organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­bromo-6,6′-di­meth­oxy­bi­phenyl-2,2′-di­carboxylic acid ethanol monosolvate

aNorthwest Agriculture and Forest University, Yangling 712100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 5 April 2010; accepted 10 April 2010; online 24 April 2010)

In the title compound, C16H12Br2O6·C2H5OH, the two benzene rings are twisted by 80.64 (5)° and the carboxyl groups form dihedral angles of 72.48 (3) and 89.41 (2)° with the corresponding benzene rings. In the crystal structure, the biphenyl mol­ecules are connected by inter­molecular O—H⋯O and O—H⋯Br hydrogen bonds, resulting in a chain along the b axis.

Related literature

For complexes containing diphenic acids, see: Wang et al. (2007[Wang, J. J., Gou, L., Hu, H. M., Han, Z. X., Li, D. S., Xue, G. L., Yang, M. L. & Shi, Q. Z. (2007). Cryst. Growth Des. 7, 1514-1521.]); Yang et al. (2007[Yang, G. P., Wang, Y. Y., Ma, L. F., Liu, J. Q., Wu, Y. P., Wu, W. P. & Shi, Q. Z. (2007). Eur. J. Inorg. Chem. pp. 3892-3898.]). For the synthesis of the title compound, see: Choi et al. (2007[Choi, B. C., Seo, M. J., Cho, M., Kim, Y. J., Jin, M. K., Jung, D. Y., Choi, J. S., Ahn, W. S., Rowsell, J. L. C. & Kim. J. (2007). Cryst. Growth Des. 7, 2290-2293.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Br2O6·C2H6O

  • Mr = 506.14

  • Monoclinic, P 21 /c

  • a = 9.9872 (9) Å

  • b = 23.230 (2) Å

  • c = 8.3967 (7) Å

  • β = 90.143 (1)°

  • V = 1948.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.20 mm−1

  • T = 296 K

  • 0.41 × 0.34 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.278, Tmax = 0.347

  • 14693 measured reflections

  • 3606 independent reflections

  • 2825 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.02

  • 3606 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O7 0.82 1.79 2.594 (3) 165
O6—H6⋯O3i 0.82 1.89 2.711 (3) 174
O7—H7⋯O5ii 0.82 2.07 2.879 (3) 167
O7—H7⋯Br1ii 0.82 3.04 3.445 (2) 113
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diphenic acid and its derivatives have been proved to be a kind of multifunctional and flexible ligand in the construction of complexes possessing novel and interesting topological structures (Choi et al. 2007). Our interest in these compounds has led us to prepare the title compound according to the literature methods (Choi et al. 2007). In this contribution, we report the synthesis and crystal structure of the title compound.

The molecule of the title compound (Fig. 1.), is built up form one benzene ring connected to the other benzene ring through the 2 and 2' carbon atoms, in which the bond lengths and angles are within ranges as reported by Wang et al.. (2007). In the crystal structure, except the carboxyl group, both methoxyl group and bromino group lie in the corresponding benzene ring plane, with an r.m.s. deviation of 0.0180 (1) Å and 0.0124 (1) Å.respectively. And, the dihedral angle between the two benzene rings is 80.64 (5)°. It must be pointed out that the striking feature of the title compound is the interesting arrangement of the tilte molecules, which connected each other by the formation of intermolecular O—H···O hydrogen bonds to form one-dimensional chain along the b axis (Fig.2.). Interestingly, the solvent molecules interact with the carboxylate oxygen atoms and bromine atoms from the chains via O—H···O and O—H···Br hydrogen bonds respectively, resulting in the formation of a 2D supramolecular network with 1D channels along the c axis. Detail hydrogen bonds are given in Table 1.

Related literature top

For complexes containing diphenic acids, see: Wang et al. (2007); Yang et al. (2007). For the synthesis of the title compound, see: Choi et al. (2007).

Experimental top

2,2'-Dimethoxy-6,6'-Diacetylbiphenyl (0.298 mg, 1 mmol) was suspended and stirred in 1,4-dioxane (24 ml). NaOH (1.76 g, 30.1 mmol) was dissolved in 11.8 ml of water. At 0 °C, bromine (0.80 ml) was added to the NaOH solution which was stirred for 15 min. The NaOBr solution was added gradually to the 1,4-dioxane solution at room temperature, then was stirred at 60 °C for 2 h and cooled to room temperature. The mixture was acidified with conc. HCl (pH < 2) and filtered, washed with water (5 × 100 ml). The products were dried under vacuum, gave the title compounds as white solid (0.253 g, yield 84%).

Refinement top

All H atoms were placed in calculated positions (C—H 0.93 ~0.97 Å, O—H 0.82 Å) and were included in the refinement in the riding model approximation, with Uĩso~(H) set to 1.2 ~1.5Ueq (C, O)

Structure description top

Diphenic acid and its derivatives have been proved to be a kind of multifunctional and flexible ligand in the construction of complexes possessing novel and interesting topological structures (Choi et al. 2007). Our interest in these compounds has led us to prepare the title compound according to the literature methods (Choi et al. 2007). In this contribution, we report the synthesis and crystal structure of the title compound.

The molecule of the title compound (Fig. 1.), is built up form one benzene ring connected to the other benzene ring through the 2 and 2' carbon atoms, in which the bond lengths and angles are within ranges as reported by Wang et al.. (2007). In the crystal structure, except the carboxyl group, both methoxyl group and bromino group lie in the corresponding benzene ring plane, with an r.m.s. deviation of 0.0180 (1) Å and 0.0124 (1) Å.respectively. And, the dihedral angle between the two benzene rings is 80.64 (5)°. It must be pointed out that the striking feature of the title compound is the interesting arrangement of the tilte molecules, which connected each other by the formation of intermolecular O—H···O hydrogen bonds to form one-dimensional chain along the b axis (Fig.2.). Interestingly, the solvent molecules interact with the carboxylate oxygen atoms and bromine atoms from the chains via O—H···O and O—H···Br hydrogen bonds respectively, resulting in the formation of a 2D supramolecular network with 1D channels along the c axis. Detail hydrogen bonds are given in Table 1.

For complexes containing diphenic acids, see: Wang et al. (2007); Yang et al. (2007). For the synthesis of the title compound, see: Choi et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. View of a 2D supramolecular network with 1D channels along the c axis. (O—H···O and O—H···Br hydrogen bonds are indicated as broken lines).
3,3'-Dibromo-6,6'-dimethoxybiphenyl-2,2'-dicarboxylic acid ethanol monosolvate top
Crystal data top
C16H12Br2O6·C2H6OF(000) = 1008
Mr = 506.14Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4208 reflections
a = 9.9872 (9) Åθ = 2.6–24.1°
b = 23.230 (2) ŵ = 4.20 mm1
c = 8.3967 (7) ÅT = 296 K
β = 90.143 (1)°Block, colourless
V = 1948.1 (3) Å30.41 × 0.34 × 0.32 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.278, Tmax = 0.347k = 2827
14693 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0296P)2 + 1.1811P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C16H12Br2O6·C2H6OV = 1948.1 (3) Å3
Mr = 506.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9872 (9) ŵ = 4.20 mm1
b = 23.230 (2) ÅT = 296 K
c = 8.3967 (7) Å0.41 × 0.34 × 0.32 mm
β = 90.143 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2825 reflections with I > 2σ(I)
Tmin = 0.278, Tmax = 0.347Rint = 0.030
14693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
3606 reflectionsΔρmin = 0.52 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.29076 (3)0.321685 (15)0.54701 (4)0.05407 (12)
Br20.56847 (4)0.521511 (14)0.30185 (4)0.05610 (12)
C10.7693 (3)0.43425 (10)0.2858 (3)0.0278 (6)
C20.8694 (3)0.40203 (10)0.2113 (3)0.0274 (6)
C30.9035 (3)0.41516 (11)0.0534 (3)0.0305 (6)
C40.8397 (3)0.45929 (12)0.0261 (3)0.0370 (7)
H40.86290.46760.13070.044*
C50.7418 (3)0.49106 (12)0.0482 (3)0.0385 (7)
H50.69920.52080.00610.046*
C60.7069 (3)0.47879 (11)0.2029 (3)0.0344 (6)
C71.0635 (3)0.35965 (11)0.3670 (3)0.0308 (6)
C80.9375 (3)0.35320 (11)0.2973 (3)0.0293 (6)
C90.8739 (3)0.29955 (11)0.3056 (3)0.0354 (6)
C100.9326 (3)0.25405 (12)0.3876 (4)0.0448 (7)
H100.88870.21890.39520.054*
C111.0562 (3)0.26145 (12)0.4574 (4)0.0460 (8)
H111.09560.23120.51280.055*
C121.1220 (3)0.31319 (12)0.4460 (3)0.0360 (6)
C130.7292 (3)0.42070 (11)0.4544 (3)0.0327 (6)
C141.1369 (3)0.41600 (11)0.3540 (3)0.0330 (6)
C151.0350 (3)0.39177 (14)0.1754 (3)0.0502 (8)
H15A0.95700.38710.24120.075*
H15B1.10280.36500.20820.075*
H15C1.06820.43040.18590.075*
C160.6822 (4)0.24274 (15)0.2386 (5)0.0773 (12)
H16A0.73260.21270.18820.116*
H16B0.59720.24680.18620.116*
H16C0.66820.23310.34850.116*
C170.5058 (3)0.37183 (15)0.0619 (4)0.0576 (9)
H17A0.59570.35920.03570.069*
H17B0.49980.41260.03820.069*
C180.4087 (4)0.34029 (17)0.0378 (5)0.0830 (13)
H18A0.40970.30030.00930.124*
H18B0.43250.34440.14790.124*
H18C0.32060.35570.02110.124*
O11.0004 (2)0.38108 (8)0.0119 (2)0.0405 (5)
O20.7542 (2)0.29550 (8)0.2283 (2)0.0470 (5)
O30.7835 (2)0.44226 (8)0.5689 (2)0.0435 (5)
O40.6324 (2)0.38329 (9)0.4742 (2)0.0465 (5)
H4A0.59830.37580.38770.070*
O51.2337 (2)0.42307 (9)0.2715 (3)0.0525 (6)
O61.0841 (2)0.45596 (8)0.4443 (3)0.0506 (6)
H61.12600.48600.43360.076*
O70.4832 (2)0.36322 (12)0.2271 (3)0.0622 (6)
H70.41020.37670.25140.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04607 (19)0.0635 (2)0.0526 (2)0.01334 (16)0.01252 (15)0.00325 (16)
Br20.0602 (2)0.0550 (2)0.0532 (2)0.02797 (17)0.01663 (16)0.00940 (16)
C10.0313 (14)0.0268 (13)0.0251 (13)0.0016 (11)0.0020 (11)0.0003 (11)
C20.0319 (14)0.0245 (13)0.0258 (13)0.0013 (11)0.0011 (11)0.0006 (10)
C30.0353 (15)0.0269 (14)0.0292 (14)0.0011 (11)0.0018 (11)0.0029 (11)
C40.0467 (17)0.0395 (16)0.0248 (14)0.0004 (13)0.0050 (12)0.0071 (12)
C50.0448 (17)0.0353 (16)0.0353 (16)0.0063 (13)0.0009 (13)0.0113 (12)
C60.0364 (15)0.0330 (14)0.0339 (15)0.0040 (12)0.0024 (12)0.0006 (12)
C70.0381 (15)0.0279 (14)0.0265 (13)0.0058 (12)0.0064 (11)0.0004 (11)
C80.0351 (15)0.0276 (14)0.0251 (13)0.0049 (11)0.0045 (11)0.0019 (11)
C90.0402 (16)0.0306 (15)0.0354 (15)0.0016 (12)0.0022 (12)0.0006 (12)
C100.0538 (19)0.0277 (15)0.0529 (19)0.0013 (14)0.0013 (15)0.0080 (13)
C110.054 (2)0.0341 (16)0.0502 (19)0.0091 (14)0.0031 (15)0.0140 (14)
C120.0378 (16)0.0400 (16)0.0300 (14)0.0096 (13)0.0005 (12)0.0025 (12)
C130.0358 (16)0.0307 (14)0.0316 (15)0.0058 (12)0.0043 (12)0.0029 (12)
C140.0305 (15)0.0353 (15)0.0332 (15)0.0045 (12)0.0038 (12)0.0000 (12)
C150.058 (2)0.059 (2)0.0339 (16)0.0082 (16)0.0147 (14)0.0030 (14)
C160.072 (3)0.055 (2)0.105 (3)0.029 (2)0.025 (2)0.018 (2)
C170.057 (2)0.059 (2)0.057 (2)0.0043 (18)0.0069 (17)0.0004 (17)
C180.098 (3)0.069 (3)0.081 (3)0.006 (2)0.036 (3)0.012 (2)
O10.0503 (12)0.0419 (11)0.0293 (10)0.0118 (9)0.0104 (9)0.0007 (8)
O20.0429 (12)0.0363 (11)0.0619 (13)0.0087 (9)0.0098 (10)0.0050 (10)
O30.0576 (13)0.0463 (12)0.0267 (10)0.0083 (10)0.0016 (9)0.0019 (9)
O40.0519 (13)0.0543 (13)0.0333 (11)0.0164 (11)0.0048 (9)0.0042 (10)
O50.0485 (13)0.0472 (13)0.0618 (14)0.0043 (10)0.0195 (11)0.0020 (11)
O60.0546 (14)0.0331 (11)0.0641 (14)0.0054 (10)0.0152 (11)0.0127 (10)
O70.0397 (13)0.0960 (19)0.0508 (14)0.0005 (13)0.0022 (10)0.0063 (13)
Geometric parameters (Å, º) top
Br1—C121.896 (3)C13—O31.212 (3)
Br2—C61.895 (3)C13—O41.310 (3)
C1—C61.393 (3)C14—O51.202 (3)
C1—C21.398 (4)C14—O61.311 (3)
C1—C131.506 (4)C15—O11.438 (3)
C2—C31.403 (3)C15—H15A0.9600
C2—C81.506 (3)C15—H15B0.9600
C3—O11.366 (3)C15—H15C0.9600
C3—C41.379 (4)C16—O21.424 (4)
C4—C51.376 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.375 (4)C16—H16C0.9600
C5—H50.9300C17—O71.420 (4)
C7—C121.394 (4)C17—C181.475 (5)
C7—C81.395 (4)C17—H17A0.9700
C7—C141.505 (4)C17—H17B0.9700
C8—C91.401 (4)C18—H18A0.9600
C9—O21.362 (3)C18—H18B0.9600
C9—C101.390 (4)C18—H18C0.9600
C10—C111.376 (4)O4—H4A0.8200
C10—H100.9300O6—H60.8200
C11—C121.373 (4)O7—H70.8200
C11—H110.9300
C6—C1—C2119.6 (2)O3—C13—O4120.2 (2)
C6—C1—C13120.3 (2)O3—C13—C1122.7 (2)
C2—C1—C13120.1 (2)O4—C13—C1117.1 (2)
C1—C2—C3118.8 (2)O5—C14—O6124.2 (3)
C1—C2—C8120.7 (2)O5—C14—C7123.6 (2)
C3—C2—C8120.4 (2)O6—C14—C7112.2 (2)
O1—C3—C4124.3 (2)O1—C15—H15A109.5
O1—C3—C2115.3 (2)O1—C15—H15B109.5
C4—C3—C2120.4 (2)H15A—C15—H15B109.5
C5—C4—C3120.5 (2)O1—C15—H15C109.5
C5—C4—H4119.8H15A—C15—H15C109.5
C3—C4—H4119.8H15B—C15—H15C109.5
C6—C5—C4119.9 (3)O2—C16—H16A109.5
C6—C5—H5120.0O2—C16—H16B109.5
C4—C5—H5120.0H16A—C16—H16B109.5
C5—C6—C1120.8 (2)O2—C16—H16C109.5
C5—C6—Br2119.5 (2)H16A—C16—H16C109.5
C1—C6—Br2119.73 (19)H16B—C16—H16C109.5
C12—C7—C8119.5 (2)O7—C17—C18112.2 (3)
C12—C7—C14120.3 (2)O7—C17—H17A109.2
C8—C7—C14120.2 (2)C18—C17—H17A109.2
C7—C8—C9118.9 (2)O7—C17—H17B109.2
C7—C8—C2121.7 (2)C18—C17—H17B109.2
C9—C8—C2119.3 (2)H17A—C17—H17B107.9
O2—C9—C10123.5 (2)C17—C18—H18A109.5
O2—C9—C8115.8 (2)C17—C18—H18B109.5
C10—C9—C8120.7 (3)H18A—C18—H18B109.5
C11—C10—C9119.5 (3)C17—C18—H18C109.5
C11—C10—H10120.2H18A—C18—H18C109.5
C9—C10—H10120.2H18B—C18—H18C109.5
C12—C11—C10120.5 (3)C3—O1—C15117.1 (2)
C12—C11—H11119.7C9—O2—C16118.3 (2)
C10—C11—H11119.7C13—O4—H4A109.5
C11—C12—C7120.7 (3)C14—O6—H6109.5
C11—C12—Br1119.0 (2)C17—O7—H7109.5
C7—C12—Br1120.2 (2)
C6—C1—C2—C30.7 (4)C7—C8—C9—O2176.9 (2)
C13—C1—C2—C3179.2 (2)C2—C8—C9—O22.1 (4)
C6—C1—C2—C8179.3 (2)C7—C8—C9—C102.6 (4)
C13—C1—C2—C80.6 (4)C2—C8—C9—C10178.4 (2)
C1—C2—C3—O1178.8 (2)O2—C9—C10—C11177.7 (3)
C8—C2—C3—O10.2 (3)C8—C9—C10—C111.8 (4)
C1—C2—C3—C40.4 (4)C9—C10—C11—C120.3 (5)
C8—C2—C3—C4179.0 (2)C10—C11—C12—C71.7 (4)
O1—C3—C4—C5179.2 (3)C10—C11—C12—Br1179.0 (2)
C2—C3—C4—C50.0 (4)C8—C7—C12—C110.8 (4)
C3—C4—C5—C60.1 (4)C14—C7—C12—C11179.5 (3)
C4—C5—C6—C10.2 (4)C8—C7—C12—Br1178.13 (19)
C4—C5—C6—Br2178.3 (2)C14—C7—C12—Br13.2 (3)
C2—C1—C6—C50.7 (4)C6—C1—C13—O391.2 (3)
C13—C1—C6—C5179.2 (3)C2—C1—C13—O388.9 (3)
C2—C1—C6—Br2178.67 (19)C6—C1—C13—O489.8 (3)
C13—C1—C6—Br21.2 (3)C2—C1—C13—O490.1 (3)
C12—C7—C8—C91.3 (4)C12—C7—C14—O570.9 (4)
C14—C7—C8—C9177.4 (2)C8—C7—C14—O5107.8 (3)
C12—C7—C8—C2179.7 (2)C12—C7—C14—O6108.4 (3)
C14—C7—C8—C21.6 (4)C8—C7—C14—O673.0 (3)
C1—C2—C8—C7100.4 (3)C4—C3—O1—C151.3 (4)
C3—C2—C8—C781.1 (3)C2—C3—O1—C15177.9 (2)
C1—C2—C8—C980.6 (3)C10—C9—O2—C163.2 (4)
C3—C2—C8—C997.9 (3)C8—C9—O2—C16177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O70.821.792.594 (3)165
O6—H6···O3i0.821.892.711 (3)174
O7—H7···O5ii0.822.072.879 (3)167
O7—H7···Br1ii0.823.043.445 (2)113
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H12Br2O6·C2H6O
Mr506.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.9872 (9), 23.230 (2), 8.3967 (7)
β (°) 90.143 (1)
V3)1948.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.20
Crystal size (mm)0.41 × 0.34 × 0.32
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.278, 0.347
No. of measured, independent and
observed [I > 2σ(I)] reflections
14693, 3606, 2825
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.02
No. of reflections3606
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.52

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O70.821.792.594 (3)164.7
O6—H6···O3i0.821.892.711 (3)173.8
O7—H7···O5ii0.822.072.879 (3)167.3
O7—H7···Br1ii0.823.043.445 (2)113.2
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

We are grateful to the National Natural Sciences Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, B. C., Seo, M. J., Cho, M., Kim, Y. J., Jin, M. K., Jung, D. Y., Choi, J. S., Ahn, W. S., Rowsell, J. L. C. & Kim. J. (2007). Cryst. Growth Des. 7, 2290–2293.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. J., Gou, L., Hu, H. M., Han, Z. X., Li, D. S., Xue, G. L., Yang, M. L. & Shi, Q. Z. (2007). Cryst. Growth Des. 7, 1514–1521.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, G. P., Wang, Y. Y., Ma, L. F., Liu, J. Q., Wu, Y. P., Wu, W. P. & Shi, Q. Z. (2007). Eur. J. Inorg. Chem. pp. 3892–3898.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds