175 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+3/2, z1/2; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C4H2O4)(C10H9N3)(H2O)2]·4H2O
Mr450.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.1421 (12), 12.4034 (8), 12.8701 (13)
β (°) 96.138 (12)
V3)1927.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.42 × 0.36 × 0.16
Data collection
DiffractometerStoe IPDS
Absorption correctionGaussian
(WinGX; Farrugia, 1999)
Tmin, Tmax0.750, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
13672, 3397, 2538
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 0.90
No. of reflections3397
No. of parameters280
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.31

Computer programs: IPDS (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.851.872.713 (2)174.6
O5—H5B···O11ii0.852.012.859 (3)176.6
O6—H6B···O20.851.882.693 (2)160.5
O6—H6A···O40.851.882.706 (2)164.6
O7—H7B···O11iii0.852.322.988 (4)135.6
O7—H7A···O9ii0.851.942.700 (7)148.1
O10—H10B···O2iii0.851.982.777 (3)155.1
O10—H10A···O80.852.362.987 (6)131.0
O10—H10A···O90.851.832.588 (6)147.1
O11—H11A···O5iv0.852.433.116 (3)138.1
O11—H11B···O100.852.142.870 (4)143.6
N3—H3N···O7v0.8899 (10)2.029 (4)2.917 (3)175 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Slovak grant agency APVV under contract Nos. APVV-VVCE-0058–07 and APVV-0006–07, and by the grant agency VEGA (1/0089/09). Support from P. J. Šafarik University (VVGS 37/09–10) is acknowledged. AP thanks DAAD for the financial support during her stay at Philipps-Universität, Marburg. The authors thank Professor W. Massa (Philipps-Universität, Marburg) for his kind permission to use the diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationČernák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, 28, 2893–2898.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, C.-Y., Fang, Y., Gu, Y.-P., Zhang, L.-C. & You, W.-S. (2006). Acta Cryst. E62, m3068–m3070.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, J. Y., Schroeder, T. J., Babb, A. M. & Olmstead, M. (2001). Polyhedron, 20, 2445–2449.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900–m902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Micropor. Mesopor. Mater. 73, 31–46.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). IPDS. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXie, H. Z., Zheng, Y. Q. & Wu, Q. S. (2003). Z. Kristallogr. New Cryst. Struct. 218, 111–112.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds