organic compounds
(2E)-3-(4-Bromophenyl)-1-(2-methyl-4-phenyl-3-quinolyl)prop-2-en-1-one
aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru 560 012, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The conformation about the ethene bond [1.316 (3) Å] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)° with the benzene and bromo-substituted benzene rings, respectively. Highlighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)°.
Related literature
For general background to quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For interest in the biological activities of see: Dimmock et al. (1999).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810013784/hg2673sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810013784/hg2673Isup2.hkl
A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g 0.01 M) and 4-bromobenzaldehyde (1.84 g 0.01 M), and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured onto ice, and neutralized with dilute acetic acid. The resultant solid was filtered, dried, purified by
using 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethyl acetate; yield: 65 % and m.pt: 459 K.The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).
Natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1998) are known to contain the quinoline nucleus. Quinolines are also known to possess attractive applications as pharmaceuticals and agrochemicals (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The open chain flavanoids, the
also possess a variety of biological activities (Dimmock et al., 1999). Herein, we report the synthesis and of a molecule containing both quinoline and chalcone groups, (I).In the structure of (I), the conformation about the C17═C18 [1.316 (3) Å] bond is E, Fig. 1. The chalcone residue is essentially planar as seen in the O1–C16–C17–C18 torsion angle of 173.7 (2) °. While the planarity extends out to the 4-bromobenzene ring [the C17–C18–C19–C20 torsion angle is -175.6 (2) °] this is not true for the quinoline residue (r.m.s. deviation = 0.0164 Å) which is twisted out of the plane through the chalcone residue: the C7–C8–C16–C17 torsion angle is 112.9 (2) °. In the same way, the C7-bound benzene ring is significantly twisted out of the plane of the quinoline ring as seen in the C6–C7–C10–C11 torsion angle of -67.0 (3) °. The non-planar nature of the molecule is reflected in the dihedral angles formed between the quinoline molecule and the benzene and bromo-substituted benzene rings of 67.21 (10) and 71.68 (10) °, respectively; the dihedral angle formed between the benzene rings is 58.57 (12) °.
Except for some rather weak π···π interactions [ring centroid(N1,C1,C6–C9)···ring centroid(C1–C6)i distance = 3.8124 (13) Å for i: 2-x, 2-y, -z] between centrosymmetrically related quinoline rings, no specific intermolecular forces are evident in the crystal packing.
For general background to quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For interest in the biological activities of
see: Dimmock et al. (1999).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. |
C25H18BrNO | Z = 2 |
Mr = 428.31 | F(000) = 436 |
Triclinic, P1 | Dx = 1.438 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6407 (3) Å | Cell parameters from 4795 reflections |
b = 10.0395 (4) Å | θ = 2.6–23.7° |
c = 15.5193 (6) Å | µ = 2.09 mm−1 |
α = 92.192 (2)° | T = 293 K |
β = 95.234 (2)° | Plate, colourless |
γ = 105.869 (2)° | 0.28 × 0.21 × 0.14 mm |
V = 988.92 (7) Å3 |
Bruker SMART APEX CCD diffractometer | 3470 independent reflections |
Radiation source: fine-focus sealed tube | 2545 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −7→7 |
Tmin = 0.596, Tmax = 0.746 | k = −11→11 |
15973 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3122P] where P = (Fo2 + 2Fc2)/3 |
3470 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C25H18BrNO | γ = 105.869 (2)° |
Mr = 428.31 | V = 988.92 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6407 (3) Å | Mo Kα radiation |
b = 10.0395 (4) Å | µ = 2.09 mm−1 |
c = 15.5193 (6) Å | T = 293 K |
α = 92.192 (2)° | 0.28 × 0.21 × 0.14 mm |
β = 95.234 (2)° |
Bruker SMART APEX CCD diffractometer | 3470 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2545 reflections with I > 2σ(I) |
Tmin = 0.596, Tmax = 0.746 | Rint = 0.027 |
15973 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.34 e Å−3 |
3470 reflections | Δρmin = −0.35 e Å−3 |
254 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.08613 (5) | 0.24943 (4) | 0.49005 (2) | 0.08720 (16) | |
O1 | 1.1467 (3) | 0.65490 (17) | 0.15079 (12) | 0.0608 (5) | |
N1 | 0.7271 (3) | 0.91386 (18) | 0.04962 (12) | 0.0419 (4) | |
C1 | 0.8532 (3) | 1.0419 (2) | 0.07979 (14) | 0.0377 (5) | |
C2 | 0.8037 (4) | 1.1593 (2) | 0.04646 (15) | 0.0475 (6) | |
H2 | 0.6909 | 1.1479 | 0.0040 | 0.057* | |
C3 | 0.9207 (4) | 1.2891 (2) | 0.07632 (17) | 0.0540 (6) | |
H3 | 0.8868 | 1.3658 | 0.0541 | 0.065* | |
C4 | 1.0909 (4) | 1.3087 (2) | 0.13987 (16) | 0.0527 (6) | |
H4 | 1.1685 | 1.3982 | 0.1598 | 0.063* | |
C5 | 1.1440 (4) | 1.1977 (2) | 0.17279 (14) | 0.0431 (5) | |
H5 | 1.2583 | 1.2119 | 0.2148 | 0.052* | |
C6 | 1.0268 (3) | 1.0609 (2) | 0.14360 (13) | 0.0348 (5) | |
C7 | 1.0703 (3) | 0.9398 (2) | 0.17656 (13) | 0.0344 (5) | |
C8 | 0.9391 (3) | 0.8119 (2) | 0.14548 (14) | 0.0361 (5) | |
C9 | 0.7675 (3) | 0.8033 (2) | 0.08138 (14) | 0.0395 (5) | |
C10 | 1.2501 (3) | 0.9522 (2) | 0.24382 (13) | 0.0361 (5) | |
C11 | 1.4566 (4) | 1.0046 (3) | 0.22479 (16) | 0.0522 (6) | |
H11 | 1.4833 | 1.0335 | 0.1697 | 0.063* | |
C12 | 1.6221 (4) | 1.0137 (3) | 0.28757 (19) | 0.0627 (7) | |
H12 | 1.7597 | 1.0486 | 0.2743 | 0.075* | |
C13 | 1.5861 (4) | 0.9721 (3) | 0.36906 (18) | 0.0591 (7) | |
H13 | 1.6984 | 0.9783 | 0.4109 | 0.071* | |
C14 | 1.3823 (4) | 0.9209 (3) | 0.38841 (16) | 0.0563 (6) | |
H14 | 1.3568 | 0.8921 | 0.4436 | 0.068* | |
C15 | 1.2162 (4) | 0.9120 (2) | 0.32667 (14) | 0.0451 (5) | |
H15 | 1.0791 | 0.8784 | 0.3409 | 0.054* | |
C16 | 0.9910 (4) | 0.6815 (2) | 0.17362 (15) | 0.0433 (5) | |
C17 | 0.8555 (4) | 0.5880 (2) | 0.22805 (16) | 0.0488 (6) | |
H17 | 0.8854 | 0.5047 | 0.2391 | 0.059* | |
C18 | 0.6945 (4) | 0.6130 (2) | 0.26255 (15) | 0.0457 (6) | |
H18 | 0.6660 | 0.6964 | 0.2503 | 0.055* | |
C19 | 0.5548 (3) | 0.5238 (2) | 0.31818 (15) | 0.0444 (5) | |
C20 | 0.3842 (4) | 0.5633 (3) | 0.34362 (17) | 0.0547 (6) | |
H20 | 0.3621 | 0.6461 | 0.3258 | 0.066* | |
C21 | 0.2463 (4) | 0.4832 (3) | 0.39470 (17) | 0.0602 (7) | |
H21 | 0.1321 | 0.5112 | 0.4110 | 0.072* | |
C22 | 0.2791 (4) | 0.3614 (3) | 0.42126 (16) | 0.0524 (6) | |
C23 | 0.4469 (4) | 0.3192 (3) | 0.39775 (17) | 0.0580 (7) | |
H23 | 0.4680 | 0.2365 | 0.4161 | 0.070* | |
C24 | 0.5839 (4) | 0.4003 (2) | 0.34676 (17) | 0.0550 (6) | |
H24 | 0.6984 | 0.3719 | 0.3311 | 0.066* | |
C26 | 0.6217 (4) | 0.6658 (2) | 0.04495 (17) | 0.0538 (6) | |
H26A | 0.5103 | 0.6364 | 0.0813 | 0.081* | |
H26B | 0.6990 | 0.5979 | 0.0430 | 0.081* | |
H26C | 0.5630 | 0.6755 | −0.0126 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0736 (2) | 0.0933 (3) | 0.0832 (2) | −0.00470 (17) | 0.02395 (17) | 0.03235 (18) |
O1 | 0.0616 (11) | 0.0476 (10) | 0.0839 (13) | 0.0264 (8) | 0.0242 (10) | 0.0157 (9) |
N1 | 0.0385 (10) | 0.0394 (11) | 0.0463 (11) | 0.0092 (8) | 0.0020 (8) | 0.0015 (9) |
C1 | 0.0377 (11) | 0.0369 (13) | 0.0403 (12) | 0.0122 (10) | 0.0072 (10) | 0.0035 (10) |
C2 | 0.0487 (13) | 0.0461 (15) | 0.0498 (14) | 0.0180 (11) | −0.0005 (11) | 0.0081 (11) |
C3 | 0.0643 (16) | 0.0394 (14) | 0.0637 (16) | 0.0230 (12) | 0.0047 (13) | 0.0121 (12) |
C4 | 0.0617 (15) | 0.0318 (13) | 0.0623 (16) | 0.0101 (11) | 0.0052 (13) | −0.0014 (11) |
C5 | 0.0463 (12) | 0.0377 (13) | 0.0433 (13) | 0.0099 (10) | 0.0007 (10) | 0.0001 (10) |
C6 | 0.0382 (11) | 0.0316 (12) | 0.0363 (12) | 0.0102 (9) | 0.0106 (9) | 0.0029 (9) |
C7 | 0.0337 (11) | 0.0359 (12) | 0.0355 (11) | 0.0104 (9) | 0.0099 (9) | 0.0041 (9) |
C8 | 0.0365 (11) | 0.0323 (12) | 0.0402 (12) | 0.0088 (9) | 0.0095 (10) | 0.0049 (9) |
C9 | 0.0383 (11) | 0.0347 (12) | 0.0446 (13) | 0.0079 (9) | 0.0080 (10) | 0.0004 (10) |
C10 | 0.0407 (12) | 0.0288 (11) | 0.0399 (12) | 0.0116 (9) | 0.0046 (10) | 0.0006 (9) |
C11 | 0.0430 (13) | 0.0664 (16) | 0.0482 (14) | 0.0145 (12) | 0.0112 (12) | 0.0039 (12) |
C12 | 0.0369 (13) | 0.0794 (19) | 0.0726 (19) | 0.0188 (13) | 0.0062 (13) | −0.0074 (15) |
C13 | 0.0556 (16) | 0.0624 (17) | 0.0600 (18) | 0.0249 (13) | −0.0123 (13) | −0.0056 (13) |
C14 | 0.0676 (17) | 0.0538 (15) | 0.0437 (14) | 0.0131 (13) | −0.0052 (13) | 0.0080 (11) |
C15 | 0.0448 (13) | 0.0447 (13) | 0.0422 (13) | 0.0059 (10) | 0.0050 (11) | 0.0061 (10) |
C16 | 0.0461 (13) | 0.0340 (12) | 0.0482 (14) | 0.0087 (10) | 0.0048 (11) | 0.0029 (10) |
C17 | 0.0563 (14) | 0.0332 (13) | 0.0579 (15) | 0.0122 (11) | 0.0097 (12) | 0.0089 (11) |
C18 | 0.0529 (14) | 0.0315 (12) | 0.0524 (14) | 0.0111 (10) | 0.0051 (12) | 0.0043 (10) |
C19 | 0.0467 (13) | 0.0358 (13) | 0.0469 (14) | 0.0058 (10) | 0.0025 (11) | 0.0035 (10) |
C20 | 0.0575 (15) | 0.0472 (14) | 0.0639 (16) | 0.0184 (12) | 0.0138 (13) | 0.0121 (12) |
C21 | 0.0506 (15) | 0.0665 (18) | 0.0658 (17) | 0.0163 (13) | 0.0162 (13) | 0.0077 (14) |
C22 | 0.0493 (14) | 0.0513 (15) | 0.0471 (14) | −0.0020 (12) | 0.0036 (11) | 0.0073 (11) |
C23 | 0.0620 (16) | 0.0439 (14) | 0.0653 (17) | 0.0088 (12) | 0.0061 (13) | 0.0146 (12) |
C24 | 0.0489 (14) | 0.0479 (15) | 0.0687 (17) | 0.0117 (11) | 0.0122 (13) | 0.0087 (13) |
C26 | 0.0485 (13) | 0.0431 (14) | 0.0615 (16) | 0.0026 (11) | −0.0037 (12) | −0.0033 (12) |
Br1—C22 | 1.897 (2) | C12—H12 | 0.9300 |
O1—C16 | 1.215 (3) | C13—C14 | 1.375 (4) |
N1—C9 | 1.314 (3) | C13—H13 | 0.9300 |
N1—C1 | 1.367 (3) | C14—C15 | 1.375 (3) |
C1—C2 | 1.411 (3) | C14—H14 | 0.9300 |
C1—C6 | 1.415 (3) | C15—H15 | 0.9300 |
C2—C3 | 1.360 (3) | C16—C17 | 1.463 (3) |
C2—H2 | 0.9300 | C17—C18 | 1.316 (3) |
C3—C4 | 1.396 (3) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—C19 | 1.469 (3) |
C4—C5 | 1.361 (3) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—C20 | 1.383 (3) |
C5—C6 | 1.415 (3) | C19—C24 | 1.389 (3) |
C5—H5 | 0.9300 | C20—C21 | 1.376 (3) |
C6—C7 | 1.427 (3) | C20—H20 | 0.9300 |
C7—C8 | 1.380 (3) | C21—C22 | 1.371 (4) |
C7—C10 | 1.487 (3) | C21—H21 | 0.9300 |
C8—C9 | 1.424 (3) | C22—C23 | 1.369 (4) |
C8—C16 | 1.513 (3) | C23—C24 | 1.376 (3) |
C9—C26 | 1.507 (3) | C23—H23 | 0.9300 |
C10—C15 | 1.382 (3) | C24—H24 | 0.9300 |
C10—C11 | 1.392 (3) | C26—H26A | 0.9600 |
C11—C12 | 1.381 (3) | C26—H26B | 0.9600 |
C11—H11 | 0.9300 | C26—H26C | 0.9600 |
C12—C13 | 1.368 (4) | ||
C9—N1—C1 | 118.80 (18) | C15—C14—C13 | 120.4 (2) |
N1—C1—C2 | 117.86 (19) | C15—C14—H14 | 119.8 |
N1—C1—C6 | 122.80 (18) | C13—C14—H14 | 119.8 |
C2—C1—C6 | 119.33 (19) | C14—C15—C10 | 120.9 (2) |
C3—C2—C1 | 120.1 (2) | C14—C15—H15 | 119.6 |
C3—C2—H2 | 120.0 | C10—C15—H15 | 119.6 |
C1—C2—H2 | 120.0 | O1—C16—C17 | 120.1 (2) |
C2—C3—C4 | 121.0 (2) | O1—C16—C8 | 119.41 (19) |
C2—C3—H3 | 119.5 | C17—C16—C8 | 120.4 (2) |
C4—C3—H3 | 119.5 | C18—C17—C16 | 125.0 (2) |
C5—C4—C3 | 120.4 (2) | C18—C17—H17 | 117.5 |
C5—C4—H4 | 119.8 | C16—C17—H17 | 117.5 |
C3—C4—H4 | 119.8 | C17—C18—C19 | 127.3 (2) |
C4—C5—C6 | 120.5 (2) | C17—C18—H18 | 116.4 |
C4—C5—H5 | 119.7 | C19—C18—H18 | 116.4 |
C6—C5—H5 | 119.7 | C20—C19—C24 | 117.6 (2) |
C5—C6—C1 | 118.67 (18) | C20—C19—C18 | 119.0 (2) |
C5—C6—C7 | 123.60 (19) | C24—C19—C18 | 123.4 (2) |
C1—C6—C7 | 117.71 (18) | C21—C20—C19 | 121.6 (2) |
C8—C7—C6 | 118.19 (19) | C21—C20—H20 | 119.2 |
C8—C7—C10 | 121.31 (18) | C19—C20—H20 | 119.2 |
C6—C7—C10 | 120.49 (18) | C20—C21—C22 | 119.2 (2) |
C7—C8—C9 | 120.04 (18) | C20—C21—H21 | 120.4 |
C7—C8—C16 | 119.47 (18) | C22—C21—H21 | 120.4 |
C9—C8—C16 | 120.24 (18) | C23—C22—C21 | 120.9 (2) |
N1—C9—C8 | 122.44 (19) | C23—C22—Br1 | 119.93 (19) |
N1—C9—C26 | 115.76 (19) | C21—C22—Br1 | 119.18 (19) |
C8—C9—C26 | 121.80 (19) | C22—C23—C24 | 119.4 (2) |
C15—C10—C11 | 118.4 (2) | C22—C23—H23 | 120.3 |
C15—C10—C7 | 120.84 (19) | C24—C23—H23 | 120.3 |
C11—C10—C7 | 120.77 (19) | C23—C24—C19 | 121.3 (2) |
C12—C11—C10 | 120.1 (2) | C23—C24—H24 | 119.3 |
C12—C11—H11 | 119.9 | C19—C24—H24 | 119.3 |
C10—C11—H11 | 119.9 | C9—C26—H26A | 109.5 |
C13—C12—C11 | 120.8 (2) | C9—C26—H26B | 109.5 |
C13—C12—H12 | 119.6 | H26A—C26—H26B | 109.5 |
C11—C12—H12 | 119.6 | C9—C26—H26C | 109.5 |
C12—C13—C14 | 119.3 (2) | H26A—C26—H26C | 109.5 |
C12—C13—H13 | 120.3 | H26B—C26—H26C | 109.5 |
C14—C13—H13 | 120.3 | ||
C9—N1—C1—C2 | −178.4 (2) | C8—C7—C10—C11 | 114.2 (2) |
C9—N1—C1—C6 | 0.4 (3) | C6—C7—C10—C11 | −67.0 (3) |
N1—C1—C2—C3 | 178.0 (2) | C15—C10—C11—C12 | 0.8 (3) |
C6—C1—C2—C3 | −0.7 (3) | C7—C10—C11—C12 | −179.1 (2) |
C1—C2—C3—C4 | 0.1 (4) | C10—C11—C12—C13 | −0.2 (4) |
C2—C3—C4—C5 | 0.5 (4) | C11—C12—C13—C14 | −0.2 (4) |
C3—C4—C5—C6 | −0.5 (4) | C12—C13—C14—C15 | −0.2 (4) |
C4—C5—C6—C1 | −0.2 (3) | C13—C14—C15—C10 | 0.9 (4) |
C4—C5—C6—C7 | −178.5 (2) | C11—C10—C15—C14 | −1.2 (3) |
N1—C1—C6—C5 | −177.97 (19) | C7—C10—C15—C14 | 178.7 (2) |
C2—C1—C6—C5 | 0.8 (3) | C7—C8—C16—O1 | −66.9 (3) |
N1—C1—C6—C7 | 0.5 (3) | C9—C8—C16—O1 | 107.3 (2) |
C2—C1—C6—C7 | 179.20 (19) | C7—C8—C16—C17 | 112.9 (2) |
C5—C6—C7—C8 | 177.32 (19) | C9—C8—C16—C17 | −72.8 (3) |
C1—C6—C7—C8 | −1.0 (3) | O1—C16—C17—C18 | 173.7 (2) |
C5—C6—C7—C10 | −1.5 (3) | C8—C16—C17—C18 | −6.1 (4) |
C1—C6—C7—C10 | −179.90 (18) | C16—C17—C18—C19 | −179.4 (2) |
C6—C7—C8—C9 | 0.8 (3) | C17—C18—C19—C20 | −175.6 (2) |
C10—C7—C8—C9 | 179.66 (18) | C17—C18—C19—C24 | 4.1 (4) |
C6—C7—C8—C16 | 175.09 (18) | C24—C19—C20—C21 | −0.6 (4) |
C10—C7—C8—C16 | −6.1 (3) | C18—C19—C20—C21 | 179.1 (2) |
C1—N1—C9—C8 | −0.6 (3) | C19—C20—C21—C22 | 0.2 (4) |
C1—N1—C9—C26 | −179.99 (19) | C20—C21—C22—C23 | 0.1 (4) |
C7—C8—C9—N1 | 0.0 (3) | C20—C21—C22—Br1 | −178.94 (19) |
C16—C8—C9—N1 | −174.19 (19) | C21—C22—C23—C24 | 0.0 (4) |
C7—C8—C9—C26 | 179.3 (2) | Br1—C22—C23—C24 | 179.02 (19) |
C16—C8—C9—C26 | 5.1 (3) | C22—C23—C24—C19 | −0.4 (4) |
C8—C7—C10—C15 | −65.7 (3) | C20—C19—C24—C23 | 0.7 (4) |
C6—C7—C10—C15 | 113.1 (2) | C18—C19—C24—C23 | −179.0 (2) |
Experimental details
Crystal data | |
Chemical formula | C25H18BrNO |
Mr | 428.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.6407 (3), 10.0395 (4), 15.5193 (6) |
α, β, γ (°) | 92.192 (2), 95.234 (2), 105.869 (2) |
V (Å3) | 988.92 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.09 |
Crystal size (mm) | 0.28 × 0.21 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.596, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15973, 3470, 2545 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.083, 1.01 |
No. of reflections | 3470 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.35 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).
Footnotes
‡Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.
Acknowledgements
VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035. CrossRef Web of Science Google Scholar
Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377. Web of Science CrossRef PubMed CAS Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404. Web of Science CrossRef CAS PubMed Google Scholar
Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137. CrossRef CAS PubMed Web of Science Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1998) are known to contain the quinoline nucleus. Quinolines are also known to possess attractive applications as pharmaceuticals and agrochemicals (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The open chain flavanoids, the chalcones, also possess a variety of biological activities (Dimmock et al., 1999). Herein, we report the synthesis and crystal structure of a molecule containing both quinoline and chalcone groups, (I).
In the structure of (I), the conformation about the C17═C18 [1.316 (3) Å] bond is E, Fig. 1. The chalcone residue is essentially planar as seen in the O1–C16–C17–C18 torsion angle of 173.7 (2) °. While the planarity extends out to the 4-bromobenzene ring [the C17–C18–C19–C20 torsion angle is -175.6 (2) °] this is not true for the quinoline residue (r.m.s. deviation = 0.0164 Å) which is twisted out of the plane through the chalcone residue: the C7–C8–C16–C17 torsion angle is 112.9 (2) °. In the same way, the C7-bound benzene ring is significantly twisted out of the plane of the quinoline ring as seen in the C6–C7–C10–C11 torsion angle of -67.0 (3) °. The non-planar nature of the molecule is reflected in the dihedral angles formed between the quinoline molecule and the benzene and bromo-substituted benzene rings of 67.21 (10) and 71.68 (10) °, respectively; the dihedral angle formed between the benzene rings is 58.57 (12) °.
Except for some rather weak π···π interactions [ring centroid(N1,C1,C6–C9)···ring centroid(C1–C6)i distance = 3.8124 (13) Å for i: 2-x, 2-y, -z] between centrosymmetrically related quinoline rings, no specific intermolecular forces are evident in the crystal packing.