organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1H-1,2,4-Triazol-1-yl)methyl 2-(2,4-di­chloro­phen­­oxy)acetate

aHenan Chemical Industry Research Institute Co. Ltd, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yunman_xie@yahoo.cn

(Received 30 March 2010; accepted 2 April 2010; online 21 April 2010)

In the title compound, C11H9Cl2N3O3, the triazole and benzene rings are roughly parallel to one another [dihedral angle = 4.99 (2)°] because the C—O—C—C—O chain that links the two rings is folded [O—C—C—O = 8.60 (2)°] rather than fully extended. In the crystal, weak inter­molecular C—H⋯N and C—H⋯O inter­actions are present, and ππ inter­actions are indicated by the short distances [3.749 (3) Å] between the centroids of the triazole and benzene rings.

Related literature

For details of the biological activities of triazole-containing compounds, see: Xu et al. (2002[Xu, L. Z., Zhang, S. S. & Li, H. J. (2002). J. Chem. Res. Chin. Univ. 18, 284-286.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9Cl2N3O3

  • Mr = 302.11

  • Monoclinic, P 21 /c

  • a = 10.814 (2) Å

  • b = 6.4514 (13) Å

  • c = 18.698 (4) Å

  • β = 101.05 (3)°

  • V = 1280.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.74 × 0.22 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.702, Tmax = 0.976

  • 2253 measured reflections

  • 2253 independent reflections

  • 1816 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.02

  • 2253 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the triazole ring (C10/C11/N1–N3) and the benzene ring (C1–C6), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N3i 0.93 2.45 3.353 (3) 164
C7—H7B⋯O1ii 0.97 2.58 3.390 (2) 142
C9—H9A⋯O2iii 0.97 2.52 3.381 (3) 148
C11—H11A⋯O2iii 0.93 2.54 3.293 (2) 139
Cg1⋯Cg2i     3.665 (2)  
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing the triazole ring system are well known as efficient fungicides in agriculture, where they act by inhibiting the biosynthesis of ergosterol (Xu et al., 2002). In order to search for new triazole compounds with higher bioactivity, the title compound was synthesized and its structure is reported here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987). Triazole ring (C10/C11/N1—N3) and benzene ring (C1—C6) are essentially parallel to one another (dihedral angle of 4.99 (2)°) because the C—O—C—C—O chain that links the two rings is folded [O—C—C—O torsion angle = 8.60 (2)°] rather than fully extended. ππ interactions are indicated by the short distance (Cg1···Cg1 distance of 3.749 (3) Å, symmetry code: 1-x,-y,-z) between the centroids of the triazole rings (C10/C11/N1—N3) (Cg1) and benzene rings C1—C6 (Cg2) (Table 1). There are weaker C—H···N, C—H···O intermolecular interactions, which stabilized the structure (Table 1).

Related literature top

For details of the biological activities of triazole-containing compounds, see: Xu et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

To a 100 ml flask were added 10 mmol of (1H-1,2,4-triazol-1-yl)methanol and 11 mmol of triethylamine in 20 ml of dryed acetone, to which 10 mmol of 2-(2,4-dichlorophenoxy)acetyl chloride in 10 ml of acetone was then dropwise added with stirring on ice-cold water bath within 0.5 h. The reaction took place immediately, and a lot of white solid appeared. The mixture was heated and refluxed for 2 h, and then cooled to room temperature. After filtering and distilling in reduced pressure, a crude product was obtained and purified by flash column chromatography (silicagel, using ethyl ethanoate: cyclohexane = 1:3 as eluent) to afford the title compound. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Compounds containing the triazole ring system are well known as efficient fungicides in agriculture, where they act by inhibiting the biosynthesis of ergosterol (Xu et al., 2002). In order to search for new triazole compounds with higher bioactivity, the title compound was synthesized and its structure is reported here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987). Triazole ring (C10/C11/N1—N3) and benzene ring (C1—C6) are essentially parallel to one another (dihedral angle of 4.99 (2)°) because the C—O—C—C—O chain that links the two rings is folded [O—C—C—O torsion angle = 8.60 (2)°] rather than fully extended. ππ interactions are indicated by the short distance (Cg1···Cg1 distance of 3.749 (3) Å, symmetry code: 1-x,-y,-z) between the centroids of the triazole rings (C10/C11/N1—N3) (Cg1) and benzene rings C1—C6 (Cg2) (Table 1). There are weaker C—H···N, C—H···O intermolecular interactions, which stabilized the structure (Table 1).

For details of the biological activities of triazole-containing compounds, see: Xu et al. (2002). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
(1H-1,2,4-Triazol-1-yl)methyl 2-(2,4-dichlorophenoxy)acetate top
Crystal data top
C11H9Cl2N3O3F(000) = 616
Mr = 302.11Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11868 reflections
a = 10.814 (2) Åθ = 1.9–27.4°
b = 6.4514 (13) ŵ = 0.51 mm1
c = 18.698 (4) ÅT = 293 K
β = 101.05 (3)°Thin platelet, colorless
V = 1280.2 (4) Å30.74 × 0.22 × 0.05 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2253 independent reflections
Radiation source: Rotating Anode1816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω Oscillation scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 012
Tmin = 0.702, Tmax = 0.976k = 07
2253 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0748P]
where P = (Fo2 + 2Fc2)/3
2253 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H9Cl2N3O3V = 1280.2 (4) Å3
Mr = 302.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.814 (2) ŵ = 0.51 mm1
b = 6.4514 (13) ÅT = 293 K
c = 18.698 (4) Å0.74 × 0.22 × 0.05 mm
β = 101.05 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2253 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1816 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.976Rint = 0.000
2253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2253 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.79559 (6)0.99712 (12)0.32117 (3)0.0704 (2)
Cl11.04334 (5)0.97477 (8)0.09915 (3)0.04955 (18)
O30.66872 (11)0.28902 (19)0.04910 (7)0.0376 (3)
O20.66425 (13)0.6226 (2)0.01578 (8)0.0476 (4)
N10.49666 (14)0.1167 (2)0.11561 (8)0.0339 (3)
N20.52884 (17)0.0126 (3)0.17284 (9)0.0438 (4)
N30.39084 (16)0.1726 (3)0.12151 (9)0.0464 (4)
C10.87849 (16)0.6753 (3)0.12208 (9)0.0344 (4)
C60.79694 (17)0.5867 (3)0.16172 (10)0.0415 (5)
H6A0.75830.46130.14660.050*
C40.82796 (18)0.8697 (4)0.24517 (10)0.0425 (5)
C50.77190 (18)0.6821 (4)0.22373 (10)0.0451 (5)
H5A0.71790.62020.25060.054*
C30.91140 (18)0.9612 (3)0.20703 (10)0.0399 (5)
H3B0.94961.08690.22230.048*
C20.93678 (16)0.8624 (3)0.14596 (9)0.0347 (4)
O10.90954 (12)0.5941 (2)0.06039 (7)0.0449 (4)
C70.84682 (18)0.4108 (3)0.02987 (11)0.0427 (5)
H7A0.83960.31440.06870.051*
H7B0.89640.34490.00180.051*
C80.71716 (17)0.4595 (3)0.01307 (9)0.0340 (4)
C90.54632 (17)0.3176 (3)0.09501 (10)0.0385 (4)
H9A0.49090.39150.06870.046*
H9B0.55390.39740.13790.046*
C110.41456 (18)0.0036 (3)0.08681 (11)0.0388 (4)
H11A0.37920.04460.04750.047*
C100.4627 (2)0.1587 (3)0.17314 (11)0.0470 (5)
H10A0.46510.26390.20680.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0569 (4)0.1092 (5)0.0496 (3)0.0030 (3)0.0214 (3)0.0367 (3)
Cl10.0582 (3)0.0474 (3)0.0477 (3)0.0075 (2)0.0221 (2)0.0001 (2)
O30.0317 (7)0.0377 (7)0.0426 (7)0.0016 (6)0.0049 (5)0.0078 (6)
O20.0464 (8)0.0405 (8)0.0541 (8)0.0036 (7)0.0049 (6)0.0140 (7)
N10.0339 (8)0.0340 (8)0.0343 (8)0.0040 (7)0.0081 (6)0.0048 (7)
N20.0538 (10)0.0439 (9)0.0368 (9)0.0011 (8)0.0166 (7)0.0047 (7)
N30.0482 (10)0.0400 (9)0.0501 (10)0.0091 (8)0.0077 (8)0.0015 (8)
C10.0277 (9)0.0454 (10)0.0295 (9)0.0023 (8)0.0040 (7)0.0079 (8)
C60.0319 (10)0.0476 (11)0.0447 (11)0.0079 (9)0.0063 (8)0.0108 (9)
C40.0337 (10)0.0625 (13)0.0319 (9)0.0053 (9)0.0077 (7)0.0116 (9)
C50.0304 (10)0.0656 (13)0.0406 (10)0.0045 (9)0.0107 (8)0.0032 (10)
C30.0365 (10)0.0439 (11)0.0379 (10)0.0012 (8)0.0037 (8)0.0105 (8)
C20.0309 (9)0.0391 (10)0.0336 (9)0.0012 (8)0.0053 (7)0.0015 (8)
O10.0374 (7)0.0564 (8)0.0436 (7)0.0089 (7)0.0145 (6)0.0223 (7)
C70.0360 (10)0.0464 (11)0.0457 (11)0.0004 (9)0.0075 (8)0.0202 (9)
C80.0350 (10)0.0394 (10)0.0312 (9)0.0045 (8)0.0155 (7)0.0090 (8)
C90.0328 (10)0.0351 (9)0.0468 (11)0.0031 (8)0.0058 (8)0.0030 (8)
C110.0361 (10)0.0435 (10)0.0380 (10)0.0053 (8)0.0108 (8)0.0006 (8)
C100.0603 (13)0.0379 (10)0.0420 (11)0.0002 (10)0.0074 (9)0.0081 (9)
Geometric parameters (Å, º) top
Cl2—C41.7346 (19)C6—H6A0.9300
Cl1—C21.7336 (19)C4—C51.378 (3)
O3—C81.343 (2)C4—C31.385 (3)
O3—C91.445 (2)C5—H5A0.9300
O2—C81.194 (2)C3—C21.380 (3)
N1—C111.339 (2)C3—H3B0.9300
N1—N21.364 (2)O1—C71.427 (2)
N1—C91.427 (2)C7—C81.509 (3)
N2—C101.316 (3)C7—H7A0.9700
N3—C111.310 (3)C7—H7B0.9700
N3—C101.353 (3)C9—H9A0.9700
C1—O11.366 (2)C9—H9B0.9700
C1—C61.380 (3)C11—H11A0.9300
C1—C21.395 (3)C10—H10A0.9300
C6—C51.384 (3)
C8—O3—C9114.73 (14)C1—C2—Cl1120.23 (14)
C11—N1—N2109.61 (15)C1—O1—C7118.73 (15)
C11—N1—C9129.08 (16)O1—C7—C8111.21 (16)
N2—N1—C9121.29 (16)O1—C7—H7A109.4
C10—N2—N1101.33 (16)C8—C7—H7A109.4
C11—N3—C10102.19 (16)O1—C7—H7B109.4
O1—C1—C6125.49 (17)C8—C7—H7B109.4
O1—C1—C2115.65 (16)H7A—C7—H7B108.0
C6—C1—C2118.86 (17)O2—C8—O3124.25 (16)
C1—C6—C5120.90 (19)O2—C8—C7126.51 (17)
C1—C6—H6A119.5O3—C8—C7109.23 (15)
C5—C6—H6A119.5N1—C9—O3107.39 (15)
C5—C4—C3121.22 (17)N1—C9—H9A110.2
C5—C4—Cl2120.53 (16)O3—C9—H9A110.2
C3—C4—Cl2118.25 (16)N1—C9—H9B110.2
C4—C5—C6119.20 (19)O3—C9—H9B110.2
C4—C5—H5A120.4H9A—C9—H9B108.5
C6—C5—H5A120.4N3—C11—N1110.84 (18)
C2—C3—C4118.78 (18)N3—C11—H11A124.6
C2—C3—H3B120.6N1—C11—H11A124.6
C4—C3—H3B120.6N2—C10—N3116.03 (17)
C3—C2—C1121.00 (18)N2—C10—H10A122.0
C3—C2—Cl1118.77 (15)N3—C10—H10A122.0
C11—N1—N2—C100.5 (2)C6—C1—O1—C75.1 (3)
C9—N1—N2—C10179.25 (16)C2—C1—O1—C7175.59 (16)
O1—C1—C6—C5179.94 (17)C1—O1—C7—C878.8 (2)
C2—C1—C6—C50.7 (3)C9—O3—C8—O22.2 (3)
C3—C4—C5—C61.9 (3)C9—O3—C8—C7177.47 (15)
Cl2—C4—C5—C6178.27 (16)O1—C7—C8—O28.3 (3)
C1—C6—C5—C41.1 (3)O1—C7—C8—O3171.40 (15)
C5—C4—C3—C20.9 (3)C11—N1—C9—O398.2 (2)
Cl2—C4—C3—C2179.26 (14)N2—N1—C9—O383.4 (2)
C4—C3—C2—C10.9 (3)C8—O3—C9—N1167.03 (15)
C4—C3—C2—Cl1178.88 (14)C10—N3—C11—N10.4 (2)
O1—C1—C2—C3178.97 (17)N2—N1—C11—N30.6 (2)
C6—C1—C2—C31.7 (3)C9—N1—C11—N3179.20 (17)
O1—C1—C2—Cl11.2 (2)N1—N2—C10—N30.3 (2)
C6—C1—C2—Cl1178.12 (15)C11—N3—C10—N20.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N3i0.932.453.353 (3)164
C7—H7B···O1ii0.972.583.390 (2)142
C9—H9A···O2iii0.972.523.381 (3)148
C11—H11A···O2iii0.932.543.293 (2)139
Cg1···Cg2i3.665 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H9Cl2N3O3
Mr302.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.814 (2), 6.4514 (13), 18.698 (4)
β (°) 101.05 (3)
V3)1280.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.74 × 0.22 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.702, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
2253, 2253, 1816
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections2253
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N3i0.932.453.353 (3)164
C7—H7B···O1ii0.972.583.390 (2)142
C9—H9A···O2iii0.972.523.381 (3)148
C11—H11A···O2iii0.932.543.293 (2)139
Cg1···Cg2i..3.665 (2).
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L. Z., Zhang, S. S. & Li, H. J. (2002). J. Chem. Res. Chin. Univ. 18, 284–286.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds