organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-(3-Nicotinoyl-1,3-thia­zolidin-2-yl­­idene)cyanamide

aHenan Chemical Industry Research Institute Co Ltd, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yunman_xie@yahoo.cn

(Received 18 April 2010; accepted 19 April 2010; online 24 April 2010)

In the title compound, C10H8N4OS, the dihedral angle between the pyridine and thia­zolidine rings is 52.5 (5)°. Inter­molecular C—H⋯N inter­actions help to stabilize the crystal structure.

Related literature

For related structures, see: Wang et al. (2008[Wang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321.]); Liu & Li (2009[Liu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645.]). For the biological activity of thia­zolidine-containing compounds, see: Iwata et al. (1988[Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, pp. 261-262.]); Ogawa (2000[Ogawa, T. (2000). Jpn Patent JP 2000226378.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N4OS

  • Mr = 232.26

  • Monoclinic, P 21 /c

  • a = 5.9180 (12) Å

  • b = 15.182 (3) Å

  • c = 11.448 (2) Å

  • β = 94.62 (3)°

  • V = 1025.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.17 × 0.07 × 0.05 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.951, Tmax = 0.985

  • 7491 measured reflections

  • 1799 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.095

  • S = 1.15

  • 1799 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N4i 0.93 2.52 3.383 (3) 154
C8—H8B⋯N1ii 0.97 2.55 3.481 (3) 162
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidine is an important group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988; Ogawa, 2000). In order to search for new thiazolidine compounds with higher bioactivity, we synthesized the title compound and describe its structure here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009). The dihedral angle between pyridine (C1—C5/N1) and thiazolidine (C7—C9/N2/S1) rings is 52.5 (5)°. The intermolecular C—H···N hydrogen bonds stabilize the structure.

Related literature top

For related structures, see: Wang et al. (2008); Liu & Li (2009). For the biological activity of thiazolidine-containing compounds, see: Iwata et al. (1988); Ogawa (2000). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), nicotinoyl chloride (1.42 g, 10 mmol) and (1.01 g, 10 mmol ) triethylamine is refluxed in absolute acetone (25 ml) for 4 h. On cooling, the product crystallizes and is filtered, and recrystallized from absolute EtOH, yield 2.13 g (92%). Single crystals suitable for X-ray measurements were obtained by recrystallization from dichloromethane at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Thiazolidine is an important group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988; Ogawa, 2000). In order to search for new thiazolidine compounds with higher bioactivity, we synthesized the title compound and describe its structure here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009). The dihedral angle between pyridine (C1—C5/N1) and thiazolidine (C7—C9/N2/S1) rings is 52.5 (5)°. The intermolecular C—H···N hydrogen bonds stabilize the structure.

For related structures, see: Wang et al. (2008); Liu & Li (2009). For the biological activity of thiazolidine-containing compounds, see: Iwata et al. (1988); Ogawa (2000). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
(Z)-N-(3-Nicotinoyl-1,3-thiazolidin-2-ylidene)cyanamide top
Crystal data top
C10H8N4OSF(000) = 480
Mr = 232.26Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3351 reflections
a = 5.9180 (12) Åθ = 1.3–27.5°
b = 15.182 (3) ŵ = 0.30 mm1
c = 11.448 (2) ÅT = 173 K
β = 94.62 (3)°Needle, colorless
V = 1025.2 (4) Å30.17 × 0.07 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
1799 independent reflections
Radiation source: Sealed Tube1699 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.054
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 67
Tmin = 0.951, Tmax = 0.985k = 1818
7491 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.7053P]
where P = (Fo2 + 2Fc2)/3
1799 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H8N4OSV = 1025.2 (4) Å3
Mr = 232.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9180 (12) ŵ = 0.30 mm1
b = 15.182 (3) ÅT = 173 K
c = 11.448 (2) Å0.17 × 0.07 × 0.05 mm
β = 94.62 (3)°
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
1799 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1699 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.985Rint = 0.054
7491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.15Δρmax = 0.28 e Å3
1799 reflectionsΔρmin = 0.19 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07382 (9)0.71271 (4)0.18314 (5)0.02782 (18)
O10.6823 (2)0.58746 (10)0.01165 (14)0.0305 (4)
N10.0795 (3)0.54439 (13)0.29129 (17)0.0316 (5)
N20.3613 (3)0.63953 (12)0.05512 (15)0.0230 (4)
N30.0875 (3)0.72532 (12)0.05117 (15)0.0253 (4)
N40.2685 (4)0.81222 (15)0.06511 (18)0.0426 (6)
C10.5188 (4)0.60983 (14)0.2489 (2)0.0264 (5)
H1A0.66630.63060.23470.032*
C20.4329 (4)0.58936 (16)0.3616 (2)0.0318 (5)
H2A0.52020.59720.42480.038*
C30.2154 (4)0.55716 (16)0.3780 (2)0.0338 (6)
H3B0.15910.54340.45400.041*
C40.1635 (4)0.56544 (14)0.1829 (2)0.0262 (5)
H4A0.07200.55730.12140.031*
C50.3806 (3)0.59877 (13)0.15738 (19)0.0217 (5)
C60.4871 (4)0.60973 (13)0.03604 (19)0.0228 (5)
C70.4663 (4)0.63253 (15)0.17646 (18)0.0254 (5)
H7A0.56990.68110.19400.030*
H7B0.54960.57770.18710.030*
C80.2732 (4)0.63538 (15)0.25500 (19)0.0268 (5)
H8A0.32520.65570.33290.032*
H8B0.20480.57770.26110.032*
C90.1716 (3)0.69261 (14)0.04735 (19)0.0222 (5)
C100.1045 (4)0.77156 (15)0.05189 (18)0.0280 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0233 (3)0.0389 (4)0.0215 (3)0.0052 (2)0.0034 (2)0.0013 (2)
O10.0204 (9)0.0388 (9)0.0324 (9)0.0057 (7)0.0024 (6)0.0012 (7)
N10.0276 (11)0.0311 (11)0.0363 (12)0.0026 (8)0.0029 (9)0.0036 (9)
N20.0185 (9)0.0278 (10)0.0228 (10)0.0038 (7)0.0023 (7)0.0007 (8)
N30.0237 (10)0.0293 (10)0.0232 (10)0.0055 (8)0.0044 (7)0.0029 (8)
N40.0399 (13)0.0566 (14)0.0306 (12)0.0207 (12)0.0015 (9)0.0012 (10)
C10.0205 (11)0.0250 (11)0.0342 (13)0.0001 (9)0.0058 (9)0.0007 (10)
C20.0334 (14)0.0362 (13)0.0272 (13)0.0006 (11)0.0104 (10)0.0007 (10)
C30.0368 (14)0.0371 (14)0.0272 (13)0.0029 (11)0.0006 (10)0.0058 (10)
C40.0252 (12)0.0246 (11)0.0300 (12)0.0030 (9)0.0088 (9)0.0000 (9)
C50.0192 (11)0.0197 (10)0.0267 (11)0.0029 (8)0.0037 (8)0.0000 (9)
C60.0202 (12)0.0202 (11)0.0286 (12)0.0009 (9)0.0057 (9)0.0007 (9)
C70.0232 (12)0.0272 (11)0.0252 (12)0.0028 (9)0.0014 (9)0.0013 (9)
C80.0259 (12)0.0303 (12)0.0237 (12)0.0016 (10)0.0014 (9)0.0030 (9)
C90.0176 (11)0.0222 (10)0.0270 (12)0.0015 (9)0.0034 (9)0.0004 (9)
C100.0311 (13)0.0344 (12)0.0187 (11)0.0057 (11)0.0037 (9)0.0003 (9)
Geometric parameters (Å, º) top
S1—C91.729 (2)C1—H1A0.9300
S1—C81.814 (2)C2—C31.376 (3)
O1—C61.214 (3)C2—H2A0.9300
N1—C41.338 (3)C3—H3B0.9300
N1—C31.342 (3)C4—C51.390 (3)
N2—C91.379 (3)C4—H4A0.9300
N2—C61.405 (3)C5—C61.488 (3)
N2—C71.479 (3)C7—C81.510 (3)
N3—C91.295 (3)C7—H7A0.9700
N3—C101.335 (3)C7—H7B0.9700
N4—C101.150 (3)C8—H8A0.9700
C1—C21.383 (3)C8—H8B0.9700
C1—C51.391 (3)
C9—S1—C892.34 (10)C1—C5—C6117.34 (19)
C4—N1—C3116.86 (19)O1—C6—N2118.05 (19)
C9—N2—C6128.16 (18)O1—C6—C5120.49 (19)
C9—N2—C7112.40 (17)N2—C6—C5121.28 (18)
C6—N2—C7117.80 (17)N2—C7—C8106.01 (17)
C9—N3—C10118.32 (18)N2—C7—H7A110.5
C2—C1—C5118.8 (2)C8—C7—H7A110.5
C2—C1—H1A120.6N2—C7—H7B110.5
C5—C1—H1A120.6C8—C7—H7B110.5
C3—C2—C1118.5 (2)H7A—C7—H7B108.7
C3—C2—H2A120.8C7—C8—S1104.14 (14)
C1—C2—H2A120.8C7—C8—H8A110.9
N1—C3—C2124.1 (2)S1—C8—H8A110.9
N1—C3—H3B118.0C7—C8—H8B110.9
C2—C3—H3B118.0S1—C8—H8B110.9
N1—C4—C5123.4 (2)H8A—C8—H8B108.9
N1—C4—H4A118.3N3—C9—N2122.30 (19)
C5—C4—H4A118.3N3—C9—S1125.63 (17)
C4—C5—C1118.4 (2)N2—C9—S1112.01 (15)
C4—C5—C6123.50 (19)N4—C10—N3172.7 (2)
C5—C1—C2—C31.3 (3)C1—C5—C6—N2150.65 (19)
C4—N1—C3—C20.6 (4)C9—N2—C7—C834.3 (2)
C1—C2—C3—N10.2 (4)C6—N2—C7—C8159.14 (18)
C3—N1—C4—C50.3 (3)N2—C7—C8—S136.57 (19)
N1—C4—C5—C10.8 (3)C9—S1—C8—C725.54 (16)
N1—C4—C5—C6170.6 (2)C10—N3—C9—N2175.9 (2)
C2—C1—C5—C41.6 (3)C10—N3—C9—S17.2 (3)
C2—C1—C5—C6172.0 (2)C6—N2—C9—N32.5 (3)
C9—N2—C6—O1157.6 (2)C7—N2—C9—N3162.4 (2)
C7—N2—C6—O16.6 (3)C6—N2—C9—S1179.73 (17)
C9—N2—C6—C527.3 (3)C7—N2—C9—S114.8 (2)
C7—N2—C6—C5168.55 (18)C8—S1—C9—N3175.7 (2)
C4—C5—C6—O1135.5 (2)C8—S1—C9—N27.10 (17)
C1—C5—C6—O134.3 (3)C9—N3—C10—N4178 (2)
C4—C5—C6—N239.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N4i0.932.523.383 (3)154
C8—H8B···N1ii0.972.553.481 (3)162
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N4OS
Mr232.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.9180 (12), 15.182 (3), 11.448 (2)
β (°) 94.62 (3)
V3)1025.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.17 × 0.07 × 0.05
Data collection
DiffractometerRigaku Mercury CCD/AFC
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.951, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7491, 1799, 1699
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.095, 1.15
No. of reflections1799
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N4i0.932.523.383 (3)154.2
C8—H8B···N1ii0.972.553.481 (3)162.1
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationIwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, pp. 261–262.  Google Scholar
First citationLiu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, T. (2000). Jpn Patent JP 2000226378.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds