organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Hydr­­oxy-2-phenyl­prop-2-en-1-yl)phenol

aBioMat-Physics Department, Univ Estadual Paulista, UNESP, 17033-360 Bauru, SP, Brazil, bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
*Correspondence e-mail: ignez@fc.unesp.br

(Received 29 March 2010; accepted 30 March 2010; online 10 April 2010)

Two independent pseudo-enanti­omeric mol­ecules comprise the asymmetric unit in the title compound, C15H14O2. While the central O—C—C—C residue approaches planarity [torsion angles = −15.8 (3) (mol­ecule a) and 15.4 (3)° (mol­ecule b)], the benzene rings are approximately orthogonal [the dihedral angles formed between the benzene rings are 62.89 (12) (mol­ecule a) and 80.15 (12)° (mol­ecule b)]. Two-dimensional arrays in the ab plane sustained by O—H⋯O hydrogen bonding are found in the crystal structure.

Related literature

For the synthesis of the title compound and the motivation for its study, see: Singh et al. (2010[Singh, F. V., Pena, J. M. & Stefani, H. A. (2010). Tetrahedron Lett. 51, 1671-1673.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2

  • Mr = 226.28

  • Orthorhombic, P 21 21 21

  • a = 9.1301 (2) Å

  • b = 10.2026 (2) Å

  • c = 24.8379 (6) Å

  • V = 2313.67 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.27 × 0.13 × 0.13 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 1

  • 31791 measured reflections

  • 2368 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.15

  • 2368 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.84 1.89 2.727 (2) 175
O2—H2O⋯O1i 0.84 2.00 2.823 (2) 168
O3—H3O⋯O2ii 0.84 1.89 2.728 (2) 174
O4—H4O⋯O3iii 0.84 2.02 2.825 (2) 161
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (Chemaxon, 2009[Chemaxon (2009). MarvinSketch. URL: www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, (I), was prepared in connection with a study of the synthesis of α,β-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence (Singh et al., 2010). Two independent molecules, molecule a (Fig. 1) and molecule b (Fig. 2), comprise the crystallographic asymmetric unit. Molecules a and b are related by a non-crystallographic centre of inversion. Close intramolecular O2···H9b and O4···H24b contacts which close S(6) motifs are noted, Table 1. These interactions are probably responsible for the near planarity of the O2–C7–C8–C9 and O4–C22–C23–C24 residues as seen in the respective torsion angles of -15.8 (3) and 15.4 (3)°. The benzene rings are approximately orthogonal [the dihedral angles formed between the benzene rings is 62.89 (12) ° (molecule a) and 80.15 (12) ° (molecule b)].

In the crystal packing, O–H···O interactions predominate, Table 1, and lead to the formation of two-dimensional arrays in the ab plane, Fig. 3, that stack along the c axis, Fig. 4.

Related literature top

For the synthesis of the title compound and the motivation for its study, see: Singh et al. (2010).

Experimental top

The synthesis was described in Singh et al. (2010) and crystals were grown by slow evaporation from a solution of 15% of acetyl acetate in hexane.

Refinement top

The H atoms were geometrically placed (O–H = 0.84 Å and C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). In the absence of significant anomalous scattering effects, 1752 Friedel pairs were averaged in the final refinement.

Structure description top

The title compound, (I), was prepared in connection with a study of the synthesis of α,β-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence (Singh et al., 2010). Two independent molecules, molecule a (Fig. 1) and molecule b (Fig. 2), comprise the crystallographic asymmetric unit. Molecules a and b are related by a non-crystallographic centre of inversion. Close intramolecular O2···H9b and O4···H24b contacts which close S(6) motifs are noted, Table 1. These interactions are probably responsible for the near planarity of the O2–C7–C8–C9 and O4–C22–C23–C24 residues as seen in the respective torsion angles of -15.8 (3) and 15.4 (3)°. The benzene rings are approximately orthogonal [the dihedral angles formed between the benzene rings is 62.89 (12) ° (molecule a) and 80.15 (12) ° (molecule b)].

In the crystal packing, O–H···O interactions predominate, Table 1, and lead to the formation of two-dimensional arrays in the ab plane, Fig. 3, that stack along the c axis, Fig. 4.

For the synthesis of the title compound and the motivation for its study, see: Singh et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 3] Fig. 3. The supramolecular arrangement showing the formation of two-dimensional arrays in the ab plane.
[Figure 4] Fig. 4. The stacking of the two-dimensional arrays along the c axis.
3-(1-Hydroxy-2-phenylprop-2-en-1-yl)phenol top
Crystal data top
C15H14O2F(000) = 960
Mr = 226.28Dx = 1.299 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9974 reflections
a = 9.1301 (2) Åθ = 2.5–25.0°
b = 10.2026 (2) ŵ = 0.09 mm1
c = 24.8379 (6) ÅT = 100 K
V = 2313.67 (9) Å3Block, colourless
Z = 80.27 × 0.13 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
2368 independent reflections
Radiation source: sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.883, Tmax = 1k = 1211
31791 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.6989P]
where P = (Fo2 + 2Fc2)/3
2368 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14O2V = 2313.67 (9) Å3
Mr = 226.28Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.1301 (2) ŵ = 0.09 mm1
b = 10.2026 (2) ÅT = 100 K
c = 24.8379 (6) Å0.27 × 0.13 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
2368 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2150 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 1Rint = 0.042
31791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.15Δρmax = 0.17 e Å3
2368 reflectionsΔρmin = 0.15 e Å3
311 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.06075 (18)0.29142 (16)0.21652 (7)0.0217 (4)
H1O0.97660.25810.21630.033*
O20.70773 (18)0.69539 (17)0.21929 (6)0.0203 (4)
H2O0.77190.71600.24200.031*
C11.0535 (3)0.4174 (2)0.19749 (8)0.0177 (5)
C20.9221 (3)0.4834 (3)0.19232 (9)0.0177 (5)
H20.83320.44180.20230.021*
C30.9201 (3)0.6112 (2)0.17244 (9)0.0169 (5)
C41.0502 (3)0.6719 (3)0.15824 (9)0.0189 (5)
H41.04920.75900.14470.023*
C51.1816 (3)0.6054 (2)0.16377 (9)0.0194 (5)
H51.27080.64740.15410.023*
C61.1841 (3)0.4781 (3)0.18328 (9)0.0194 (5)
H61.27440.43270.18690.023*
C70.7742 (2)0.6817 (2)0.16736 (9)0.0176 (5)
H70.79170.77100.15200.021*
C80.6701 (3)0.6085 (2)0.13080 (9)0.0177 (5)
C90.5564 (3)0.5408 (2)0.14915 (10)0.0204 (5)
H9A0.49290.49730.12470.025*
H9B0.53840.53590.18680.025*
C100.7000 (3)0.6172 (2)0.07155 (9)0.0182 (5)
C110.6005 (3)0.6817 (3)0.03877 (10)0.0260 (6)
H110.51630.72130.05430.031*
C120.6225 (3)0.6892 (3)0.01631 (10)0.0288 (6)
H120.55400.73450.03830.035*
C130.7432 (3)0.6313 (3)0.03926 (10)0.0270 (6)
H130.75820.63620.07710.032*
C140.8429 (3)0.5659 (3)0.00699 (10)0.0286 (6)
H140.92570.52470.02280.034*
C150.8223 (3)0.5602 (3)0.04816 (10)0.0242 (6)
H150.89250.51710.07010.029*
O30.43410 (18)0.19891 (17)0.22734 (7)0.0221 (4)
H3O0.51830.23210.22740.033*
O40.78763 (17)0.18479 (17)0.20933 (6)0.0200 (4)
H4O0.73100.20910.23410.030*
C160.4372 (3)0.0816 (2)0.20043 (9)0.0171 (5)
C170.5664 (3)0.0131 (2)0.19299 (9)0.0186 (5)
H170.65600.04810.20610.022*
C180.5656 (3)0.1067 (2)0.16646 (9)0.0168 (5)
C190.4346 (3)0.1569 (2)0.14687 (9)0.0205 (5)
H190.43350.23810.12820.025*
C200.3058 (3)0.0881 (2)0.15472 (9)0.0208 (5)
H200.21620.12280.14150.025*
C210.3063 (3)0.0308 (3)0.18165 (9)0.0188 (5)
H210.21730.07720.18720.023*
C220.7091 (3)0.1805 (2)0.15946 (9)0.0180 (5)
H220.68730.27220.14760.022*
C230.8034 (3)0.1145 (2)0.11719 (9)0.0181 (5)
C240.9210 (3)0.0451 (3)0.13067 (10)0.0237 (6)
H24A0.97620.00150.10360.028*
H24B0.94990.03910.16730.028*
C250.7532 (3)0.1273 (2)0.06044 (9)0.0198 (5)
C260.6886 (3)0.2420 (3)0.04143 (10)0.0291 (6)
H260.67480.31360.06530.035*
C270.6439 (3)0.2536 (3)0.01169 (11)0.0367 (7)
H270.59910.33230.02390.044*
C280.6648 (3)0.1505 (3)0.04687 (11)0.0349 (7)
H280.63590.15850.08350.042*
C290.7273 (3)0.0368 (3)0.02884 (10)0.0325 (7)
H290.74140.03420.05300.039*
C300.7702 (3)0.0245 (3)0.02443 (10)0.0258 (6)
H300.81190.05560.03650.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0130 (8)0.0196 (9)0.0326 (9)0.0014 (8)0.0031 (8)0.0047 (8)
O20.0157 (9)0.0261 (9)0.0192 (8)0.0022 (8)0.0011 (7)0.0020 (8)
C10.0173 (12)0.0196 (13)0.0163 (11)0.0006 (11)0.0021 (10)0.0016 (10)
C20.0105 (11)0.0241 (14)0.0186 (11)0.0027 (11)0.0003 (9)0.0010 (10)
C30.0148 (12)0.0191 (13)0.0167 (11)0.0003 (11)0.0027 (9)0.0034 (10)
C40.0194 (12)0.0205 (14)0.0169 (11)0.0013 (11)0.0009 (10)0.0009 (10)
C50.0140 (12)0.0239 (14)0.0205 (11)0.0079 (11)0.0009 (10)0.0031 (11)
C60.0120 (12)0.0251 (14)0.0212 (11)0.0015 (11)0.0011 (10)0.0029 (10)
C70.0157 (12)0.0172 (12)0.0197 (11)0.0014 (11)0.0002 (9)0.0015 (10)
C80.0124 (12)0.0159 (13)0.0248 (12)0.0032 (11)0.0013 (10)0.0007 (10)
C90.0142 (12)0.0235 (14)0.0236 (12)0.0002 (11)0.0026 (10)0.0011 (11)
C100.0151 (12)0.0131 (12)0.0263 (12)0.0042 (11)0.0008 (10)0.0006 (10)
C110.0214 (14)0.0273 (14)0.0293 (13)0.0040 (12)0.0024 (11)0.0007 (12)
C120.0275 (15)0.0305 (15)0.0283 (13)0.0014 (13)0.0069 (12)0.0050 (12)
C130.0319 (15)0.0264 (14)0.0226 (12)0.0094 (13)0.0003 (11)0.0001 (11)
C140.0243 (14)0.0334 (16)0.0282 (13)0.0034 (13)0.0043 (11)0.0058 (12)
C150.0186 (13)0.0274 (14)0.0266 (12)0.0011 (12)0.0021 (11)0.0010 (11)
O30.0142 (9)0.0208 (9)0.0313 (9)0.0014 (8)0.0024 (7)0.0046 (8)
O40.0149 (8)0.0252 (9)0.0198 (8)0.0019 (8)0.0012 (7)0.0015 (7)
C160.0157 (12)0.0163 (12)0.0194 (11)0.0012 (11)0.0025 (10)0.0034 (10)
C170.0137 (12)0.0216 (14)0.0204 (11)0.0005 (11)0.0003 (10)0.0025 (10)
C180.0143 (12)0.0183 (13)0.0178 (11)0.0012 (11)0.0001 (9)0.0036 (10)
C190.0198 (13)0.0191 (14)0.0227 (12)0.0015 (11)0.0001 (10)0.0006 (10)
C200.0123 (12)0.0244 (14)0.0255 (12)0.0001 (11)0.0031 (10)0.0018 (11)
C210.0136 (12)0.0216 (13)0.0211 (11)0.0045 (11)0.0017 (10)0.0037 (10)
C220.0181 (12)0.0167 (12)0.0192 (11)0.0018 (11)0.0024 (10)0.0012 (10)
C230.0146 (12)0.0163 (12)0.0235 (11)0.0056 (11)0.0025 (10)0.0004 (10)
C240.0175 (13)0.0263 (14)0.0273 (13)0.0031 (12)0.0021 (11)0.0024 (11)
C250.0137 (12)0.0219 (13)0.0239 (12)0.0058 (11)0.0033 (10)0.0012 (10)
C260.0357 (16)0.0253 (14)0.0262 (13)0.0008 (13)0.0011 (12)0.0013 (11)
C270.0452 (19)0.0330 (16)0.0318 (15)0.0030 (14)0.0044 (13)0.0088 (14)
C280.0398 (17)0.0419 (18)0.0229 (13)0.0148 (15)0.0025 (13)0.0022 (12)
C290.0343 (16)0.0360 (16)0.0272 (13)0.0089 (14)0.0029 (12)0.0085 (12)
C300.0230 (14)0.0271 (14)0.0273 (13)0.0030 (12)0.0024 (11)0.0026 (11)
Geometric parameters (Å, º) top
O1—C11.371 (3)O3—C161.371 (3)
O1—H1O0.8400O3—H3O0.8400
O2—C71.432 (3)O4—C221.432 (3)
O2—H2O0.8400O4—H4O0.8400
C1—C21.382 (3)C16—C211.383 (3)
C1—C61.389 (4)C16—C171.384 (3)
C2—C31.394 (4)C17—C181.389 (3)
C2—H20.9500C17—H170.9500
C3—C41.385 (3)C18—C191.388 (3)
C3—C71.520 (3)C18—C221.521 (3)
C4—C51.386 (3)C19—C201.383 (3)
C4—H40.9500C19—H190.9500
C5—C61.387 (4)C20—C211.386 (4)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.512 (3)C22—C231.516 (3)
C7—H71.0000C22—H221.0000
C8—C91.327 (3)C23—C241.329 (3)
C8—C101.499 (3)C23—C251.488 (3)
C9—H9A0.9500C24—H24A0.9500
C9—H9B0.9500C24—H24B0.9500
C10—C111.386 (3)C25—C301.388 (3)
C10—C151.387 (3)C25—C261.393 (4)
C11—C121.385 (4)C26—C271.386 (4)
C11—H110.9500C26—H260.9500
C12—C131.374 (4)C27—C281.381 (4)
C12—H120.9500C27—H270.9500
C13—C141.384 (4)C28—C291.368 (4)
C13—H130.9500C28—H280.9500
C14—C151.384 (3)C29—C301.385 (4)
C14—H140.9500C29—H290.9500
C15—H150.9500C30—H300.9500
C1—O1—H1O109.5C16—O3—H3O109.5
C7—O2—H2O109.5C22—O4—H4O109.5
O1—C1—C2122.1 (2)O3—C16—C21118.3 (2)
O1—C1—C6117.6 (2)O3—C16—C17121.6 (2)
C2—C1—C6120.3 (2)C21—C16—C17120.1 (2)
C1—C2—C3120.0 (2)C16—C17—C18120.2 (2)
C1—C2—H2120.0C16—C17—H17119.9
C3—C2—H2120.0C18—C17—H17119.9
C4—C3—C2119.8 (2)C19—C18—C17119.7 (2)
C4—C3—C7121.3 (2)C19—C18—C22121.3 (2)
C2—C3—C7118.9 (2)C17—C18—C22119.0 (2)
C3—C4—C5119.9 (2)C20—C19—C18119.7 (2)
C3—C4—H4120.0C20—C19—H19120.1
C5—C4—H4120.0C18—C19—H19120.1
C4—C5—C6120.5 (2)C19—C20—C21120.6 (2)
C4—C5—H5119.8C19—C20—H20119.7
C6—C5—H5119.8C21—C20—H20119.7
C5—C6—C1119.5 (2)C16—C21—C20119.6 (2)
C5—C6—H6120.3C16—C21—H21120.2
C1—C6—H6120.3C20—C21—H21120.2
O2—C7—C8108.83 (18)O4—C22—C23109.16 (19)
O2—C7—C3110.03 (18)O4—C22—C18110.34 (18)
C8—C7—C3111.52 (19)C23—C22—C18110.42 (19)
O2—C7—H7108.8O4—C22—H22109.0
C8—C7—H7108.8C23—C22—H22109.0
C3—C7—H7108.8C18—C22—H22109.0
C9—C8—C10120.7 (2)C24—C23—C25122.3 (2)
C9—C8—C7122.8 (2)C24—C23—C22121.4 (2)
C10—C8—C7116.5 (2)C25—C23—C22116.2 (2)
C8—C9—H9A120.0C23—C24—H24A120.0
C8—C9—H9B120.0C23—C24—H24B120.0
H9A—C9—H9B120.0H24A—C24—H24B120.0
C11—C10—C15118.7 (2)C30—C25—C26117.7 (2)
C11—C10—C8119.1 (2)C30—C25—C23120.6 (2)
C15—C10—C8122.2 (2)C26—C25—C23121.7 (2)
C12—C11—C10120.8 (2)C27—C26—C25121.3 (3)
C12—C11—H11119.6C27—C26—H26119.4
C10—C11—H11119.6C25—C26—H26119.4
C13—C12—C11120.1 (2)C28—C27—C26119.8 (3)
C13—C12—H12119.9C28—C27—H27120.1
C11—C12—H12119.9C26—C27—H27120.1
C12—C13—C14119.6 (2)C29—C28—C27119.8 (2)
C12—C13—H13120.2C29—C28—H28120.1
C14—C13—H13120.2C27—C28—H28120.1
C15—C14—C13120.3 (3)C28—C29—C30120.5 (3)
C15—C14—H14119.9C28—C29—H29119.7
C13—C14—H14119.9C30—C29—H29119.7
C14—C15—C10120.4 (2)C29—C30—C25121.0 (3)
C14—C15—H15119.8C29—C30—H30119.5
C10—C15—H15119.8C25—C30—H30119.5
O1—C1—C2—C3179.59 (19)O3—C16—C17—C18178.75 (19)
C6—C1—C2—C30.4 (3)C21—C16—C17—C180.2 (3)
C1—C2—C3—C40.4 (3)C16—C17—C18—C190.7 (3)
C1—C2—C3—C7179.8 (2)C16—C17—C18—C22179.3 (2)
C2—C3—C4—C50.1 (3)C17—C18—C19—C201.1 (3)
C7—C3—C4—C5179.4 (2)C22—C18—C19—C20179.0 (2)
C3—C4—C5—C60.3 (3)C18—C19—C20—C210.4 (4)
C4—C5—C6—C10.2 (3)O3—C16—C21—C20179.43 (19)
O1—C1—C6—C5179.91 (19)C17—C16—C21—C200.9 (3)
C2—C1—C6—C50.1 (3)C19—C20—C21—C160.5 (3)
C4—C3—C7—O2117.5 (2)C19—C18—C22—O4132.6 (2)
C2—C3—C7—O261.8 (3)C17—C18—C22—O447.4 (3)
C4—C3—C7—C8121.6 (2)C19—C18—C22—C23106.6 (2)
C2—C3—C7—C859.0 (3)C17—C18—C22—C2373.3 (3)
O2—C7—C8—C915.8 (3)O4—C22—C23—C2415.4 (3)
C3—C7—C8—C9105.8 (3)C18—C22—C23—C24106.1 (3)
O2—C7—C8—C10163.3 (2)O4—C22—C23—C25167.12 (19)
C3—C7—C8—C1075.2 (3)C18—C22—C23—C2571.4 (3)
C9—C8—C10—C1165.5 (3)C24—C23—C25—C3033.9 (4)
C7—C8—C10—C11113.6 (3)C22—C23—C25—C30143.6 (2)
C9—C8—C10—C15113.0 (3)C24—C23—C25—C26145.8 (3)
C7—C8—C10—C1567.9 (3)C22—C23—C25—C2636.8 (3)
C15—C10—C11—C120.1 (4)C30—C25—C26—C270.6 (4)
C8—C10—C11—C12178.5 (2)C23—C25—C26—C27179.1 (3)
C10—C11—C12—C130.6 (4)C25—C26—C27—C280.7 (4)
C11—C12—C13—C140.2 (4)C26—C27—C28—C291.1 (4)
C12—C13—C14—C150.9 (4)C27—C28—C29—C300.2 (4)
C13—C14—C15—C101.6 (4)C28—C29—C30—C251.1 (4)
C11—C10—C15—C141.2 (4)C26—C25—C30—C291.4 (4)
C8—C10—C15—C14177.3 (2)C23—C25—C30—C29178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9b···O20.952.392.726 (3)101
C24—H24b···O40.952.342.708 (3)102
O1—H1O···O40.841.892.727 (2)175
O2—H2O···O1i0.842.002.823 (2)168
O3—H3O···O2ii0.841.892.728 (2)174
O4—H4O···O3iii0.842.022.825 (2)161
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14O2
Mr226.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1301 (2), 10.2026 (2), 24.8379 (6)
V3)2313.67 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.13 × 0.13
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.883, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
31791, 2368, 2150
Rint0.042
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.15
No. of reflections2368
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9b···O20.952.392.726 (3)101
C24—H24b···O40.952.342.708 (3)102
O1—H1O···O40.841.892.727 (2)175
O2—H2O···O1i0.842.002.823 (2)168
O3—H3O···O2ii0.841.892.728 (2)174
O4—H4O···O3iii0.842.022.825 (2)161
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank FAPESP (07/59404–2 to HAS), CNPq (472237/2008–0 to IC, 300613/2007 to HAS, and 306532/2009–3 to JZ-S) and CAPES (808/2009 to JZ-S and IC) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemaxon (2009). MarvinSketch. URL: www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, F. V., Pena, J. M. & Stefani, H. A. (2010). Tetrahedron Lett. 51, 1671–1673.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds