metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­piperazinediium tetra­chlorido­zincate(II)

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: yinming1978@yahoo.cn

(Received 23 March 2010; accepted 3 April 2010; online 10 April 2010)

The asymmetric unit of the title compound, (C5H14N2)[ZnCl4], consists of a diprotonated 2-methyl­piperazine cation and a tetra­chloridozincate anion. The ZnII ion is in a slightly distorted tetra­hedral coordination environment. The six-membered piperazine ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular N—H⋯Cl hydrogen bonds.

Related literature

For ferroelectricity in coordination polymers, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]). For nonlinear optical second harmonic generation induced by coordination polymers, see: Qu et al. (2003[Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Liu, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710-7712.]). For transition-metal complexes of (R)-2-methyl­piperazine, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[ZnCl4]

  • Mr = 309.35

  • Monoclinic, P 21 /n

  • a = 8.4183 (17) Å

  • b = 14.939 (3) Å

  • c = 9.830 (2) Å

  • β = 90.35 (3)°

  • V = 1236.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 291 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.440, Tmax = 0.678

  • 11203 measured reflections

  • 2423 independent reflections

  • 2112 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.11

  • 2423 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.90 2.48 3.346 (3) 161
N1—H1B⋯Cl3ii 0.90 2.55 3.284 (3) 140
N1—H1B⋯Cl1ii 0.90 2.72 3.322 (3) 125
N2—H2A⋯Cl4 0.90 2.25 3.150 (3) 174
N2—H2B⋯Cl2iii 0.90 2.48 3.199 (3) 137
N2—H2B⋯Cl3iii 0.90 2.77 3.444 (3) 133
Symmetry codes: (i) x, y, z+1; (ii) -x, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The existence of a chiral center in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (R)-2-methylpiperazine has shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a diprotonated (±)-2-methylpiperazine cation and a tetrachloridozinc anion with the ZnII ion in a slightly distorted tetrahedral coordination environment (Fig. 1). The 6-membered ring of piperazine adopts a chair conformation. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Table 1). The hydrogen bonds form a three-dimensional network (Fig. 2).

Related literature top

For ferroelectricity in coordination polymers, see: Fu et al. (2007). For nonlinear optical second harmonic generation of coordination polymers, see: Qu et al. (2003). For transition-metal complexes of (R)-2-methylpiperazine, see: Ye et al. (2009).

Experimental top

A mixture of (±)-2-methylpiperazine (1 mmol, 0.100 g), ZnCl2 (1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) was dissolved in 30 ml water by heating to 353 K (10 min), forming a clear solution. The reaction mixture was cooled slowly to room temperature and crystals of the title compound formed after 6 d.

Refinement top

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å, N—H = 0.90 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N).

Structure description top

The existence of a chiral center in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (R)-2-methylpiperazine has shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a diprotonated (±)-2-methylpiperazine cation and a tetrachloridozinc anion with the ZnII ion in a slightly distorted tetrahedral coordination environment (Fig. 1). The 6-membered ring of piperazine adopts a chair conformation. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Table 1). The hydrogen bonds form a three-dimensional network (Fig. 2).

For ferroelectricity in coordination polymers, see: Fu et al. (2007). For nonlinear optical second harmonic generation of coordination polymers, see: Qu et al. (2003). For transition-metal complexes of (R)-2-methylpiperazine, see: Ye et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
2-Methylpiperazinediium tetrachloridozinc(II) top
Crystal data top
(C5H14N2)[ZnCl4]F(000) = 624
Mr = 309.35Dx = 1.662 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2112 reflections
a = 8.4183 (17) Åθ = 3.2–26.0°
b = 14.939 (3) ŵ = 2.81 mm1
c = 9.830 (2) ÅT = 291 K
β = 90.35 (3)°Block, colorless
V = 1236.3 (4) Å30.35 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku SCXmini CCD
diffractometer
2423 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.440, Tmax = 0.678l = 1212
11203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.3805P]
where P = (Fo2 + 2Fc2)/3
2423 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C5H14N2)[ZnCl4]V = 1236.3 (4) Å3
Mr = 309.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4183 (17) ŵ = 2.81 mm1
b = 14.939 (3) ÅT = 291 K
c = 9.830 (2) Å0.35 × 0.25 × 0.15 mm
β = 90.35 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
2423 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2112 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.678Rint = 0.045
11203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.11Δρmax = 0.67 e Å3
2423 reflectionsΔρmin = 0.45 e Å3
110 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3285 (4)0.0505 (2)0.7709 (4)0.0525 (9)
H1C0.36820.01010.84050.063*
H1D0.32820.01880.68480.063*
C20.4331 (4)0.1290 (3)0.7618 (4)0.0518 (9)
H2C0.53840.11010.73460.062*
H2D0.44190.15710.85050.062*
C30.2019 (3)0.2241 (2)0.6920 (3)0.0373 (7)
H30.20130.25600.77910.045*
C40.0994 (4)0.1433 (2)0.7029 (4)0.0429 (8)
H4A0.09170.11450.61470.051*
H4B0.00660.16130.72970.051*
C50.1468 (4)0.2868 (2)0.5815 (4)0.0521 (9)
H5A0.15180.25690.49520.078*
H5B0.21410.33860.58010.078*
H5C0.03930.30470.59880.078*
Cl10.20460 (10)0.02794 (6)0.10506 (9)0.0464 (2)
Cl20.19838 (10)0.21504 (6)0.07287 (9)0.0490 (2)
Cl30.04089 (10)0.10987 (6)0.33241 (9)0.0470 (2)
Cl40.40648 (12)0.10940 (8)0.37036 (10)0.0670 (3)
N10.1644 (3)0.07835 (19)0.8046 (3)0.0428 (7)
H1A0.16390.10370.88770.051*
H1B0.10130.02970.80720.051*
N20.3697 (3)0.19527 (18)0.6611 (3)0.0379 (6)
H2A0.37210.17080.57750.046*
H2B0.43300.24380.66070.046*
Zn10.19783 (4)0.10028 (3)0.22722 (4)0.03895 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.043 (2)0.059 (2)0.0128 (17)0.0036 (19)0.0120 (17)
C20.0327 (18)0.066 (2)0.057 (2)0.0041 (16)0.0075 (16)0.0141 (19)
C30.0335 (16)0.0407 (18)0.0376 (17)0.0001 (13)0.0016 (14)0.0058 (14)
C40.0302 (16)0.050 (2)0.049 (2)0.0042 (14)0.0006 (14)0.0125 (16)
C50.048 (2)0.050 (2)0.058 (2)0.0058 (16)0.0006 (18)0.0196 (18)
Cl10.0528 (5)0.0424 (5)0.0441 (5)0.0075 (4)0.0048 (4)0.0056 (4)
Cl20.0456 (5)0.0490 (5)0.0527 (5)0.0104 (4)0.0109 (4)0.0079 (4)
Cl30.0396 (4)0.0540 (5)0.0474 (5)0.0026 (4)0.0088 (4)0.0057 (4)
Cl40.0453 (5)0.1063 (9)0.0493 (6)0.0189 (5)0.0136 (4)0.0232 (5)
N10.0417 (15)0.0416 (16)0.0451 (16)0.0079 (12)0.0057 (13)0.0112 (13)
N20.0265 (13)0.0475 (16)0.0398 (15)0.0088 (11)0.0010 (11)0.0074 (12)
Zn10.0354 (2)0.0457 (2)0.0357 (2)0.00775 (16)0.00171 (16)0.00409 (16)
Geometric parameters (Å, º) top
C1—C21.470 (5)C4—H4B0.9700
C1—N11.482 (4)C5—H5A0.9600
C1—H1C0.9700C5—H5B0.9600
C1—H1D0.9700C5—H5C0.9600
C2—N21.496 (4)Cl1—Zn12.2616 (10)
C2—H2C0.9700Cl2—Zn12.2895 (10)
C2—H2D0.9700Cl3—Zn12.2702 (11)
C3—C41.487 (4)Cl4—Zn12.2480 (12)
C3—C51.505 (4)N1—H1A0.9000
C3—N21.509 (4)N1—H1B0.9000
C3—H30.9800N2—H2A0.9000
C4—N11.495 (4)N2—H2B0.9000
C4—H4A0.9700
C2—C1—N1110.4 (3)C3—C5—H5A109.5
C2—C1—H1C109.6C3—C5—H5B109.5
N1—C1—H1C109.6H5A—C5—H5B109.5
C2—C1—H1D109.6C3—C5—H5C109.5
N1—C1—H1D109.6H5A—C5—H5C109.5
H1C—C1—H1D108.1H5B—C5—H5C109.5
C1—C2—N2110.9 (3)C1—N1—C4111.8 (3)
C1—C2—H2C109.5C1—N1—H1A109.3
N2—C2—H2C109.5C4—N1—H1A109.3
C1—C2—H2D109.5C1—N1—H1B109.3
N2—C2—H2D109.5C4—N1—H1B109.3
H2C—C2—H2D108.0H1A—N1—H1B107.9
C4—C3—C5112.3 (3)C2—N2—C3112.7 (2)
C4—C3—N2109.1 (3)C2—N2—H2A109.0
C5—C3—N2108.5 (3)C3—N2—H2A109.0
C4—C3—H3109.0C2—N2—H2B109.0
C5—C3—H3109.0C3—N2—H2B109.0
N2—C3—H3109.0H2A—N2—H2B107.8
C3—C4—N1111.4 (3)Cl4—Zn1—Cl1111.20 (4)
C3—C4—H4A109.3Cl4—Zn1—Cl3113.67 (4)
N1—C4—H4A109.3Cl1—Zn1—Cl3108.70 (4)
C3—C4—H4B109.3Cl4—Zn1—Cl2111.39 (5)
N1—C4—H4B109.3Cl1—Zn1—Cl2106.39 (4)
H4A—C4—H4B108.0Cl3—Zn1—Cl2105.07 (4)
N1—C1—C2—N255.8 (4)C3—C4—N1—C157.4 (4)
C5—C3—C4—N1175.0 (3)C1—C2—N2—C355.8 (4)
N2—C3—C4—N154.6 (4)C4—C3—N2—C254.5 (4)
C2—C1—N1—C457.2 (4)C5—C3—N2—C2177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.902.483.346 (3)161
N1—H1B···Cl3ii0.902.553.284 (3)140
N1—H1B···Cl1ii0.902.723.322 (3)125
N2—H2A···Cl40.902.253.150 (3)174
N2—H2B···Cl2iii0.902.483.199 (3)137
N2—H2B···Cl3iii0.902.773.444 (3)133
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[ZnCl4]
Mr309.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)8.4183 (17), 14.939 (3), 9.830 (2)
β (°) 90.35 (3)
V3)1236.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.81
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerRigaku SCXmini CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.440, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
11203, 2423, 2112
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.11
No. of reflections2423
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.45

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.902.483.346 (3)161
N1—H1B···Cl3ii0.902.553.284 (3)140
N1—H1B···Cl1ii0.902.723.322 (3)125
N2—H2A···Cl40.902.253.150 (3)174
N2—H2B···Cl2iii0.902.483.199 (3)137
N2—H2B···Cl3iii0.902.773.444 (3)133
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Liu, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710–7712.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds