organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(4-Bromo­phen­yl)-1-(2-methyl-4-phenyl-3-quinol­yl)prop-2-en-1-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru 560 012, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 April 2010; accepted 14 April 2010; online 17 April 2010)

The conformation about the ethene bond [1.316 (3) Å] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)° with the benzene and bromo-substituted benzene rings, respectively. Highlighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)°.

Related literature

For general background to quinoline derivatives, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1998[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031-1035.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399-404.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]). For inter­est in the biological activities of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18BrNO

  • Mr = 428.31

  • Triclinic, [P \overline 1]

  • a = 6.6407 (3) Å

  • b = 10.0395 (4) Å

  • c = 15.5193 (6) Å

  • α = 92.192 (2)°

  • β = 95.234 (2)°

  • γ = 105.869 (2)°

  • V = 988.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 293 K

  • 0.28 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.]) Tmin = 0.596, Tmax = 0.746

  • 15973 measured reflections

  • 3470 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.01

  • 3470 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1998) are known to contain the quinoline nucleus. Quinolines are also known to possess attractive applications as pharmaceuticals and agrochemicals (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The open chain flavanoids, the chalcones, also possess a variety of biological activities (Dimmock et al., 1999). Herein, we report the synthesis and crystal structure of a molecule containing both quinoline and chalcone groups, (I).

In the structure of (I), the conformation about the C17C18 [1.316 (3) Å] bond is E, Fig. 1. The chalcone residue is essentially planar as seen in the O1–C16–C17–C18 torsion angle of 173.7 (2) °. While the planarity extends out to the 4-bromobenzene ring [the C17–C18–C19–C20 torsion angle is -175.6 (2) °] this is not true for the quinoline residue (r.m.s. deviation = 0.0164 Å) which is twisted out of the plane through the chalcone residue: the C7–C8–C16–C17 torsion angle is 112.9 (2) °. In the same way, the C7-bound benzene ring is significantly twisted out of the plane of the quinoline ring as seen in the C6–C7–C10–C11 torsion angle of -67.0 (3) °. The non-planar nature of the molecule is reflected in the dihedral angles formed between the quinoline molecule and the benzene and bromo-substituted benzene rings of 67.21 (10) and 71.68 (10) °, respectively; the dihedral angle formed between the benzene rings is 58.57 (12) °.

Except for some rather weak π···π interactions [ring centroid(N1,C1,C6–C9)···ring centroid(C1–C6)i distance = 3.8124 (13) Å for i: 2-x, 2-y, -z] between centrosymmetrically related quinoline rings, no specific intermolecular forces are evident in the crystal packing.

Related literature top

For general background to quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For interest in the biological activities of chalcones, see: Dimmock et al. (1999).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g 0.01 M) and 4-bromobenzaldehyde (1.84 g 0.01 M), and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured onto ice, and neutralized with dilute acetic acid. The resultant solid was filtered, dried, purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethyl acetate; yield: 65 % and m.pt: 459 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1998) are known to contain the quinoline nucleus. Quinolines are also known to possess attractive applications as pharmaceuticals and agrochemicals (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The open chain flavanoids, the chalcones, also possess a variety of biological activities (Dimmock et al., 1999). Herein, we report the synthesis and crystal structure of a molecule containing both quinoline and chalcone groups, (I).

In the structure of (I), the conformation about the C17C18 [1.316 (3) Å] bond is E, Fig. 1. The chalcone residue is essentially planar as seen in the O1–C16–C17–C18 torsion angle of 173.7 (2) °. While the planarity extends out to the 4-bromobenzene ring [the C17–C18–C19–C20 torsion angle is -175.6 (2) °] this is not true for the quinoline residue (r.m.s. deviation = 0.0164 Å) which is twisted out of the plane through the chalcone residue: the C7–C8–C16–C17 torsion angle is 112.9 (2) °. In the same way, the C7-bound benzene ring is significantly twisted out of the plane of the quinoline ring as seen in the C6–C7–C10–C11 torsion angle of -67.0 (3) °. The non-planar nature of the molecule is reflected in the dihedral angles formed between the quinoline molecule and the benzene and bromo-substituted benzene rings of 67.21 (10) and 71.68 (10) °, respectively; the dihedral angle formed between the benzene rings is 58.57 (12) °.

Except for some rather weak π···π interactions [ring centroid(N1,C1,C6–C9)···ring centroid(C1–C6)i distance = 3.8124 (13) Å for i: 2-x, 2-y, -z] between centrosymmetrically related quinoline rings, no specific intermolecular forces are evident in the crystal packing.

For general background to quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For interest in the biological activities of chalcones, see: Dimmock et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
(2E)-3-(4-Bromophenyl)-1-(2-methyl-4-phenyl-3-quinolyl)prop-2-en-1-one top
Crystal data top
C25H18BrNOZ = 2
Mr = 428.31F(000) = 436
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6407 (3) ÅCell parameters from 4795 reflections
b = 10.0395 (4) Åθ = 2.6–23.7°
c = 15.5193 (6) ŵ = 2.09 mm1
α = 92.192 (2)°T = 293 K
β = 95.234 (2)°Plate, colourless
γ = 105.869 (2)°0.28 × 0.21 × 0.14 mm
V = 988.92 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3470 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 77
Tmin = 0.596, Tmax = 0.746k = 1111
15973 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3122P]
where P = (Fo2 + 2Fc2)/3
3470 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C25H18BrNOγ = 105.869 (2)°
Mr = 428.31V = 988.92 (7) Å3
Triclinic, P1Z = 2
a = 6.6407 (3) ÅMo Kα radiation
b = 10.0395 (4) ŵ = 2.09 mm1
c = 15.5193 (6) ÅT = 293 K
α = 92.192 (2)°0.28 × 0.21 × 0.14 mm
β = 95.234 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2545 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.746Rint = 0.027
15973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
3470 reflectionsΔρmin = 0.35 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08613 (5)0.24943 (4)0.49005 (2)0.08720 (16)
O11.1467 (3)0.65490 (17)0.15079 (12)0.0608 (5)
N10.7271 (3)0.91386 (18)0.04962 (12)0.0419 (4)
C10.8532 (3)1.0419 (2)0.07979 (14)0.0377 (5)
C20.8037 (4)1.1593 (2)0.04646 (15)0.0475 (6)
H20.69091.14790.00400.057*
C30.9207 (4)1.2891 (2)0.07632 (17)0.0540 (6)
H30.88681.36580.05410.065*
C41.0909 (4)1.3087 (2)0.13987 (16)0.0527 (6)
H41.16851.39820.15980.063*
C51.1440 (4)1.1977 (2)0.17279 (14)0.0431 (5)
H51.25831.21190.21480.052*
C61.0268 (3)1.0609 (2)0.14360 (13)0.0348 (5)
C71.0703 (3)0.9398 (2)0.17656 (13)0.0344 (5)
C80.9391 (3)0.8119 (2)0.14548 (14)0.0361 (5)
C90.7675 (3)0.8033 (2)0.08138 (14)0.0395 (5)
C101.2501 (3)0.9522 (2)0.24382 (13)0.0361 (5)
C111.4566 (4)1.0046 (3)0.22479 (16)0.0522 (6)
H111.48331.03350.16970.063*
C121.6221 (4)1.0137 (3)0.28757 (19)0.0627 (7)
H121.75971.04860.27430.075*
C131.5861 (4)0.9721 (3)0.36906 (18)0.0591 (7)
H131.69840.97830.41090.071*
C141.3823 (4)0.9209 (3)0.38841 (16)0.0563 (6)
H141.35680.89210.44360.068*
C151.2162 (4)0.9120 (2)0.32667 (14)0.0451 (5)
H151.07910.87840.34090.054*
C160.9910 (4)0.6815 (2)0.17362 (15)0.0433 (5)
C170.8555 (4)0.5880 (2)0.22805 (16)0.0488 (6)
H170.88540.50470.23910.059*
C180.6945 (4)0.6130 (2)0.26255 (15)0.0457 (6)
H180.66600.69640.25030.055*
C190.5548 (3)0.5238 (2)0.31818 (15)0.0444 (5)
C200.3842 (4)0.5633 (3)0.34362 (17)0.0547 (6)
H200.36210.64610.32580.066*
C210.2463 (4)0.4832 (3)0.39470 (17)0.0602 (7)
H210.13210.51120.41100.072*
C220.2791 (4)0.3614 (3)0.42126 (16)0.0524 (6)
C230.4469 (4)0.3192 (3)0.39775 (17)0.0580 (7)
H230.46800.23650.41610.070*
C240.5839 (4)0.4003 (2)0.34676 (17)0.0550 (6)
H240.69840.37190.33110.066*
C260.6217 (4)0.6658 (2)0.04495 (17)0.0538 (6)
H26A0.51030.63640.08130.081*
H26B0.69900.59790.04300.081*
H26C0.56300.67550.01260.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0736 (2)0.0933 (3)0.0832 (2)0.00470 (17)0.02395 (17)0.03235 (18)
O10.0616 (11)0.0476 (10)0.0839 (13)0.0264 (8)0.0242 (10)0.0157 (9)
N10.0385 (10)0.0394 (11)0.0463 (11)0.0092 (8)0.0020 (8)0.0015 (9)
C10.0377 (11)0.0369 (13)0.0403 (12)0.0122 (10)0.0072 (10)0.0035 (10)
C20.0487 (13)0.0461 (15)0.0498 (14)0.0180 (11)0.0005 (11)0.0081 (11)
C30.0643 (16)0.0394 (14)0.0637 (16)0.0230 (12)0.0047 (13)0.0121 (12)
C40.0617 (15)0.0318 (13)0.0623 (16)0.0101 (11)0.0052 (13)0.0014 (11)
C50.0463 (12)0.0377 (13)0.0433 (13)0.0099 (10)0.0007 (10)0.0001 (10)
C60.0382 (11)0.0316 (12)0.0363 (12)0.0102 (9)0.0106 (9)0.0029 (9)
C70.0337 (11)0.0359 (12)0.0355 (11)0.0104 (9)0.0099 (9)0.0041 (9)
C80.0365 (11)0.0323 (12)0.0402 (12)0.0088 (9)0.0095 (10)0.0049 (9)
C90.0383 (11)0.0347 (12)0.0446 (13)0.0079 (9)0.0080 (10)0.0004 (10)
C100.0407 (12)0.0288 (11)0.0399 (12)0.0116 (9)0.0046 (10)0.0006 (9)
C110.0430 (13)0.0664 (16)0.0482 (14)0.0145 (12)0.0112 (12)0.0039 (12)
C120.0369 (13)0.0794 (19)0.0726 (19)0.0188 (13)0.0062 (13)0.0074 (15)
C130.0556 (16)0.0624 (17)0.0600 (18)0.0249 (13)0.0123 (13)0.0056 (13)
C140.0676 (17)0.0538 (15)0.0437 (14)0.0131 (13)0.0052 (13)0.0080 (11)
C150.0448 (13)0.0447 (13)0.0422 (13)0.0059 (10)0.0050 (11)0.0061 (10)
C160.0461 (13)0.0340 (12)0.0482 (14)0.0087 (10)0.0048 (11)0.0029 (10)
C170.0563 (14)0.0332 (13)0.0579 (15)0.0122 (11)0.0097 (12)0.0089 (11)
C180.0529 (14)0.0315 (12)0.0524 (14)0.0111 (10)0.0051 (12)0.0043 (10)
C190.0467 (13)0.0358 (13)0.0469 (14)0.0058 (10)0.0025 (11)0.0035 (10)
C200.0575 (15)0.0472 (14)0.0639 (16)0.0184 (12)0.0138 (13)0.0121 (12)
C210.0506 (15)0.0665 (18)0.0658 (17)0.0163 (13)0.0162 (13)0.0077 (14)
C220.0493 (14)0.0513 (15)0.0471 (14)0.0020 (12)0.0036 (11)0.0073 (11)
C230.0620 (16)0.0439 (14)0.0653 (17)0.0088 (12)0.0061 (13)0.0146 (12)
C240.0489 (14)0.0479 (15)0.0687 (17)0.0117 (11)0.0122 (13)0.0087 (13)
C260.0485 (13)0.0431 (14)0.0615 (16)0.0026 (11)0.0037 (12)0.0033 (12)
Geometric parameters (Å, º) top
Br1—C221.897 (2)C12—H120.9300
O1—C161.215 (3)C13—C141.375 (4)
N1—C91.314 (3)C13—H130.9300
N1—C11.367 (3)C14—C151.375 (3)
C1—C21.411 (3)C14—H140.9300
C1—C61.415 (3)C15—H150.9300
C2—C31.360 (3)C16—C171.463 (3)
C2—H20.9300C17—C181.316 (3)
C3—C41.396 (3)C17—H170.9300
C3—H30.9300C18—C191.469 (3)
C4—C51.361 (3)C18—H180.9300
C4—H40.9300C19—C201.383 (3)
C5—C61.415 (3)C19—C241.389 (3)
C5—H50.9300C20—C211.376 (3)
C6—C71.427 (3)C20—H200.9300
C7—C81.380 (3)C21—C221.371 (4)
C7—C101.487 (3)C21—H210.9300
C8—C91.424 (3)C22—C231.369 (4)
C8—C161.513 (3)C23—C241.376 (3)
C9—C261.507 (3)C23—H230.9300
C10—C151.382 (3)C24—H240.9300
C10—C111.392 (3)C26—H26A0.9600
C11—C121.381 (3)C26—H26B0.9600
C11—H110.9300C26—H26C0.9600
C12—C131.368 (4)
C9—N1—C1118.80 (18)C15—C14—C13120.4 (2)
N1—C1—C2117.86 (19)C15—C14—H14119.8
N1—C1—C6122.80 (18)C13—C14—H14119.8
C2—C1—C6119.33 (19)C14—C15—C10120.9 (2)
C3—C2—C1120.1 (2)C14—C15—H15119.6
C3—C2—H2120.0C10—C15—H15119.6
C1—C2—H2120.0O1—C16—C17120.1 (2)
C2—C3—C4121.0 (2)O1—C16—C8119.41 (19)
C2—C3—H3119.5C17—C16—C8120.4 (2)
C4—C3—H3119.5C18—C17—C16125.0 (2)
C5—C4—C3120.4 (2)C18—C17—H17117.5
C5—C4—H4119.8C16—C17—H17117.5
C3—C4—H4119.8C17—C18—C19127.3 (2)
C4—C5—C6120.5 (2)C17—C18—H18116.4
C4—C5—H5119.7C19—C18—H18116.4
C6—C5—H5119.7C20—C19—C24117.6 (2)
C5—C6—C1118.67 (18)C20—C19—C18119.0 (2)
C5—C6—C7123.60 (19)C24—C19—C18123.4 (2)
C1—C6—C7117.71 (18)C21—C20—C19121.6 (2)
C8—C7—C6118.19 (19)C21—C20—H20119.2
C8—C7—C10121.31 (18)C19—C20—H20119.2
C6—C7—C10120.49 (18)C20—C21—C22119.2 (2)
C7—C8—C9120.04 (18)C20—C21—H21120.4
C7—C8—C16119.47 (18)C22—C21—H21120.4
C9—C8—C16120.24 (18)C23—C22—C21120.9 (2)
N1—C9—C8122.44 (19)C23—C22—Br1119.93 (19)
N1—C9—C26115.76 (19)C21—C22—Br1119.18 (19)
C8—C9—C26121.80 (19)C22—C23—C24119.4 (2)
C15—C10—C11118.4 (2)C22—C23—H23120.3
C15—C10—C7120.84 (19)C24—C23—H23120.3
C11—C10—C7120.77 (19)C23—C24—C19121.3 (2)
C12—C11—C10120.1 (2)C23—C24—H24119.3
C12—C11—H11119.9C19—C24—H24119.3
C10—C11—H11119.9C9—C26—H26A109.5
C13—C12—C11120.8 (2)C9—C26—H26B109.5
C13—C12—H12119.6H26A—C26—H26B109.5
C11—C12—H12119.6C9—C26—H26C109.5
C12—C13—C14119.3 (2)H26A—C26—H26C109.5
C12—C13—H13120.3H26B—C26—H26C109.5
C14—C13—H13120.3
C9—N1—C1—C2178.4 (2)C8—C7—C10—C11114.2 (2)
C9—N1—C1—C60.4 (3)C6—C7—C10—C1167.0 (3)
N1—C1—C2—C3178.0 (2)C15—C10—C11—C120.8 (3)
C6—C1—C2—C30.7 (3)C7—C10—C11—C12179.1 (2)
C1—C2—C3—C40.1 (4)C10—C11—C12—C130.2 (4)
C2—C3—C4—C50.5 (4)C11—C12—C13—C140.2 (4)
C3—C4—C5—C60.5 (4)C12—C13—C14—C150.2 (4)
C4—C5—C6—C10.2 (3)C13—C14—C15—C100.9 (4)
C4—C5—C6—C7178.5 (2)C11—C10—C15—C141.2 (3)
N1—C1—C6—C5177.97 (19)C7—C10—C15—C14178.7 (2)
C2—C1—C6—C50.8 (3)C7—C8—C16—O166.9 (3)
N1—C1—C6—C70.5 (3)C9—C8—C16—O1107.3 (2)
C2—C1—C6—C7179.20 (19)C7—C8—C16—C17112.9 (2)
C5—C6—C7—C8177.32 (19)C9—C8—C16—C1772.8 (3)
C1—C6—C7—C81.0 (3)O1—C16—C17—C18173.7 (2)
C5—C6—C7—C101.5 (3)C8—C16—C17—C186.1 (4)
C1—C6—C7—C10179.90 (18)C16—C17—C18—C19179.4 (2)
C6—C7—C8—C90.8 (3)C17—C18—C19—C20175.6 (2)
C10—C7—C8—C9179.66 (18)C17—C18—C19—C244.1 (4)
C6—C7—C8—C16175.09 (18)C24—C19—C20—C210.6 (4)
C10—C7—C8—C166.1 (3)C18—C19—C20—C21179.1 (2)
C1—N1—C9—C80.6 (3)C19—C20—C21—C220.2 (4)
C1—N1—C9—C26179.99 (19)C20—C21—C22—C230.1 (4)
C7—C8—C9—N10.0 (3)C20—C21—C22—Br1178.94 (19)
C16—C8—C9—N1174.19 (19)C21—C22—C23—C240.0 (4)
C7—C8—C9—C26179.3 (2)Br1—C22—C23—C24179.02 (19)
C16—C8—C9—C265.1 (3)C22—C23—C24—C190.4 (4)
C8—C7—C10—C1565.7 (3)C20—C19—C24—C230.7 (4)
C6—C7—C10—C15113.1 (2)C18—C19—C24—C23179.0 (2)

Experimental details

Crystal data
Chemical formulaC25H18BrNO
Mr428.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6407 (3), 10.0395 (4), 15.5193 (6)
α, β, γ (°)92.192 (2), 95.234 (2), 105.869 (2)
V3)988.92 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.28 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.596, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15973, 3470, 2545
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.01
No. of reflections3470
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035.  CrossRef Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds