metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­kis(2,2′-bi­pyridine)undeca-μ-oxido-hexa­oxidodicopper(II)hexa­vanadium(V)]

aCollege of Chemistry and Pharmacy, Jiamusi University, Jiamusi 154000, People's Republic of China, bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, People's Republic of China, and cCollege of Chemical Engineering, Northeast Dianli University, Jilin 132000, People's Republic of China
*Correspondence e-mail: cuixb@mail.jlu.edu.cn

(Received 9 April 2010; accepted 18 April 2010; online 24 April 2010)

In the title organic–inorganic hybrid vanadate complex, [Cu2V6O17(C10H8N2)4]n, the CuII atom is six-coordinated by two chelating 2,2′-bipyridine (bipy) ligands and two vanadate O atoms in a distorted octa­hedral geometry. Two [Cu(bipy)2V3O8] units are linked by a bridging O atom, which lies on an inversion center, forming a dimeric unit. The dimeric units are further connected by bridging vanadate O atoms into a two-dimensional layer parallel to (100). The layers are connected by weak C—H⋯O hydrogen bonds.

Related literature

For the introduction of some transition metal complexes into inorganic framework structures, see: Cao et al. (2003[Cao, M., Hu, C., Peng, G., Qi, Y. & Wang, E. (2003). J. Am. Chem. Soc. 125, 4982-4983.]); Liu et al. (2001[Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem. Commun. pp. 1636-1638.]); Zhang et al. (2000[Zhang, X.-M., Tong, M.-L. & Chen, X.-M. (2000). Chem. Commun. pp. 1817-1819.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2V6O17(C10H8N2)4]

  • Mr = 1329.46

  • Monoclinic, P 21 /c

  • a = 15.512 (3) Å

  • b = 14.761 (3) Å

  • c = 10.470 (2) Å

  • β = 92.00 (3)°

  • V = 2395.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 293 K

  • 0.57 × 0.40 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.385, Tmax = 0.577

  • 20154 measured reflections

  • 4742 independent reflections

  • 4010 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.05

  • 4742 reflections

  • 395 parameters

  • All H-atom parameters refined

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H8⋯O1 0.87 (3) 2.52 (3) 3.093 (4) 124 (2)
C14—H5⋯O5i 0.89 (4) 2.51 (3) 3.159 (5) 131 (3)
C18—H3⋯O5ii 0.90 (4) 2.46 (4) 3.315 (5) 157 (3)
C19—H2⋯O9iii 0.98 (4) 2.32 (4) 3.156 (5) 144 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z; (iii) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

An important advance for the design of organic-inorganic hybrid materials is to introduce some transition metal complexes (TMCs) into the backbone of inorganic oxides (Liu et al., 2001; Zhang et al., 2000). We are interested in introducing transition metal complexes into inorganic frameworks and understanding the role of metal complexes on the modification of inorganic framework structures (Cao et al., 2003). In an effort to further explore the structural diversity of the M/V/O/L system (M = transition metal, L = organic ligand), we have prepared the title compound.

The asymmetric unit of the title compound contains a [Cu(bipy)2(V3O8.5)] (bipy = 2,2'-bipyridine) unit, as shown in Fig.1. The VV centers exhibit VO4 tetrahedral coordination environments with V—Ot (terminal O atom) distances ranging from 1.580 (3) to 1.610 (2) Å and V—Ob (bridging O atom) distances ranging from 1.630 (2) to 1.821 (2) Å. The CuII atom is six-coordinated by two bipy ligands and two vanadate O atoms (O1 and O4) in a distorted octahedral geometry, with Cu—N = 2.055 (2)–2.125 (2) Å and Cu—O = 2.025 (2) and 2.082 (2) Å. Two [Cu(bipy)2V3O8] units are linked by a bridging O2 atom, which lies on an inversion center, with a V—O distance of 1.7813 (6) Å, generating a dimeric [Cu2(bipy)4V6O17] unit. As illustrated in Fig. 2, each dimeric unit is joined to four adjacent ones through O6 and its symmetry equivalents, generating a two-dimensional network grafted with [Cu(bipy)2]2+ complex. In addition, the adjacent two-dimension layers further stack into a three-dimensional structure via weak C—H···O hydrogen-bonding interactions (Table 1).

Related literature top

For the introduction of some transition metal complexes into inorganic framework structures, see: Cao et al. (2003); Liu et al. (2001); Zhang et al. (2000).

Experimental top

A mixture of Na2WO4.2H2O (1.20 g, 3.6 mmol), V2O5 (0.33 g, 1.8 mmol), Cu(CH3CO2)2.4H2O (0.3 g, 1.2 mmol), bipy (0.18 g, 1.2 mmol) and distilled water (20 ml, 1111 mmol) in a molar ratio of 6:3:2:2:1850 was stirred for 120 min. The pH value of the mixture was necessarily adjusted to 4 with dilute H3PO4 solution. The resultant mixture was sealed in a 25 ml Teflon-lined autoclave and heated at 553 K for 72 h. The autoclave was then cooled to room temperature. The crystalline product was filtered, washed with distilled water and dried at ambient temperature to give 0.335 g solids of the title compound.

Refinement top

All H atoms were located from difference Fourier maps and refined isotropically.

Structure description top

An important advance for the design of organic-inorganic hybrid materials is to introduce some transition metal complexes (TMCs) into the backbone of inorganic oxides (Liu et al., 2001; Zhang et al., 2000). We are interested in introducing transition metal complexes into inorganic frameworks and understanding the role of metal complexes on the modification of inorganic framework structures (Cao et al., 2003). In an effort to further explore the structural diversity of the M/V/O/L system (M = transition metal, L = organic ligand), we have prepared the title compound.

The asymmetric unit of the title compound contains a [Cu(bipy)2(V3O8.5)] (bipy = 2,2'-bipyridine) unit, as shown in Fig.1. The VV centers exhibit VO4 tetrahedral coordination environments with V—Ot (terminal O atom) distances ranging from 1.580 (3) to 1.610 (2) Å and V—Ob (bridging O atom) distances ranging from 1.630 (2) to 1.821 (2) Å. The CuII atom is six-coordinated by two bipy ligands and two vanadate O atoms (O1 and O4) in a distorted octahedral geometry, with Cu—N = 2.055 (2)–2.125 (2) Å and Cu—O = 2.025 (2) and 2.082 (2) Å. Two [Cu(bipy)2V3O8] units are linked by a bridging O2 atom, which lies on an inversion center, with a V—O distance of 1.7813 (6) Å, generating a dimeric [Cu2(bipy)4V6O17] unit. As illustrated in Fig. 2, each dimeric unit is joined to four adjacent ones through O6 and its symmetry equivalents, generating a two-dimensional network grafted with [Cu(bipy)2]2+ complex. In addition, the adjacent two-dimension layers further stack into a three-dimensional structure via weak C—H···O hydrogen-bonding interactions (Table 1).

For the introduction of some transition metal complexes into inorganic framework structures, see: Cao et al. (2003); Liu et al. (2001); Zhang et al. (2000).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A polyhedral representation of the two-dimensional layer-like structure in the title compound. H and C atoms of bipy molecules are omitted for clarity.
Poly[tetrakis(2,2'-bipyridine)undeca-µ-oxido- hexaoxidodicopper(II)hexavanadium(V)] top
Crystal data top
[Cu2V6O17(C10H8N2)4]F(000) = 1320
Mr = 1329.46Dx = 1.843 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7302 reflections
a = 15.512 (3) Åθ = 2.4–26.0°
b = 14.761 (3) ŵ = 2.07 mm1
c = 10.470 (2) ÅT = 293 K
β = 92.00 (3)°Block, red
V = 2395.9 (8) Å30.57 × 0.40 × 0.30 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4742 independent reflections
Radiation source: fine-focus sealed tube4010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10 pixels mm-1θmax = 26.1°, θmin = 2.4°
ω scansh = 1919
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.385, Tmax = 0.577l = 1212
20154 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0468P)2 + 1.8261P]
where P = (Fo2 + 2Fc2)/3
4742 reflections(Δ/σ)max = 0.001
395 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu2V6O17(C10H8N2)4]V = 2395.9 (8) Å3
Mr = 1329.46Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.512 (3) ŵ = 2.07 mm1
b = 14.761 (3) ÅT = 293 K
c = 10.470 (2) Å0.57 × 0.40 × 0.30 mm
β = 92.00 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4742 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4010 reflections with I > 2σ(I)
Tmin = 0.385, Tmax = 0.577Rint = 0.027
20154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.087All H-atom parameters refined
S = 1.05Δρmax = 0.47 e Å3
4742 reflectionsΔρmin = 0.67 e Å3
395 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23318 (2)0.97904 (2)0.20082 (3)0.02820 (11)
V10.08531 (3)1.05781 (3)0.42475 (4)0.02542 (12)
V20.31303 (3)1.19857 (3)0.31446 (4)0.02286 (12)
V30.25041 (3)1.14320 (3)0.60425 (4)0.02692 (12)
O10.14691 (13)0.98560 (13)0.3484 (2)0.0341 (5)
O20.00001.00000.50000.0553 (10)
O30.04662 (16)1.13047 (15)0.3236 (2)0.0510 (6)
O40.27773 (15)1.10202 (14)0.2580 (2)0.0427 (5)
O50.41332 (14)1.21072 (16)0.2836 (2)0.0436 (5)
O60.25003 (15)1.28957 (15)0.2414 (2)0.0430 (5)
O70.30503 (16)1.20006 (18)0.4860 (2)0.0510 (6)
O80.14570 (16)1.12151 (18)0.5470 (2)0.0551 (7)
O90.2978 (2)1.05097 (19)0.6372 (3)0.0846 (11)
N10.17768 (16)0.86159 (15)0.1249 (2)0.0318 (5)
N20.15122 (14)1.03192 (15)0.0616 (2)0.0268 (5)
N30.32645 (15)0.91624 (15)0.3159 (2)0.0294 (5)
N40.33465 (15)0.96215 (17)0.0718 (2)0.0318 (5)
C10.1889 (2)0.7771 (2)0.1683 (3)0.0430 (8)
C20.1533 (3)0.7026 (2)0.1050 (4)0.0546 (11)
C30.1052 (3)0.7157 (2)0.0051 (4)0.0527 (10)
C40.0924 (2)0.8026 (2)0.0504 (4)0.0437 (8)
C50.12893 (18)0.87492 (19)0.0171 (3)0.0313 (6)
C60.11711 (17)0.97065 (19)0.0214 (3)0.0292 (6)
C70.0741 (2)0.9974 (3)0.1329 (3)0.0428 (8)
C80.0654 (2)1.0887 (3)0.1598 (3)0.0453 (8)
C90.0985 (2)1.1508 (2)0.0744 (3)0.0393 (7)
C100.14073 (19)1.1201 (2)0.0355 (3)0.0333 (6)
C110.3215 (2)0.9033 (2)0.4409 (3)0.0407 (7)
C120.3903 (3)0.8710 (3)0.5148 (4)0.0550 (10)
C130.4660 (3)0.8537 (3)0.4584 (4)0.0615 (12)
C140.4726 (2)0.8668 (3)0.3293 (4)0.0498 (9)
C150.40065 (19)0.8971 (2)0.2594 (3)0.0340 (7)
C160.40090 (19)0.9128 (2)0.1201 (3)0.0343 (6)
C170.4643 (2)0.8791 (3)0.0428 (4)0.0478 (9)
C180.4617 (3)0.8992 (3)0.0851 (4)0.0562 (10)
C190.3964 (2)0.9526 (3)0.1333 (3)0.0509 (9)
C200.3348 (2)0.9822 (3)0.0522 (3)0.0409 (8)
H10.299 (2)1.013 (2)0.078 (3)0.032 (9)*
H20.387 (2)0.969 (3)0.223 (4)0.057 (11)*
H30.508 (3)0.880 (2)0.129 (4)0.053 (11)*
H40.498 (2)0.846 (3)0.078 (4)0.050 (11)*
H50.522 (3)0.856 (2)0.292 (3)0.052 (11)*
H60.510 (3)0.835 (3)0.498 (4)0.065 (12)*
H70.384 (3)0.867 (3)0.598 (4)0.072 (13)*
H80.272 (2)0.916 (2)0.474 (3)0.030 (8)*
H90.1628 (19)1.159 (2)0.094 (3)0.026 (8)*
H100.091 (2)1.207 (3)0.088 (3)0.052 (11)*
H110.034 (3)1.110 (3)0.245 (4)0.070 (12)*
H120.056 (2)0.956 (3)0.177 (4)0.050 (11)*
H130.065 (3)0.813 (3)0.128 (4)0.072 (14)*
H140.077 (3)0.658 (3)0.049 (4)0.077 (13)*
H150.164 (3)0.651 (3)0.129 (4)0.060 (12)*
H160.223 (2)0.772 (2)0.247 (3)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02821 (19)0.02505 (19)0.0313 (2)0.00175 (13)0.00022 (14)0.00123 (13)
V10.0201 (2)0.0241 (2)0.0322 (3)0.00464 (17)0.00256 (18)0.00629 (18)
V20.0239 (2)0.0238 (2)0.0208 (2)0.00305 (17)0.00113 (17)0.00312 (17)
V30.0344 (3)0.0247 (2)0.0215 (2)0.00049 (19)0.00231 (19)0.00010 (18)
O10.0324 (11)0.0333 (11)0.0370 (11)0.0057 (9)0.0089 (9)0.0015 (9)
O20.0417 (19)0.0462 (19)0.080 (3)0.0205 (16)0.0305 (18)0.0156 (18)
O30.0606 (16)0.0355 (12)0.0561 (15)0.0119 (11)0.0094 (12)0.0029 (11)
O40.0535 (14)0.0283 (11)0.0450 (13)0.0079 (10)0.0142 (11)0.0008 (9)
O50.0289 (11)0.0584 (15)0.0438 (13)0.0057 (10)0.0052 (9)0.0031 (11)
O60.0523 (14)0.0443 (13)0.0329 (11)0.0190 (11)0.0073 (10)0.0107 (10)
O70.0553 (15)0.0756 (17)0.0221 (11)0.0188 (13)0.0007 (10)0.0027 (11)
O80.0452 (14)0.0773 (18)0.0430 (14)0.0242 (13)0.0016 (11)0.0233 (12)
O90.140 (3)0.0501 (16)0.0618 (18)0.0471 (18)0.0262 (19)0.0005 (14)
N10.0354 (14)0.0246 (12)0.0361 (14)0.0028 (10)0.0089 (11)0.0038 (10)
N20.0231 (12)0.0260 (12)0.0312 (12)0.0005 (9)0.0015 (9)0.0020 (9)
N30.0325 (13)0.0271 (12)0.0286 (12)0.0054 (10)0.0012 (10)0.0004 (9)
N40.0277 (13)0.0359 (13)0.0317 (13)0.0023 (10)0.0020 (10)0.0009 (10)
C10.053 (2)0.0291 (16)0.047 (2)0.0013 (14)0.0123 (17)0.0002 (14)
C20.074 (3)0.0237 (17)0.068 (3)0.0073 (17)0.027 (2)0.0034 (16)
C30.060 (2)0.0374 (19)0.061 (2)0.0164 (17)0.0191 (19)0.0196 (17)
C40.0414 (19)0.0415 (19)0.048 (2)0.0090 (15)0.0062 (16)0.0190 (15)
C50.0275 (15)0.0319 (15)0.0350 (16)0.0018 (12)0.0076 (12)0.0102 (12)
C60.0220 (13)0.0353 (15)0.0303 (15)0.0013 (11)0.0019 (11)0.0073 (12)
C70.0378 (18)0.055 (2)0.0354 (18)0.0037 (16)0.0039 (14)0.0108 (16)
C80.0395 (19)0.059 (2)0.0368 (18)0.0058 (16)0.0055 (14)0.0090 (16)
C90.0369 (18)0.0387 (18)0.0423 (18)0.0035 (14)0.0011 (14)0.0102 (14)
C100.0311 (16)0.0285 (15)0.0399 (17)0.0003 (12)0.0034 (13)0.0004 (13)
C110.047 (2)0.0427 (18)0.0322 (17)0.0091 (15)0.0002 (15)0.0034 (14)
C120.076 (3)0.056 (2)0.0317 (19)0.014 (2)0.0137 (18)0.0014 (16)
C130.060 (3)0.067 (3)0.055 (2)0.025 (2)0.026 (2)0.0006 (19)
C140.039 (2)0.056 (2)0.054 (2)0.0190 (17)0.0066 (17)0.0005 (17)
C150.0329 (16)0.0292 (15)0.0397 (17)0.0067 (12)0.0023 (13)0.0009 (12)
C160.0293 (15)0.0335 (15)0.0401 (17)0.0057 (12)0.0023 (13)0.0003 (13)
C170.042 (2)0.050 (2)0.052 (2)0.0176 (17)0.0068 (17)0.0025 (17)
C180.057 (2)0.063 (2)0.050 (2)0.0111 (19)0.0220 (19)0.0076 (18)
C190.054 (2)0.065 (2)0.0344 (19)0.0032 (18)0.0077 (16)0.0014 (17)
C200.0333 (18)0.053 (2)0.0360 (18)0.0042 (16)0.0004 (14)0.0054 (15)
Geometric parameters (Å, º) top
Cu1—O42.025 (2)C2—H150.82 (4)
Cu1—N22.055 (2)C3—C41.380 (5)
Cu1—N32.069 (2)C3—H141.06 (4)
Cu1—N12.081 (2)C4—C51.390 (4)
Cu1—O12.082 (2)C4—H130.91 (4)
Cu1—N42.125 (2)C5—C61.479 (4)
V1—O31.609 (2)C6—C71.382 (5)
V1—O11.656 (2)C7—C81.382 (5)
V1—O21.7813 (6)C7—H120.82 (4)
V1—O81.821 (2)C8—C91.367 (5)
V2—O51.610 (2)C8—H111.05 (4)
V2—O41.630 (2)C9—C101.380 (4)
V2—O71.805 (2)C9—H100.85 (4)
V2—O61.814 (2)C10—H90.90 (3)
V3—O91.580 (3)C11—C121.381 (5)
V3—O71.740 (2)C11—H80.87 (3)
V3—O81.741 (2)C12—C131.358 (6)
V3—O6i1.746 (2)C12—H70.88 (4)
O2—V1ii1.7813 (6)C13—C141.373 (6)
O6—V3iii1.746 (2)C13—H60.83 (4)
N1—C11.336 (4)C14—C151.388 (4)
N1—C51.351 (4)C14—H50.89 (4)
N2—C101.338 (4)C15—C161.477 (4)
N2—C61.349 (3)C16—C171.387 (4)
N3—C111.328 (4)C17—C181.370 (5)
N3—C151.342 (4)C17—H40.79 (4)
N4—C201.332 (4)C18—C191.366 (5)
N4—C161.344 (4)C18—H30.90 (4)
C1—C21.389 (5)C19—C201.372 (5)
C1—H160.97 (3)C19—H20.98 (4)
C2—C31.365 (6)C20—H10.77 (3)
O4—Cu1—N293.75 (9)C1—C2—H15121 (3)
O4—Cu1—N390.30 (9)C2—C3—C4119.3 (3)
N2—Cu1—N3170.39 (9)C2—C3—H14117 (2)
O4—Cu1—N1172.68 (9)C4—C3—H14123 (2)
N2—Cu1—N178.93 (10)C3—C4—C5119.2 (4)
N3—Cu1—N196.93 (10)C3—C4—H13121 (3)
O4—Cu1—O187.74 (9)C5—C4—H13120 (3)
N2—Cu1—O196.38 (9)N1—C5—C4121.3 (3)
N3—Cu1—O192.48 (9)N1—C5—C6115.3 (2)
N1—Cu1—O193.10 (9)C4—C5—C6123.4 (3)
O4—Cu1—N492.31 (10)N2—C6—C7121.3 (3)
N2—Cu1—N492.71 (9)N2—C6—C5115.0 (2)
N3—Cu1—N478.41 (9)C7—C6—C5123.7 (3)
N1—Cu1—N488.01 (9)C6—C7—C8119.5 (3)
O1—Cu1—N4170.89 (9)C6—C7—H12114 (3)
O3—V1—O1108.66 (12)C8—C7—H12126 (3)
O3—V1—O2110.17 (10)C9—C8—C7119.2 (3)
O1—V1—O2110.81 (8)C9—C8—H11120 (2)
O3—V1—O8106.82 (13)C7—C8—H11121 (2)
O1—V1—O8112.34 (12)C8—C9—C10118.8 (3)
O2—V1—O8107.96 (8)C8—C9—H10120 (3)
O5—V2—O4109.82 (12)C10—C9—H10121 (3)
O5—V2—O7107.40 (12)N2—C10—C9122.7 (3)
O4—V2—O7109.75 (11)N2—C10—H9116.5 (19)
O5—V2—O6110.05 (11)C9—C10—H9120.8 (19)
O4—V2—O6108.97 (11)N3—C11—C12122.1 (3)
O7—V2—O6110.83 (11)N3—C11—H8116 (2)
O9—V3—O7109.65 (17)C12—C11—H8122 (2)
O9—V3—O8109.78 (17)C13—C12—C11119.0 (4)
O7—V3—O8108.38 (12)C13—C12—H7123 (3)
O9—V3—O6i108.97 (14)C11—C12—H7118 (3)
O7—V3—O6i109.07 (11)C12—C13—C14119.9 (3)
O8—V3—O6i110.97 (12)C12—C13—H6124 (3)
V1—O1—Cu1141.73 (12)C14—C13—H6116 (3)
V1ii—O2—V1180.00 (3)C13—C14—C15118.6 (4)
V2—O4—Cu1175.90 (14)C13—C14—H5120 (2)
V3iii—O6—V2138.61 (13)C15—C14—H5121 (2)
V3—O7—V2138.95 (15)N3—C15—C14121.5 (3)
V3—O8—V1141.98 (16)N3—C15—C16115.7 (3)
C1—N1—C5118.9 (3)C14—C15—C16122.8 (3)
C1—N1—Cu1126.9 (2)N4—C16—C17121.5 (3)
C5—N1—Cu1114.19 (18)N4—C16—C15115.3 (3)
C10—N2—C6118.6 (3)C17—C16—C15123.1 (3)
C10—N2—Cu1125.6 (2)C18—C17—C16119.7 (3)
C6—N2—Cu1114.90 (18)C18—C17—H4125 (3)
C11—N3—C15119.0 (3)C16—C17—H4115 (3)
C11—N3—Cu1125.1 (2)C19—C18—C17118.8 (3)
C15—N3—Cu1115.52 (19)C19—C18—H3125 (2)
C20—N4—C16117.4 (3)C17—C18—H3115 (2)
C20—N4—Cu1128.3 (2)C18—C19—C20118.6 (3)
C16—N4—Cu1113.47 (19)C18—C19—H2126 (2)
N1—C1—C2122.1 (4)C20—C19—H2115 (2)
N1—C1—H16116 (2)N4—C20—C19123.9 (3)
C2—C1—H16122 (2)N4—C20—H1117 (3)
C3—C2—C1119.2 (4)C19—C20—H1119 (3)
C3—C2—H15119 (3)
O3—V1—O1—Cu136.1 (2)N1—Cu1—N4—C1690.4 (2)
O2—V1—O1—Cu1157.26 (16)C5—N1—C1—C21.1 (5)
O8—V1—O1—Cu181.9 (2)Cu1—N1—C1—C2175.5 (3)
O4—Cu1—O1—V137.4 (2)N1—C1—C2—C30.0 (6)
N2—Cu1—O1—V156.2 (2)C1—C2—C3—C40.6 (6)
N3—Cu1—O1—V1127.6 (2)C2—C3—C4—C50.1 (5)
N1—Cu1—O1—V1135.4 (2)C1—N1—C5—C41.6 (4)
O5—V2—O6—V3iii33.7 (3)Cu1—N1—C5—C4175.4 (2)
O4—V2—O6—V3iii86.8 (2)C1—N1—C5—C6177.8 (3)
O7—V2—O6—V3iii152.3 (2)Cu1—N1—C5—C65.3 (3)
O9—V3—O7—V281.2 (3)C3—C4—C5—N11.0 (5)
O8—V3—O7—V238.6 (3)C3—C4—C5—C6178.3 (3)
O6i—V3—O7—V2159.5 (2)C10—N2—C6—C71.7 (4)
O5—V2—O7—V3138.5 (2)Cu1—N2—C6—C7167.8 (2)
O4—V2—O7—V319.1 (3)C10—N2—C6—C5177.9 (2)
O6—V2—O7—V3101.3 (3)Cu1—N2—C6—C512.6 (3)
O9—V3—O8—V154.8 (3)N1—C5—C6—N24.8 (4)
O7—V3—O8—V164.9 (3)C4—C5—C6—N2174.6 (3)
O6i—V3—O8—V1175.4 (2)N1—C5—C6—C7175.7 (3)
O3—V1—O8—V3109.6 (3)C4—C5—C6—C75.0 (5)
O1—V1—O8—V39.4 (3)N2—C6—C7—C80.4 (5)
O2—V1—O8—V3131.9 (2)C5—C6—C7—C8179.1 (3)
N2—Cu1—N1—C1174.2 (3)C6—C7—C8—C90.9 (5)
N3—Cu1—N1—C114.6 (3)C7—C8—C9—C100.8 (5)
O1—Cu1—N1—C178.3 (3)C6—N2—C10—C91.8 (4)
N4—Cu1—N1—C192.6 (3)Cu1—N2—C10—C9166.5 (2)
N2—Cu1—N1—C59.10 (19)C8—C9—C10—N20.6 (5)
N3—Cu1—N1—C5162.12 (19)C15—N3—C11—C120.1 (5)
O1—Cu1—N1—C5105.0 (2)Cu1—N3—C11—C12171.9 (3)
N4—Cu1—N1—C584.0 (2)N3—C11—C12—C131.4 (6)
O4—Cu1—N2—C100.6 (2)C11—C12—C13—C141.2 (6)
N1—Cu1—N2—C10179.4 (3)C12—C13—C14—C150.4 (6)
O1—Cu1—N2—C1087.5 (2)C11—N3—C15—C141.9 (5)
N4—Cu1—N2—C1093.1 (2)Cu1—N3—C15—C14170.9 (3)
O4—Cu1—N2—C6168.1 (2)C11—N3—C15—C16179.7 (3)
N1—Cu1—N2—C611.84 (19)Cu1—N3—C15—C167.5 (3)
O1—Cu1—N2—C6103.8 (2)C13—C14—C15—N32.0 (5)
N4—Cu1—N2—C675.6 (2)C13—C14—C15—C16179.6 (3)
O4—Cu1—N3—C1180.5 (3)C20—N4—C16—C173.9 (5)
N1—Cu1—N3—C11100.6 (3)Cu1—N4—C16—C17166.7 (3)
O1—Cu1—N3—C117.2 (3)C20—N4—C16—C15176.4 (3)
N4—Cu1—N3—C11172.8 (3)Cu1—N4—C16—C1513.0 (3)
O4—Cu1—N3—C1591.7 (2)N3—C15—C16—N413.9 (4)
N1—Cu1—N3—C1587.1 (2)C14—C15—C16—N4164.5 (3)
O1—Cu1—N3—C15179.5 (2)N3—C15—C16—C17165.8 (3)
N4—Cu1—N3—C150.6 (2)C14—C15—C16—C1715.8 (5)
O4—Cu1—N4—C2093.8 (3)N4—C16—C17—C182.6 (5)
N2—Cu1—N4—C200.1 (3)C15—C16—C17—C18177.8 (3)
N3—Cu1—N4—C20176.4 (3)C16—C17—C18—C190.2 (6)
N1—Cu1—N4—C2078.9 (3)C17—C18—C19—C201.5 (6)
O4—Cu1—N4—C1696.9 (2)C16—N4—C20—C192.6 (5)
N2—Cu1—N4—C16169.2 (2)Cu1—N4—C20—C19166.4 (3)
N3—Cu1—N4—C167.1 (2)C18—C19—C20—N40.1 (6)
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y+5/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H8···O10.87 (3)2.52 (3)3.093 (4)124 (2)
C14—H5···O5iv0.89 (4)2.51 (3)3.159 (5)131 (3)
C18—H3···O5v0.90 (4)2.46 (4)3.315 (5)157 (3)
C19—H2···O9vi0.98 (4)2.32 (4)3.156 (5)144 (3)
Symmetry codes: (iv) x+1, y1/2, z+1/2; (v) x+1, y+2, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu2V6O17(C10H8N2)4]
Mr1329.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.512 (3), 14.761 (3), 10.470 (2)
β (°) 92.00 (3)
V3)2395.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.57 × 0.40 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.385, 0.577
No. of measured, independent and
observed [I > 2σ(I)] reflections
20154, 4742, 4010
Rint0.027
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.05
No. of reflections4742
No. of parameters395
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.47, 0.67

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H8···O10.87 (3)2.52 (3)3.093 (4)124 (2)
C14—H5···O5i0.89 (4)2.51 (3)3.159 (5)131 (3)
C18—H3···O5ii0.90 (4)2.46 (4)3.315 (5)157 (3)
C19—H2···O9iii0.98 (4)2.32 (4)3.156 (5)144 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+2, z; (iii) x, y, z1.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of Heilongjiang Province (Nos. B200901 and B200917) and the Science and Technology Research Key Project of Jiamusi University (No. Lz2009-015).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCao, M., Hu, C., Peng, G., Qi, Y. & Wang, E. (2003). J. Am. Chem. Soc. 125, 4982–4983.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem. Commun. pp. 1636–1638.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M., Tong, M.-L. & Chen, X.-M. (2000). Chem. Commun. pp. 1817–1819.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds