metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[4-(imidazol-1-yl-κN3)benzoato]manganese(II)

aWuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Hubei 430073, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: hongyan@fjirsm.ac.cn

(Received 17 March 2010; accepted 5 April 2010; online 10 April 2010)

In the title compound, [Mn(C10H7N2O2)2(H2O)4], the MnII atom, lying on an inversion center, has an octa­hedral environment with four coordinated water mol­ecules in the equatorial plane and two N atoms from two 4-(imidazol-1-yl)benzoate ligands at the axial sites. The complex mol­ecules are connected into a three-dimensional network by extensive hydrogen bonds between the water mol­ecules and the carboxyl­ate O atoms.

Related literature

For the good coordination ability and diverse coordination modes of ligands containing imidazole and carboxyl­ate groups, see: Fan et al. (2004[Fan, J., Sun, W.-Y., Okamura, T., Zheng, Y.-Q., Sui, B., Tang, W.-X. & Ueyama, N. (2004). Cryst. Growth Des. 4, 579-584.]); Sun et al. (2005[Sun, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150-4159.]). For the construction of metal–organic frameworks using ligands based on imidazolyl and carboxyl­ate groups as building blocks, see: Carlucci et al. (2008[Carlucci, L., Ciani, G., Maggini, S. & Proserpio, D. M. (2008). Cryst. Growth Des. 8, 162-165.]); Zhang et al. (2007[Zhang, J.-Z., Cao, W.-R., Pan, J.-X. & Chen, Q.-W. (2007). Inorg. Chem. Commun. 10, 1360-1364.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H7N2O2)2(H2O)4]

  • Mr = 501.36

  • Monoclinic, P 21 /c

  • a = 12.278 (12) Å

  • b = 11.026 (11) Å

  • c = 7.978 (7) Å

  • β = 96.91 (2)°

  • V = 1072.2 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.28 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.536, Tmax = 1.000

  • 7972 measured reflections

  • 2444 independent reflections

  • 2131 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.113

  • S = 0.91

  • 2444 reflections

  • 195 parameters

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H13⋯O1i 0.85 (2) 2.02 (2) 2.837 (3) 161 (2)
O3—H14⋯O2ii 0.79 (3) 1.90 (3) 2.688 (3) 179 (2)
O4—H11⋯O1iii 0.90 (2) 1.82 (2) 2.702 (3) 168 (2)
O4—H12⋯O1i 0.87 (2) 1.86 (2) 2.694 (3) 158.9 (19)
Symmetry codes: (i) -x-1, -y, -z; (ii) x+1, y, z+1; (iii) [-x-1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over past few years, considerable effort was paied in the study of metal-organic frameworks (MOFs) owing to their intriguing structural diversity and potential application in adsorption, molecular recognition, catalysis and maganetism. The field of molecular magnets has attracted great interest from different horizons for many years. In this context, the ligand containing imidazole and carboxylate groups is of special interest due to its good coordination ability and diverse coordination modes (Fan et al., 2004; Sun et al., 2005). However, the reports of ligands based on imidazole and carboxylate groups as building blocks for the construction of MOFs (Carlucci et al., 2008; Zhang et al., 2007) are still rare. In this paper, we report the synthesis and structural characterzation of the title compound.

As shown in Fig. 1, the molecular structure of the title compound is a momonuclear MnII complex and the dihedral angle between the imidazolyl ring and the benzene ring of the 4-(imidazol-1-yl)benzoate is 6.3 (2)°. The MnII ion is coordinated by four water molecules and two N atoms from two different 4-(imidazol-1-yl)benzoate ligands, forming a distorted octahedral coordination environment. The Mn—N and Mn—O bond distances are 2.238 (2) Å and 2.149 (2) and 2.189 (3) Å, respectively. The related hydrogen-bonding geometry is given in Table 1. A l l values involved with hydrogen bonds fall in a normal range. The intermolecular O—H···O hydrogen-bonding interactions between the coordinated water molecules and carboxylate O atoms of 4-(imidazol-1-yl)benzoate ligands lead to the formation of a three-dimensional network structure as shown in Fig. 2.

Related literature top

For the good coordination ability and diverse coordination modes of ligands containing imidazole and carboxylate groups, see: Fan et al. (2004); Sun et al. (2005). For the construction of metal–organic frameworks using ligands based on imidazolyl and carboxylate groups as building blocks, see: Carlucci et al. (2008); Zhang et al. (2007).

Experimental top

A 10 ml aqueous solution of 4-(imidazole-1-yl)benzoic acid (0.038 g, 0.20 mmol) was slowly added into the manganese(II) perchlorate (0.663 g, 0.30 mmol) solution in methanol (10 ml). The mixed solution was stirred for 20 min and then HClO4 solution was added dropwise with constant stirring until the mixed solution was clear. The resulting solution was filtered and the slow evaporation of filtrate in air gave rise to the desirable products, which were subsequently washed twice with Et2O (yield 38%).

Refinement top

All H atoms were located in a difference Fourier map and refined isotropically.

Structure description top

Over past few years, considerable effort was paied in the study of metal-organic frameworks (MOFs) owing to their intriguing structural diversity and potential application in adsorption, molecular recognition, catalysis and maganetism. The field of molecular magnets has attracted great interest from different horizons for many years. In this context, the ligand containing imidazole and carboxylate groups is of special interest due to its good coordination ability and diverse coordination modes (Fan et al., 2004; Sun et al., 2005). However, the reports of ligands based on imidazole and carboxylate groups as building blocks for the construction of MOFs (Carlucci et al., 2008; Zhang et al., 2007) are still rare. In this paper, we report the synthesis and structural characterzation of the title compound.

As shown in Fig. 1, the molecular structure of the title compound is a momonuclear MnII complex and the dihedral angle between the imidazolyl ring and the benzene ring of the 4-(imidazol-1-yl)benzoate is 6.3 (2)°. The MnII ion is coordinated by four water molecules and two N atoms from two different 4-(imidazol-1-yl)benzoate ligands, forming a distorted octahedral coordination environment. The Mn—N and Mn—O bond distances are 2.238 (2) Å and 2.149 (2) and 2.189 (3) Å, respectively. The related hydrogen-bonding geometry is given in Table 1. A l l values involved with hydrogen bonds fall in a normal range. The intermolecular O—H···O hydrogen-bonding interactions between the coordinated water molecules and carboxylate O atoms of 4-(imidazol-1-yl)benzoate ligands lead to the formation of a three-dimensional network structure as shown in Fig. 2.

For the good coordination ability and diverse coordination modes of ligands containing imidazole and carboxylate groups, see: Fan et al. (2004); Sun et al. (2005). For the construction of metal–organic frameworks using ligands based on imidazolyl and carboxylate groups as building blocks, see: Carlucci et al. (2008); Zhang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the 50% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y, -z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
Tetraaquabis[4-(imidazol-1-yl-κN3)benzoato]manganese(II) top
Crystal data top
[Mn(C10H7N2O2)2(H2O)4]F(000) = 518
Mr = 501.36Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3126 reflections
a = 12.278 (12) Åθ = 3.3–27.5°
b = 11.026 (11) ŵ = 0.67 mm1
c = 7.978 (7) ÅT = 293 K
β = 96.91 (2)°Prism, yellow
V = 1072.2 (18) Å30.28 × 0.14 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube2131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.536, Tmax = 1.000k = 1413
7972 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113All H-atom parameters refined
S = 0.91 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Mn(C10H7N2O2)2(H2O)4]V = 1072.2 (18) Å3
Mr = 501.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.278 (12) ŵ = 0.67 mm1
b = 11.026 (11) ÅT = 293 K
c = 7.978 (7) Å0.28 × 0.14 × 0.10 mm
β = 96.91 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2444 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2131 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 1.000Rint = 0.023
7972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.113All H-atom parameters refined
S = 0.91Δρmax = 0.36 e Å3
2444 reflectionsΔρmin = 0.23 e Å3
195 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.02675 (15)
O10.85062 (8)0.13841 (11)0.33828 (13)0.0376 (3)
O20.77609 (10)0.03929 (15)0.53834 (16)0.0491 (3)
O30.02777 (12)0.01354 (13)0.27549 (16)0.0452 (3)
O40.07938 (14)0.17041 (13)0.03407 (19)0.0636 (5)
N10.16150 (10)0.09039 (13)0.01711 (16)0.0364 (3)
N20.33890 (9)0.12493 (11)0.04316 (14)0.0289 (3)
C10.25122 (12)0.06006 (16)0.0792 (2)0.0383 (4)
C20.19202 (15)0.17902 (19)0.1215 (3)0.0523 (5)
C30.30063 (15)0.20096 (19)0.0867 (3)0.0550 (5)
C40.44787 (10)0.11462 (12)0.12551 (16)0.0259 (3)
C50.52854 (12)0.19507 (14)0.08855 (19)0.0325 (3)
C60.63403 (12)0.18533 (14)0.1733 (2)0.0332 (3)
C70.65917 (11)0.09772 (13)0.29617 (17)0.0265 (3)
C80.57766 (14)0.01717 (15)0.3290 (2)0.0347 (4)
C90.47314 (14)0.02432 (16)0.2445 (2)0.0372 (4)
C100.77070 (11)0.09005 (14)0.39869 (17)0.0301 (3)
H10.254 (3)0.0002 (18)0.158 (4)0.067 (8)*
H20.139 (2)0.212 (2)0.210 (3)0.068 (7)*
H30.347 (2)0.254 (2)0.135 (3)0.070 (7)*
H50.5108 (14)0.263 (2)0.006 (2)0.047 (6)*
H60.6944 (15)0.2366 (18)0.149 (2)0.039 (5)*
H80.5940 (17)0.048 (2)0.418 (3)0.052 (5)*
H90.4164 (18)0.036 (2)0.264 (2)0.048 (5)*
H110.0941 (19)0.239 (2)0.025 (3)0.065 (6)*
H120.1116 (17)0.1765 (18)0.126 (3)0.047 (5)*
H130.016 (2)0.035 (2)0.316 (3)0.050 (6)*
H140.086 (2)0.021 (2)0.330 (3)0.060 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0172 (2)0.0347 (2)0.0279 (2)0.00251 (9)0.00068 (13)0.00317 (10)
O10.0226 (5)0.0550 (7)0.0358 (6)0.0086 (4)0.0055 (4)0.0051 (5)
O20.0278 (6)0.0822 (9)0.0354 (6)0.0050 (6)0.0040 (5)0.0161 (6)
O30.0302 (7)0.0748 (9)0.0294 (7)0.0122 (6)0.0018 (5)0.0016 (5)
O40.0892 (11)0.0500 (8)0.0604 (9)0.0349 (8)0.0443 (9)0.0225 (7)
N10.0238 (6)0.0475 (8)0.0367 (6)0.0026 (5)0.0010 (5)0.0049 (6)
N20.0225 (6)0.0352 (6)0.0286 (6)0.0042 (4)0.0020 (4)0.0011 (5)
C10.0229 (7)0.0500 (10)0.0413 (8)0.0063 (6)0.0008 (6)0.0125 (7)
C20.0345 (9)0.0640 (12)0.0547 (11)0.0065 (8)0.0093 (8)0.0253 (9)
C30.0340 (9)0.0664 (12)0.0613 (12)0.0119 (8)0.0084 (8)0.0349 (10)
C40.0208 (6)0.0311 (7)0.0258 (6)0.0010 (5)0.0021 (5)0.0016 (5)
C50.0268 (7)0.0338 (8)0.0365 (7)0.0020 (5)0.0028 (6)0.0087 (6)
C60.0240 (6)0.0356 (8)0.0404 (8)0.0066 (5)0.0062 (6)0.0035 (6)
C70.0216 (6)0.0308 (7)0.0274 (6)0.0006 (5)0.0045 (5)0.0040 (5)
C80.0274 (8)0.0400 (8)0.0355 (9)0.0045 (6)0.0007 (7)0.0098 (6)
C90.0268 (8)0.0413 (8)0.0425 (9)0.0105 (6)0.0004 (7)0.0116 (7)
C100.0233 (6)0.0388 (8)0.0285 (7)0.0005 (5)0.0037 (5)0.0072 (6)
Geometric parameters (Å, º) top
Mn1—O42.149 (2)C2—C31.351 (3)
Mn1—O32.188 (2)C2—H20.97 (2)
Mn1—N12.238 (2)C3—H30.93 (3)
O1—C101.2623 (19)C4—C91.385 (2)
O2—C101.242 (2)C4—C51.387 (2)
O3—H130.85 (2)C5—C61.391 (2)
O3—H140.79 (3)C5—H51.00 (2)
O4—H110.90 (2)C6—C71.385 (2)
O4—H120.87 (2)C6—H60.970 (19)
N1—C11.308 (2)C7—C81.387 (2)
N1—C21.366 (2)C7—C101.511 (2)
N2—C11.352 (2)C8—C91.378 (3)
N2—C31.371 (2)C8—H81.02 (2)
N2—C41.422 (2)C9—H90.99 (2)
C1—H10.91 (2)
O4—Mn1—O4i180.00 (9)N2—C1—H1125 (2)
O4—Mn1—O387.18 (6)C3—C2—N1109.84 (16)
O4i—Mn1—O392.82 (6)C3—C2—H2130.1 (14)
O4—Mn1—O3i92.82 (6)N1—C2—H2119.9 (14)
O4i—Mn1—O3i87.18 (6)C2—C3—N2106.62 (16)
O3—Mn1—O3i180.00 (8)C2—C3—H3131.2 (15)
O4—Mn1—N1i92.12 (9)N2—C3—H3122.2 (15)
O4i—Mn1—N1i87.88 (9)C9—C4—C5119.91 (14)
O3—Mn1—N1i93.41 (6)C9—C4—N2119.65 (12)
O3i—Mn1—N1i86.59 (6)C5—C4—N2120.44 (13)
O4—Mn1—N187.88 (9)C4—C5—C6119.61 (14)
O4i—Mn1—N192.12 (9)C4—C5—H5120.7 (10)
O3—Mn1—N186.59 (6)C6—C5—H5119.6 (10)
O3i—Mn1—N193.41 (6)C7—C6—C5120.87 (13)
N1i—Mn1—N1180.00 (9)C7—C6—H6115.9 (11)
Mn1—O3—H13108.2 (16)C5—C6—H6123.2 (11)
Mn1—O3—H14125.7 (18)C6—C7—C8118.45 (14)
H13—O3—H14115 (2)C6—C7—C10122.20 (13)
Mn1—O4—H11137.2 (15)C8—C7—C10119.32 (14)
Mn1—O4—H12115.5 (13)C9—C8—C7121.45 (15)
H11—O4—H12107.2 (18)C9—C8—H8118.5 (12)
C1—N1—C2105.52 (14)C7—C8—H8120.1 (12)
C1—N1—Mn1122.68 (12)C8—C9—C4119.67 (14)
C2—N1—Mn1131.77 (11)C8—C9—H9121.2 (13)
C1—N2—C3105.95 (14)C4—C9—H9119.1 (13)
C1—N2—C4126.05 (13)O2—C10—O1124.98 (13)
C3—N2—C4128.00 (13)O2—C10—C7117.26 (13)
N1—C1—N2112.07 (15)O1—C10—C7117.73 (14)
N1—C1—H1123 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H13···O1ii0.85 (2)2.02 (2)2.837 (3)161 (2)
O3—H14···O2iii0.79 (3)1.90 (3)2.688 (3)179 (2)
O4—H11···O1iv0.90 (2)1.82 (2)2.702 (3)168 (2)
O4—H12···O1ii0.87 (2)1.86 (2)2.694 (3)158.9 (19)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C10H7N2O2)2(H2O)4]
Mr501.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.278 (12), 11.026 (11), 7.978 (7)
β (°) 96.91 (2)
V3)1072.2 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.28 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.536, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7972, 2444, 2131
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.113, 0.91
No. of reflections2444
No. of parameters195
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H13···O1i0.85 (2)2.02 (2)2.837 (3)161 (2)
O3—H14···O2ii0.79 (3)1.90 (3)2.688 (3)179 (2)
O4—H11···O1iii0.90 (2)1.82 (2)2.702 (3)168 (2)
O4—H12···O1i0.87 (2)1.86 (2)2.694 (3)158.9 (19)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x1, y1/2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China and the State Key Laboratory of Structural Chemistry for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Maggini, S. & Proserpio, D. M. (2008). Cryst. Growth Des. 8, 162–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, J., Sun, W.-Y., Okamura, T., Zheng, Y.-Q., Sui, B., Tang, W.-X. & Ueyama, N. (2004). Cryst. Growth Des. 4, 579–584.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150–4159.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J.-Z., Cao, W.-R., Pan, J.-X. & Chen, Q.-W. (2007). Inorg. Chem. Commun. 10, 1360–1364.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds