metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[butane-1,4-diylbis(nitrilo­methyl­­idyne)]diphenolato-1:2κ8O6,O1,O1′,O6′:O1,N,N′,O1′}tris­­(nitrato-1κ2O,O′)copper(II)gadolinium(III)

aDepartment of Chemistry & Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165, USA
*Correspondence e-mail: rajones@mail.utexas.edu, bholliday@cm.utexas.edu

(Received 16 February 2010; accepted 21 April 2010; online 28 April 2010)

In the title dinuclear complex, [CuGd(C20H22N2O4)(NO3)3], the CuII ion is located in the inner N2O2 cavity of the Schiff base ligand and adopts a distorted square-planar geometry. The GdIII ion is ten-coordinate being bound to ten O atoms, four from the Schiff base ligand and six from three bidentate nitrate anions. The CuII and GdIII ions are linked by two phenolate O atoms of the Schiff base ligand, with a separation of 3.5185 (9) Å.

Related literature

For general background to 3d–4f bimetallic complexes, see: Sakamoto et al. (2001[Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219-221, 379-414.]); Winpenny (1998[Winpenny, R. E. P. (1998). Chem. Soc. Rev. 27, 447-452.]); Yang et al. (2005[Yang, X., Jones, R. A., Lynch, V., Oye, M. M. & Holmes, A. L. (2005). Dalton Trans. pp. 849-851.]). For related structures, see: Fei & Fang (2008[Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.]); Xing et al. (2008[Xing, J.-C., Wang, J.-H., Yan, P.-F. & Li, G.-M. (2008). Acta Cryst. E64, m1206.]).

[Scheme 1]

Experimental

Crystal data
  • [CuGd(C20H22N2O4)(NO3)3]

  • Mr = 761.22

  • Monoclinic, P 21 /n

  • a = 11.795 (2) Å

  • b = 14.730 (3) Å

  • c = 14.892 (3) Å

  • β = 100.58 (3)°

  • V = 2543.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 223 K

  • 0.56 × 0.13 × 0.13 mm

Data collection
  • Rigaku MiniFlexII CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.598, Tmax = 1.000

  • 14367 measured reflections

  • 4460 independent reflections

  • 4090 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.128

  • S = 1.20

  • 4460 reflections

  • 362 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.69 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O1 2.581 (4)
Gd1—O2 2.336 (3)
Gd1—O3 2.418 (3)
Gd1—O4 2.568 (3)
Gd1—O5 2.472 (5)
Gd1—O6 2.458 (5)
Gd1—O8 2.472 (4)
Gd1—O9 2.428 (4)
Gd1—O11 2.431 (4)
Gd1—O12 2.520 (3)
Cu1—O2 1.941 (3)
Cu1—O3 1.940 (3)
Cu1—N1 2.004 (4)
Cu1—N2 1.960 (4)

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heteropolynuclear complexes containing d- and f-block elements are currently of great interest because of their interesting physicochemical properties and potential applications as new materials (Sakamoto et al., 2001; Winpenny, 1998). Compartmental Schiff bases with two dissimilar metal-binding sites, one being specific for the d-block metal ion and another for the f-block metal ion, are classical ligands used to synthesize such heteronuclear complexes. As part of our ongoing interests in 3d–4f complexes with Schiff-base ligands (Yang et al., 2005), the title complex was synthesized and its crystal structure is reported herein.

The molecular structure of the title complex is shown in Fig. 1. It has a similar structure to other two Cu–Ln complexes with the Schiff-base ligand N,N'-bis(3-methoxysalicylidene)propane-1,3-diamine (H2L), [CuLnL(NO3)3] [Ln = EuIII (Xing et al., 2008) and TbIII (Fei & Fang, 2008)]. The CuII ion is coordinated by two N atoms and two O atoms from the Schiff-base ligand. The GdIII ion is surrounded by ten O atoms, four from the Schiff-base ligand and six from three bidentate NO3- anions. CuII and GdIII ions are bridged by two phenolate O atoms of the Schiff-base ligand, with a separation of 3.5185 (9) Å. The average distances for the Cu—O(phenolate) and Cu—N are 1.942 Å and 1.982 Å, respectively. The Gd—O(phenolate) distance of 2.377 Å (av.) is shorter than the Gd—O (methoxy) distance of 2.574 Å (av.), no doubt reflecting the difference between ionic vs. dative bonding. The average distance for the Gd—O (nitrate) is 2.464 Å, which is comparable to those found in the literature (Fei & Fang, 2008; Xing et al., 2008).

Related literature top

For general background to 3d–4f bimetallic complexes, see: Sakamoto et al. (2001); Winpenny (1998); Yang et al. (2005). For related structures, see: Fei & Fang (2008); Xing et al. (2008).

Experimental top

A mixture of the Schiff-base ligand (0.178 g, 0.5 mmol) and Cu(CH3CO2)2.H2O (0.10 g, 0.5 mmol) in EtOH (15 ml) was stirred and refluxed for 10 min. The reaction mixture was allowed to cool briefly and Gd(NO3)3.6H2O (0.226 g, 0.5 mmol) was added and the mixture again heated under reflux (15 min) and then filtered. Diethylether was allowed to diffuse slowly into the filtrate at room temperature and blue crystals were obtained after two weeks. The crystals were filtered off and washed with 5 ml of EtOH (yield 0.176 g, 46.32%). m. p. > 260°C (dec). ESI-MS(MeOH) m/z: 700 [M—NO3]+. IR(CH3OH, cm-1): 3429 m, 1636 s, 1473 s, 1439 w, 1362 m, 1295 w, 1227 m, 1171 w, 1099 w, 1077 m, 1013 m, 658 s. UV-VIS(CH3OH, 25°C) λmax/nm: 215, 275, 350.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.94 (CH), 0.98 (CH2) and 0.97 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl groups)Ueq(C). The highest residual electron density was found 1.83 Å from H1A and the deepest hole 0.72 Å from Cu1.

Structure description top

Heteropolynuclear complexes containing d- and f-block elements are currently of great interest because of their interesting physicochemical properties and potential applications as new materials (Sakamoto et al., 2001; Winpenny, 1998). Compartmental Schiff bases with two dissimilar metal-binding sites, one being specific for the d-block metal ion and another for the f-block metal ion, are classical ligands used to synthesize such heteronuclear complexes. As part of our ongoing interests in 3d–4f complexes with Schiff-base ligands (Yang et al., 2005), the title complex was synthesized and its crystal structure is reported herein.

The molecular structure of the title complex is shown in Fig. 1. It has a similar structure to other two Cu–Ln complexes with the Schiff-base ligand N,N'-bis(3-methoxysalicylidene)propane-1,3-diamine (H2L), [CuLnL(NO3)3] [Ln = EuIII (Xing et al., 2008) and TbIII (Fei & Fang, 2008)]. The CuII ion is coordinated by two N atoms and two O atoms from the Schiff-base ligand. The GdIII ion is surrounded by ten O atoms, four from the Schiff-base ligand and six from three bidentate NO3- anions. CuII and GdIII ions are bridged by two phenolate O atoms of the Schiff-base ligand, with a separation of 3.5185 (9) Å. The average distances for the Cu—O(phenolate) and Cu—N are 1.942 Å and 1.982 Å, respectively. The Gd—O(phenolate) distance of 2.377 Å (av.) is shorter than the Gd—O (methoxy) distance of 2.574 Å (av.), no doubt reflecting the difference between ionic vs. dative bonding. The average distance for the Gd—O (nitrate) is 2.464 Å, which is comparable to those found in the literature (Fei & Fang, 2008; Xing et al., 2008).

For general background to 3d–4f bimetallic complexes, see: Sakamoto et al. (2001); Winpenny (1998); Yang et al. (2005). For related structures, see: Fei & Fang (2008); Xing et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids shown at the 40% probability level. H atoms have been excluded for clarity.
{µ-6,6'-Dimethoxy-2,2'-[butane-1,4-diylbis(nitrilomethylidyne)]diphenolato- 1:2κ8O6,O1,O1',O6': O1,N,N',O1'}tris(nitrato- 1κ2O,O')copper(II)gadolinium(III) top
Crystal data top
[CuGd(C20H22N2O4)(NO3)3]F(000) = 1496
Mr = 761.22Dx = 1.988 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8776 reflections
a = 11.795 (2) Åθ = 1.8–31.9°
b = 14.730 (3) ŵ = 3.50 mm1
c = 14.892 (3) ÅT = 223 K
β = 100.58 (3)°Prism, blue
V = 2543.4 (9) Å30.56 × 0.13 × 0.13 mm
Z = 4
Data collection top
Rigaku MiniFlexII CCD
diffractometer
4460 independent reflections
Radiation source: fine-focus sealed tube4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.0°
thin–slice ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 1717
Tmin = 0.598, Tmax = 1.000l = 1716
14367 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0793P)2 + 1.3271P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
4460 reflectionsΔρmax = 2.69 e Å3
362 parametersΔρmin = 1.35 e Å3
6 restraintsExtinction correction: SHELXTL (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (4)
Crystal data top
[CuGd(C20H22N2O4)(NO3)3]V = 2543.4 (9) Å3
Mr = 761.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.795 (2) ŵ = 3.50 mm1
b = 14.730 (3) ÅT = 223 K
c = 14.892 (3) Å0.56 × 0.13 × 0.13 mm
β = 100.58 (3)°
Data collection top
Rigaku MiniFlexII CCD
diffractometer
4460 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
4090 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 1.000Rint = 0.032
14367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0336 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.20Δρmax = 2.69 e Å3
4460 reflectionsΔρmin = 1.35 e Å3
362 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.261236 (19)0.750997 (12)0.066103 (16)0.02180 (16)
Cu10.54871 (5)0.76924 (4)0.03441 (4)0.02328 (19)
N10.6472 (3)0.6645 (3)0.0102 (3)0.0281 (9)
N20.6638 (3)0.8666 (3)0.0545 (3)0.0251 (8)
O10.2007 (3)0.6647 (3)0.0860 (2)0.0345 (8)
O20.4094 (3)0.6988 (2)0.0053 (2)0.0305 (7)
O30.4328 (3)0.8431 (2)0.0767 (2)0.0275 (7)
O40.2582 (3)0.9074 (2)0.1417 (2)0.0337 (8)
C10.0855 (5)0.6569 (5)0.1376 (5)0.0605 (18)
H1A0.08500.67430.20050.091*
H1B0.03450.69670.11160.091*
H1C0.05930.59470.13560.091*
C20.2860 (4)0.6140 (3)0.1153 (3)0.0294 (10)
C30.2659 (5)0.5475 (3)0.1817 (3)0.0345 (11)
H3A0.19040.53550.21240.041*
C40.3593 (5)0.4980 (4)0.2032 (4)0.0406 (13)
H4A0.34630.45240.24820.049*
C50.4697 (5)0.5162 (4)0.1584 (4)0.0386 (12)
H5A0.53160.48200.17210.046*
C60.4913 (4)0.5862 (3)0.0915 (3)0.0306 (10)
C70.3977 (4)0.6343 (3)0.0690 (3)0.0277 (10)
C80.6085 (4)0.5997 (3)0.0437 (3)0.0326 (11)
H8A0.66250.55560.05360.039*
C90.7715 (4)0.6524 (4)0.0540 (4)0.0402 (14)
H9A0.82030.66740.00950.048*
H9B0.78500.58860.07130.048*
C100.8059 (5)0.7113 (5)0.1378 (4)0.0426 (13)
H10A0.86400.67920.18200.051*
H10B0.73830.72150.16620.051*
C110.8552 (4)0.8039 (4)0.1151 (4)0.0433 (14)
H11A0.86230.84340.16880.052*
H11B0.93270.79480.10160.052*
C120.7812 (5)0.8503 (4)0.0350 (4)0.0338 (12)
H12A0.81640.90830.02300.041*
H12B0.77600.81230.01960.041*
C130.6435 (4)0.9476 (3)0.0807 (3)0.0263 (10)
H13A0.70290.99010.08060.032*
C140.5420 (4)0.9812 (3)0.1102 (3)0.0238 (9)
C150.5441 (4)1.0721 (3)0.1420 (3)0.0286 (10)
H15A0.60971.10820.14170.034*
C160.4500 (4)1.1079 (4)0.1733 (3)0.0349 (11)
H16A0.45121.16840.19370.042*
C170.3544 (4)1.0541 (3)0.1745 (3)0.0307 (10)
H17A0.29131.07790.19720.037*
C180.3500 (4)0.9666 (3)0.1433 (3)0.0261 (9)
C190.4434 (4)0.9281 (3)0.1088 (3)0.0219 (9)
C200.1675 (5)0.9375 (5)0.1878 (5)0.0593 (18)
H20A0.20080.95740.24910.089*
H20B0.11460.88770.19120.089*
H20C0.12620.98750.15420.089*
N30.3210 (8)0.7319 (5)0.2617 (4)0.085 (3)
O50.3967 (6)0.7260 (5)0.2116 (4)0.0811 (19)
O60.2209 (7)0.7391 (3)0.2219 (4)0.0643 (17)
O70.3486 (8)0.7274 (6)0.3444 (5)0.135 (3)
N40.1158 (4)0.8781 (3)0.0484 (3)0.0408 (11)
O80.2183 (3)0.8626 (3)0.0595 (2)0.0370 (9)
O90.0797 (3)0.8273 (3)0.0094 (3)0.0380 (8)
O100.0586 (5)0.9393 (4)0.0899 (4)0.0827 (17)
N50.1497 (4)0.5795 (3)0.0913 (3)0.0397 (10)
O110.2586 (3)0.5895 (3)0.0994 (3)0.0396 (9)
O120.0899 (3)0.6504 (3)0.0719 (3)0.0421 (9)
O130.1069 (5)0.5050 (3)0.1020 (3)0.0727 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0171 (2)0.0226 (2)0.0268 (2)0.00134 (7)0.00685 (14)0.00039 (7)
Cu10.0182 (3)0.0237 (3)0.0291 (3)0.0009 (2)0.0074 (2)0.0030 (2)
N10.0213 (19)0.023 (2)0.042 (2)0.0040 (16)0.0126 (17)0.0029 (18)
N20.0184 (18)0.028 (2)0.031 (2)0.0008 (16)0.0101 (15)0.0004 (17)
O10.0271 (18)0.037 (2)0.0385 (18)0.0008 (16)0.0028 (15)0.0079 (17)
O20.0229 (16)0.0314 (18)0.0381 (18)0.0031 (14)0.0085 (14)0.0118 (15)
O30.0225 (16)0.0221 (16)0.0408 (18)0.0048 (13)0.0132 (14)0.0067 (14)
O40.0230 (16)0.0337 (19)0.049 (2)0.0025 (15)0.0196 (15)0.0092 (16)
C10.029 (3)0.078 (5)0.067 (4)0.001 (3)0.010 (3)0.026 (4)
C20.027 (2)0.030 (3)0.031 (2)0.000 (2)0.0073 (19)0.001 (2)
C30.040 (3)0.033 (3)0.028 (2)0.008 (2)0.002 (2)0.005 (2)
C40.053 (3)0.037 (3)0.035 (3)0.001 (3)0.016 (2)0.009 (2)
C50.049 (3)0.029 (3)0.043 (3)0.002 (2)0.022 (2)0.005 (2)
C60.035 (3)0.024 (2)0.035 (3)0.003 (2)0.014 (2)0.002 (2)
C70.035 (3)0.022 (2)0.028 (2)0.0046 (19)0.0119 (19)0.0014 (19)
C80.031 (2)0.025 (2)0.046 (3)0.004 (2)0.017 (2)0.003 (2)
C90.022 (3)0.033 (3)0.066 (4)0.006 (2)0.007 (3)0.007 (3)
C100.026 (3)0.058 (4)0.043 (3)0.004 (3)0.004 (2)0.010 (3)
C110.019 (2)0.057 (4)0.054 (3)0.000 (2)0.007 (2)0.013 (3)
C120.028 (3)0.030 (3)0.050 (3)0.005 (2)0.024 (2)0.002 (2)
C130.026 (2)0.027 (2)0.027 (2)0.0076 (19)0.0066 (18)0.0012 (19)
C140.025 (2)0.024 (2)0.023 (2)0.0006 (18)0.0039 (17)0.0005 (18)
C150.031 (2)0.025 (2)0.030 (2)0.002 (2)0.0064 (19)0.005 (2)
C160.034 (3)0.029 (3)0.041 (3)0.002 (2)0.004 (2)0.008 (2)
C170.026 (2)0.031 (2)0.038 (2)0.004 (2)0.0113 (19)0.006 (2)
C180.026 (2)0.026 (2)0.028 (2)0.0019 (18)0.0096 (18)0.0008 (19)
C190.021 (2)0.022 (2)0.023 (2)0.0007 (18)0.0052 (16)0.0005 (18)
C200.041 (3)0.065 (4)0.083 (5)0.008 (3)0.041 (3)0.030 (4)
N30.108 (7)0.111 (5)0.032 (3)0.088 (5)0.002 (4)0.011 (3)
O50.068 (4)0.113 (4)0.052 (3)0.045 (4)0.015 (3)0.027 (3)
O60.099 (5)0.056 (3)0.047 (3)0.031 (3)0.037 (3)0.004 (2)
O70.149 (6)0.203 (7)0.047 (3)0.114 (5)0.000 (4)0.020 (4)
N40.038 (2)0.036 (3)0.048 (3)0.001 (2)0.008 (2)0.006 (2)
O80.0287 (18)0.035 (2)0.049 (2)0.0025 (16)0.0136 (16)0.0100 (17)
O90.0300 (18)0.041 (2)0.044 (2)0.0057 (16)0.0112 (16)0.0052 (17)
O100.081 (4)0.066 (3)0.102 (4)0.030 (3)0.019 (3)0.048 (3)
N50.044 (3)0.034 (2)0.040 (2)0.016 (2)0.006 (2)0.001 (2)
O110.037 (2)0.0297 (19)0.053 (2)0.0049 (16)0.0118 (17)0.0050 (18)
O120.0273 (19)0.042 (2)0.057 (2)0.0071 (17)0.0080 (17)0.0070 (19)
O130.099 (4)0.041 (3)0.078 (3)0.028 (3)0.014 (3)0.007 (2)
Geometric parameters (Å, º) top
Gd1—O12.581 (4)C6—C81.447 (7)
Gd1—O22.336 (3)C8—H8A0.9400
Gd1—O32.418 (3)C9—C101.512 (9)
Gd1—O42.568 (3)C9—H9A0.9800
Gd1—O52.472 (5)C9—H9B0.9800
Gd1—O62.458 (5)C10—C111.544 (9)
Gd1—O82.472 (4)C10—H10A0.9800
Gd1—O92.428 (4)C10—H10B0.9800
Gd1—O112.431 (4)C11—C121.507 (8)
Gd1—O122.520 (3)C11—H11A0.9800
Cu1—O21.941 (3)C11—H11B0.9800
Cu1—O31.940 (3)C12—H12A0.9800
Cu1—N12.004 (4)C12—H12B0.9800
Cu1—N21.960 (4)C13—C141.436 (6)
N1—C81.276 (6)C13—H13A0.9400
N1—C91.502 (6)C14—C191.398 (6)
N2—C131.292 (6)C14—C151.419 (6)
N2—C121.486 (6)C15—C161.385 (7)
O1—C21.386 (6)C15—H15A0.9400
O1—C11.437 (6)C16—C171.382 (7)
O2—C71.332 (6)C16—H16A0.9400
O3—C191.338 (5)C17—C181.367 (7)
O4—C181.387 (6)C17—H17A0.9400
O4—C201.443 (6)C18—C191.417 (6)
C1—H1A0.9700C20—H20A0.9700
C1—H1B0.9700C20—H20B0.9700
C1—H1C0.9700C20—H20C0.9700
C2—C31.381 (7)N3—O71.218 (9)
C2—C71.403 (7)N3—O61.224 (11)
C3—C41.406 (7)N3—O51.266 (11)
C3—H3A0.9400N4—O101.224 (6)
C4—C51.377 (8)N4—O81.270 (6)
C4—H4A0.9400N4—O91.272 (5)
C5—C61.424 (7)N5—O131.230 (6)
C5—H5A0.9400N5—O121.264 (6)
C6—C71.404 (7)N5—O111.277 (6)
O2—Gd1—O361.77 (11)C2—C3—H3A120.2
O2—Gd1—O9132.81 (12)C4—C3—H3A120.2
O3—Gd1—O9115.90 (12)C5—C4—C3119.9 (5)
O2—Gd1—O1179.02 (12)C5—C4—H4A120.0
O3—Gd1—O11125.29 (12)C3—C4—H4A120.0
O9—Gd1—O11118.72 (12)C4—C5—C6120.8 (5)
O2—Gd1—O6134.1 (2)C4—C5—H5A119.6
O3—Gd1—O6106.44 (17)C6—C5—H5A119.6
O9—Gd1—O692.9 (2)C7—C6—C5119.0 (5)
O11—Gd1—O674.10 (14)C7—C6—C8122.4 (4)
O2—Gd1—O886.60 (12)C5—C6—C8118.4 (5)
O3—Gd1—O874.26 (12)O2—C7—C2117.9 (4)
O9—Gd1—O851.97 (12)O2—C7—C6123.2 (4)
O11—Gd1—O8142.79 (13)C2—C7—C6119.0 (4)
O6—Gd1—O8135.51 (17)N1—C8—C6127.7 (4)
O2—Gd1—O586.1 (2)N1—C8—H8A116.2
O3—Gd1—O568.18 (15)C6—C8—H8A116.2
O9—Gd1—O5139.5 (2)N1—C9—C10112.6 (5)
O11—Gd1—O572.88 (18)N1—C9—H9A109.1
O6—Gd1—O550.8 (2)C10—C9—H9A109.1
O8—Gd1—O5140.55 (16)N1—C9—H9B109.1
O2—Gd1—O12119.60 (12)C10—C9—H9B109.1
O3—Gd1—O12174.12 (12)H9A—C9—H9B107.8
O9—Gd1—O1267.83 (12)C9—C10—C11112.4 (5)
O11—Gd1—O1251.51 (13)C9—C10—H10A109.1
O6—Gd1—O1268.33 (17)C11—C10—H10A109.1
O8—Gd1—O12111.26 (12)C9—C10—H10B109.1
O5—Gd1—O12105.99 (16)C11—C10—H10B109.1
O2—Gd1—O4124.51 (11)H10A—C10—H10B107.9
O3—Gd1—O463.05 (10)C12—C11—C10112.8 (4)
O9—Gd1—O469.79 (12)C12—C11—H11A109.0
O11—Gd1—O4141.89 (12)C10—C11—H11A109.0
O6—Gd1—O468.24 (13)C12—C11—H11B109.0
O8—Gd1—O473.61 (12)C10—C11—H11B109.0
O5—Gd1—O478.95 (19)H11A—C11—H11B107.8
O12—Gd1—O4115.88 (12)N2—C12—C11110.1 (4)
O2—Gd1—O163.16 (11)N2—C12—H12A109.6
O3—Gd1—O1115.29 (11)C11—C12—H12A109.6
O9—Gd1—O180.71 (12)N2—C12—H12B109.6
O11—Gd1—O171.65 (13)C11—C12—H12B109.6
O6—Gd1—O1136.28 (15)H12A—C12—H12B108.2
O8—Gd1—O171.23 (12)N2—C13—C14128.4 (4)
O5—Gd1—O1136.5 (2)N2—C13—H13A115.8
O12—Gd1—O169.26 (13)C14—C13—H13A115.8
O4—Gd1—O1143.41 (12)C19—C14—C15119.7 (4)
O3—Cu1—O277.94 (13)C19—C14—C13122.7 (4)
O3—Cu1—N292.82 (14)C15—C14—C13117.6 (4)
O2—Cu1—N2164.02 (16)C16—C15—C14120.5 (5)
O3—Cu1—N1163.09 (15)C16—C15—H15A119.8
O2—Cu1—N191.16 (15)C14—C15—H15A119.8
N2—Cu1—N1100.54 (16)C17—C16—C15119.4 (5)
O3—Cu1—Gd141.03 (9)C17—C16—H16A120.3
O2—Cu1—Gd138.50 (9)C15—C16—H16A120.3
N2—Cu1—Gd1133.86 (11)C18—C17—C16121.1 (4)
N1—Cu1—Gd1124.78 (11)C18—C17—H17A119.4
C8—N1—C9113.1 (4)C16—C17—H17A119.4
C8—N1—Cu1122.5 (3)C17—C18—O4125.4 (4)
C9—N1—Cu1124.4 (3)C17—C18—C19121.2 (4)
C13—N2—C12116.1 (4)O4—C18—C19113.5 (4)
C13—N2—Cu1124.1 (3)O3—C19—C14123.5 (4)
C12—N2—Cu1119.7 (3)O3—C19—C18118.5 (4)
C2—O1—C1117.3 (4)C14—C19—C18118.1 (4)
C2—O1—Gd1116.2 (3)O4—C20—H20A109.5
C1—O1—Gd1126.2 (3)O4—C20—H20B109.5
C7—O2—Cu1124.7 (3)H20A—C20—H20B109.5
C7—O2—Gd1124.8 (3)O4—C20—H20C109.5
Cu1—O2—Gd1110.36 (14)H20A—C20—H20C109.5
C19—O3—Cu1128.0 (3)H20B—C20—H20C109.5
C19—O3—Gd1124.8 (3)O7—N3—O6123.3 (10)
Cu1—O3—Gd1107.17 (14)O7—N3—O5120.4 (10)
C18—O4—C20116.3 (4)O6—N3—O5116.2 (6)
C18—O4—Gd1119.9 (3)N3—O5—Gd195.4 (5)
C20—O4—Gd1123.7 (3)N3—O6—Gd197.3 (5)
O1—C1—H1A109.5O10—N4—O8121.1 (5)
O1—C1—H1B109.5O10—N4—O9123.6 (5)
H1A—C1—H1B109.5O8—N4—O9115.3 (4)
O1—C1—H1C109.5N4—O8—Gd195.1 (3)
H1A—C1—H1C109.5N4—O9—Gd197.2 (3)
H1B—C1—H1C109.5O13—N5—O12122.9 (5)
C3—C2—O1124.7 (4)O13—N5—O11121.3 (5)
C3—C2—C7121.7 (4)O12—N5—O11115.8 (4)
O1—C2—C7113.6 (4)N5—O11—Gd198.3 (3)
C2—C3—C4119.5 (5)N5—O12—Gd194.4 (3)
O2—Gd1—Cu1—O3159.0 (2)O12—Gd1—O4—C18178.8 (3)
O9—Gd1—Cu1—O359.78 (19)O1—Gd1—O4—C1891.6 (4)
O11—Gd1—Cu1—O3149.68 (18)N4—Gd1—O4—C18102.1 (3)
O6—Gd1—Cu1—O373.1 (2)N3—Gd1—O4—C18101.7 (4)
O8—Gd1—Cu1—O367.60 (18)O2—Gd1—O4—C20178.1 (4)
O5—Gd1—Cu1—O381.8 (2)O3—Gd1—O4—C20171.7 (5)
O12—Gd1—Cu1—O3168.9 (2)O9—Gd1—O4—C2053.2 (5)
O4—Gd1—Cu1—O35.48 (18)O11—Gd1—O4—C2058.0 (5)
O1—Gd1—Cu1—O3138.55 (18)O6—Gd1—O4—C2048.6 (5)
N4—Gd1—Cu1—O362.47 (19)O8—Gd1—O4—C20108.0 (5)
N3—Gd1—Cu1—O376.2 (2)O5—Gd1—O4—C20100.7 (5)
O3—Gd1—Cu1—O2159.0 (2)O12—Gd1—O4—C201.9 (5)
O9—Gd1—Cu1—O299.2 (2)O1—Gd1—O4—C2091.5 (5)
O11—Gd1—Cu1—O251.3 (2)N4—Gd1—O4—C2081.0 (5)
O6—Gd1—Cu1—O2127.9 (2)N3—Gd1—O4—C2075.2 (5)
O8—Gd1—Cu1—O291.38 (19)C1—O1—C2—C39.8 (8)
O5—Gd1—Cu1—O2119.2 (2)Gd1—O1—C2—C3164.2 (4)
O12—Gd1—Cu1—O232.1 (2)C1—O1—C2—C7172.0 (5)
O4—Gd1—Cu1—O2164.46 (19)Gd1—O1—C2—C714.0 (5)
O1—Gd1—Cu1—O220.43 (19)O1—C2—C3—C4177.4 (5)
N4—Gd1—Cu1—O296.5 (2)C7—C2—C3—C40.7 (8)
N3—Gd1—Cu1—O2124.9 (2)C2—C3—C4—C50.3 (8)
O2—Gd1—Cu1—N2159.0 (2)C3—C4—C5—C61.3 (8)
O3—Gd1—Cu1—N20.0 (2)C4—C5—C6—C72.5 (8)
O9—Gd1—Cu1—N259.8 (2)C4—C5—C6—C8177.4 (5)
O11—Gd1—Cu1—N2149.64 (19)Cu1—O2—C7—C2155.9 (3)
O6—Gd1—Cu1—N273.1 (2)Gd1—O2—C7—C219.0 (6)
O8—Gd1—Cu1—N267.64 (18)Cu1—O2—C7—C624.1 (6)
O5—Gd1—Cu1—N281.7 (2)Gd1—O2—C7—C6160.9 (3)
O12—Gd1—Cu1—N2168.8 (2)C3—C2—C7—O2179.4 (4)
O4—Gd1—Cu1—N25.44 (18)O1—C2—C7—O21.1 (6)
O1—Gd1—Cu1—N2138.59 (18)C3—C2—C7—C60.5 (7)
N4—Gd1—Cu1—N262.51 (19)O1—C2—C7—C6178.8 (4)
N3—Gd1—Cu1—N276.1 (2)C5—C6—C7—O2177.8 (4)
O2—Gd1—Cu1—N133.5 (2)C8—C6—C7—O23.2 (7)
O3—Gd1—Cu1—N1167.5 (2)C5—C6—C7—C22.1 (7)
O9—Gd1—Cu1—N1132.7 (2)C8—C6—C7—C2176.8 (4)
O11—Gd1—Cu1—N117.83 (18)C9—N1—C8—C6174.9 (5)
O6—Gd1—Cu1—N194.39 (19)Cu1—N1—C8—C63.7 (7)
O8—Gd1—Cu1—N1124.89 (17)C7—C6—C8—N114.0 (8)
O5—Gd1—Cu1—N185.7 (2)C5—C6—C8—N1171.3 (5)
O12—Gd1—Cu1—N11.4 (2)C8—N1—C9—C10162.0 (5)
O4—Gd1—Cu1—N1162.03 (17)Cu1—N1—C9—C1016.6 (7)
O1—Gd1—Cu1—N153.95 (17)N1—C9—C10—C1192.0 (6)
N4—Gd1—Cu1—N1130.02 (18)C9—C10—C11—C1248.1 (7)
N3—Gd1—Cu1—N191.3 (2)C13—N2—C12—C1199.6 (5)
O3—Cu1—N1—C870.4 (7)Cu1—N2—C12—C1183.1 (5)
O2—Cu1—N1—C821.1 (4)C10—C11—C12—N259.9 (6)
N2—Cu1—N1—C8147.9 (4)C12—N2—C13—C14175.3 (5)
Gd1—Cu1—N1—C841.2 (4)Cu1—N2—C13—C147.6 (7)
O3—Cu1—N1—C9108.1 (6)N2—C13—C14—C194.1 (7)
O2—Cu1—N1—C9157.4 (4)N2—C13—C14—C15175.6 (5)
N2—Cu1—N1—C933.6 (4)C19—C14—C15—C161.3 (7)
Gd1—Cu1—N1—C9137.3 (4)C13—C14—C15—C16178.5 (4)
O3—Cu1—N2—C134.2 (4)C14—C15—C16—C170.8 (7)
O2—Cu1—N2—C1349.9 (7)C15—C16—C17—C181.5 (7)
N1—Cu1—N2—C13173.7 (4)C16—C17—C18—O4180.0 (5)
Gd1—Cu1—N2—C134.2 (5)C16—C17—C18—C190.2 (7)
O3—Cu1—N2—C12178.8 (4)C20—O4—C18—C178.6 (7)
O2—Cu1—N2—C12127.2 (5)Gd1—O4—C18—C17174.3 (4)
N1—Cu1—N2—C129.2 (4)C20—O4—C18—C19171.2 (5)
Gd1—Cu1—N2—C12178.8 (3)Gd1—O4—C18—C195.9 (5)
O2—Gd1—O1—C216.4 (3)Cu1—O3—C19—C145.4 (6)
O3—Gd1—O1—C250.7 (3)Gd1—O3—C19—C14176.9 (3)
O9—Gd1—O1—C2165.1 (3)Cu1—O3—C19—C18174.7 (3)
O11—Gd1—O1—C270.4 (3)Gd1—O3—C19—C182.9 (5)
O6—Gd1—O1—C2110.5 (4)C15—C14—C19—O3177.3 (4)
O8—Gd1—O1—C2112.2 (3)C13—C14—C19—O33.0 (7)
O5—Gd1—O1—C233.6 (4)C15—C14—C19—C182.5 (6)
O12—Gd1—O1—C2125.2 (3)C13—C14—C19—C18177.2 (4)
O4—Gd1—O1—C2128.9 (3)C17—C18—C19—O3178.0 (4)
N4—Gd1—O1—C2138.9 (3)O4—C18—C19—O32.2 (6)
N3—Gd1—O1—C273.1 (5)C17—C18—C19—C141.9 (7)
O2—Gd1—O1—C1170.3 (5)O4—C18—C19—C14178.0 (4)
O3—Gd1—O1—C1135.9 (5)O7—N3—O5—Gd1177.0 (8)
O9—Gd1—O1—C121.6 (5)O6—N3—O5—Gd15.4 (7)
O11—Gd1—O1—C1103.0 (5)O2—Gd1—O5—N3166.0 (5)
O6—Gd1—O1—C162.8 (6)O3—Gd1—O5—N3132.9 (5)
O8—Gd1—O1—C174.5 (5)O9—Gd1—O5—N328.1 (6)
O5—Gd1—O1—C1139.7 (5)O11—Gd1—O5—N386.3 (5)
O12—Gd1—O1—C148.1 (5)O6—Gd1—O5—N33.1 (4)
O4—Gd1—O1—C157.8 (5)O8—Gd1—O5—N3114.1 (4)
N4—Gd1—O1—C147.8 (5)O12—Gd1—O5—N346.3 (5)
N3—Gd1—O1—C1100.3 (6)O4—Gd1—O5—N367.7 (5)
O3—Cu1—O2—C7161.6 (4)O1—Gd1—O5—N3122.8 (5)
N2—Cu1—O2—C7105.9 (6)N4—Gd1—O5—N370.5 (5)
N1—Cu1—O2—C731.4 (4)O7—N3—O6—Gd1177.0 (8)
Gd1—Cu1—O2—C7175.6 (5)O5—N3—O6—Gd15.5 (8)
O3—Cu1—O2—Gd113.93 (15)O2—Gd1—O6—N327.4 (5)
N2—Cu1—O2—Gd169.7 (6)O3—Gd1—O6—N339.0 (5)
N1—Cu1—O2—Gd1153.03 (17)O9—Gd1—O6—N3157.0 (4)
O3—Gd1—O2—C7163.2 (4)O11—Gd1—O6—N383.9 (5)
O9—Gd1—O2—C762.9 (4)O8—Gd1—O6—N3123.0 (5)
O11—Gd1—O2—C756.3 (4)O5—Gd1—O6—N33.2 (5)
O6—Gd1—O2—C7111.0 (4)O12—Gd1—O6—N3138.2 (5)
O8—Gd1—O2—C789.2 (4)O4—Gd1—O6—N390.2 (5)
O5—Gd1—O2—C7129.6 (4)O1—Gd1—O6—N3123.4 (4)
O12—Gd1—O2—C723.4 (4)N4—Gd1—O6—N3141.5 (4)
O4—Gd1—O2—C7156.6 (3)O10—N4—O8—Gd1171.6 (5)
O1—Gd1—O2—C718.6 (3)O9—N4—O8—Gd16.9 (5)
N4—Gd1—O2—C779.8 (4)O2—Gd1—O8—N4159.8 (3)
N3—Gd1—O2—C7123.0 (4)O3—Gd1—O8—N4138.6 (3)
O3—Gd1—O2—Cu112.39 (14)O9—Gd1—O8—N44.2 (3)
O9—Gd1—O2—Cu1112.66 (18)O11—Gd1—O8—N492.9 (3)
O11—Gd1—O2—Cu1128.16 (19)O6—Gd1—O8—N441.0 (4)
O6—Gd1—O2—Cu173.4 (2)O5—Gd1—O8—N4120.5 (4)
O8—Gd1—O2—Cu186.33 (17)O12—Gd1—O8—N439.2 (3)
O5—Gd1—O2—Cu154.9 (2)O4—Gd1—O8—N472.7 (3)
O12—Gd1—O2—Cu1161.09 (14)O1—Gd1—O8—N497.0 (3)
O4—Gd1—O2—Cu118.9 (2)N3—Gd1—O8—N477.8 (5)
O1—Gd1—O2—Cu1157.0 (2)O10—N4—O9—Gd1171.4 (5)
N4—Gd1—O2—Cu195.71 (18)O8—N4—O9—Gd17.1 (5)
N3—Gd1—O2—Cu161.4 (2)O2—Gd1—O9—N438.4 (4)
O2—Cu1—O3—C19168.8 (4)O3—Gd1—O9—N436.1 (3)
N2—Cu1—O3—C192.0 (4)O11—Gd1—O9—N4140.6 (3)
N1—Cu1—O3—C19140.3 (5)O6—Gd1—O9—N4146.0 (3)
Gd1—Cu1—O3—C19178.0 (4)O8—Gd1—O9—N44.2 (3)
O2—Cu1—O3—Gd113.20 (14)O5—Gd1—O9—N4122.3 (3)
N2—Cu1—O3—Gd1179.97 (16)O12—Gd1—O9—N4148.8 (3)
N1—Cu1—O3—Gd137.6 (6)O4—Gd1—O9—N480.5 (3)
O2—Gd1—O3—C19169.8 (4)O1—Gd1—O9—N477.5 (3)
O9—Gd1—O3—C1943.1 (4)N3—Gd1—O9—N4135.5 (3)
O11—Gd1—O3—C19140.4 (3)O13—N5—O11—Gd1179.4 (5)
O6—Gd1—O3—C1958.5 (4)O12—N5—O11—Gd10.7 (5)
O8—Gd1—O3—C1975.1 (3)O2—Gd1—O11—N5142.4 (3)
O5—Gd1—O3—C1992.6 (4)O3—Gd1—O11—N5174.3 (3)
O4—Gd1—O3—C194.2 (3)O9—Gd1—O11—N59.3 (3)
O1—Gd1—O3—C19134.9 (3)O6—Gd1—O11—N575.1 (3)
N4—Gd1—O3—C1958.2 (3)O8—Gd1—O11—N573.2 (4)
N3—Gd1—O3—C1973.9 (4)O5—Gd1—O11—N5128.2 (3)
O2—Gd1—O3—Cu112.16 (13)O12—Gd1—O11—N50.4 (3)
O9—Gd1—O3—Cu1138.80 (14)O4—Gd1—O11—N584.1 (3)
O11—Gd1—O3—Cu137.7 (2)O1—Gd1—O11—N577.3 (3)
O6—Gd1—O3—Cu1119.6 (2)N4—Gd1—O11—N533.3 (4)
O8—Gd1—O3—Cu1106.83 (17)N3—Gd1—O11—N5101.1 (4)
O5—Gd1—O3—Cu185.5 (2)O13—N5—O12—Gd1179.4 (5)
O4—Gd1—O3—Cu1173.9 (2)O11—N5—O12—Gd10.7 (4)
O1—Gd1—O3—Cu147.02 (19)O2—Gd1—O12—N542.6 (3)
N4—Gd1—O3—Cu1123.76 (16)O9—Gd1—O12—N5170.3 (3)
N3—Gd1—O3—Cu1104.2 (3)O11—Gd1—O12—N50.4 (3)
O2—Gd1—O4—C181.2 (4)O6—Gd1—O12—N586.9 (3)
O3—Gd1—O4—C185.2 (3)O8—Gd1—O12—N5141.1 (3)
O9—Gd1—O4—C18130.0 (3)O5—Gd1—O12—N552.2 (4)
O11—Gd1—O4—C18118.9 (3)O4—Gd1—O12—N5137.4 (3)
O6—Gd1—O4—C18128.2 (4)O1—Gd1—O12—N582.2 (3)
O8—Gd1—O4—C1875.1 (3)N4—Gd1—O12—N5157.2 (3)
O5—Gd1—O4—C1876.2 (3)N3—Gd1—O12—N570.6 (4)

Experimental details

Crystal data
Chemical formula[CuGd(C20H22N2O4)(NO3)3]
Mr761.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)11.795 (2), 14.730 (3), 14.892 (3)
β (°) 100.58 (3)
V3)2543.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.50
Crystal size (mm)0.56 × 0.13 × 0.13
Data collection
DiffractometerRigaku MiniFlexII CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.598, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14367, 4460, 4090
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.128, 1.20
No. of reflections4460
No. of parameters362
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.69, 1.35

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Gd1—O12.581 (4)Gd1—O92.428 (4)
Gd1—O22.336 (3)Gd1—O112.431 (4)
Gd1—O32.418 (3)Gd1—O122.520 (3)
Gd1—O42.568 (3)Cu1—O21.941 (3)
Gd1—O52.472 (5)Cu1—O31.940 (3)
Gd1—O62.458 (5)Cu1—N12.004 (4)
Gd1—O82.472 (4)Cu1—N21.960 (4)
 

Acknowledgements

The authors acknowledge the Freshman Research Initiative, funded in part by the HHMI Undergraduate Science Education Award (52005907) and the National Science Foundation (CHE-0629136). Single crystal X-ray data were collected using instrumentation purchased with funds provided by the National Science Foundation (CHE-0741973). BJH wishes to acknowledge the Welch Foundation (F-1631), the Petroleum Research Fund administered by the American Chemical Society (47022-G3), the National Science Foundation (CHE-0639239, CHE-0847763), the American Heart Association (0765078Y), and the UT-CNM and UT-Austin for financial support of this research. RAJ wishes to acknowledge the Welch Foundation (F-816), the Texas Higher Education Coordinating Board (ARP003658–0010-2006) and the Petroleum Research Fund, administered by the American Chemical Society (47014-AC5).

References

First citationFei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219–221, 379–414.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinpenny, R. E. P. (1998). Chem. Soc. Rev. 27, 447–452.  CAS Google Scholar
First citationXing, J.-C., Wang, J.-H., Yan, P.-F. & Li, G.-M. (2008). Acta Cryst. E64, m1206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X., Jones, R. A., Lynch, V., Oye, M. M. & Holmes, A. L. (2005). Dalton Trans. pp. 849–851.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds