metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[N-(2-pyridylmethyl­­idene)benzene-1,4-di­amine]zinc(II)

aSchool of Chemical Engineering, Northeast Dianli University, Jilin 132012, People's Republic of China, bThe Higher Educational Key Laboratory for Measuring Control Technology and Instrumentations of Heilongjiang Province, Measurement Control Tech Communications Engineering College, Harbin University of Science and Technology, Harbin 150080, People's Republic of China, and cSchool of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
*Correspondence e-mail: yunboshi65@gmail.com

(Received 14 April 2010; accepted 25 April 2010; online 30 April 2010)

In the title compound, [ZnCl2(C12H11N3)], the ZnII atom is four-coordinated by two N atoms from an N-(2-pyridylmethyl­ene)benzene-1,4-diamine ligand and two Cl atoms in a distorted tetra­hedral geometry. In the crystal, the complex mol­ecules are connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds into a two-dimensional layer structure parallel to (110).

Related literature

For general background to zinc(II) complexes with Schiff base ligands, see: Su et al. (1999[Su, C.-Y., Yang, X.-P., Liao, S., Mak, T. C. W. & Kang, B.-S. (1999). Inorg. Chem. Commun. 2, 383-385.]); Ye et al. (2005[Ye, K.-Q., Wu, Y., Guo, J.-H., Sun, Y.-H. & Wang, Y. (2005). Chem. J. Chin. Univ. 26, 93-96.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C12H11N3)]

  • Mr = 333.53

  • Triclinic, [P \overline 1]

  • a = 7.5004 (15) Å

  • b = 9.1168 (18) Å

  • c = 10.186 (2) Å

  • α = 84.36 (3)°

  • β = 82.27 (3)°

  • γ = 74.19 (3)°

  • V = 662.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.645, Tmax = 0.699

  • 6557 measured reflections

  • 3000 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 0.93

  • 3000 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H10⋯Cl4i 0.86 2.60 3.433 (4) 164
N11—H11⋯Cl2ii 0.86 2.64 3.470 (4) 161
C3—H3⋯Cl4iii 0.99 (5) 2.89 (5) 3.864 (4) 169 (4)
C6—H6⋯Cl2iv 0.93 2.83 3.658 (4) 149
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y+1, z; (iv) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Based on the design and syntheses of zinc Schiff-base complexes and the potential applications of these materials as fluorescent probes (Su et al., 1999; Ye et al., 2005), the title compound has been obtained. As shown in Fig. 1, the asymmetric unit contains one ZnII ion, one N-(pyridin-2-ylmethylene)benzene-1,4-diamine ligand and two Cl atoms. The ZnII atom exhibits a distorted tetrahedral coordinate geometry formed by two N atoms from the ligand and two Cl atoms, with the Zn—N distances of 2.057 (3) and 2.070 (3)Å and the Zn—Cl distances of 2.2000 (13) and 2.2456 (12) Å. As shown in Fig. 2, the complex molecules are connected into a two-dimensional supramolecular layer-like structure via weak N—H···Cl and C—H···Cl hydrogen-bonding interactions (Table 1).

Related literature top

For general background to zinc(II) complexes with Schiff base ligands, see: Su et al. (1999); Ye et al. (2005).

Experimental top

The ligand was prepared according to the previous method (Ye et al., 2005). 1,4-Diaminobenzene (1.08 g, 10 mmol) was dissolved in methanol (20 ml), followed by addition of 2-pyridine carboxaldehyde (4.24 mg, 40 mmol). The mixture was stirred at room temperature for 2 h and filtered. The resulting yellow crystalline solid was washed with methanol several times and dried in air. A solution of ZnCl2.2H2O(14 mg, 0.08 mmol) in acetonitrile (5 ml) was allowed to diffuse slowly into a methylene chloride solution (10 ml) of the ligand (0.179 g, 0.625 mmol) in an H-shaped tube. Colorless crystals were obtained over a week.

Refinement top

H atoms bonded to C3, C4 and C11 were located from a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Based on the design and syntheses of zinc Schiff-base complexes and the potential applications of these materials as fluorescent probes (Su et al., 1999; Ye et al., 2005), the title compound has been obtained. As shown in Fig. 1, the asymmetric unit contains one ZnII ion, one N-(pyridin-2-ylmethylene)benzene-1,4-diamine ligand and two Cl atoms. The ZnII atom exhibits a distorted tetrahedral coordinate geometry formed by two N atoms from the ligand and two Cl atoms, with the Zn—N distances of 2.057 (3) and 2.070 (3)Å and the Zn—Cl distances of 2.2000 (13) and 2.2456 (12) Å. As shown in Fig. 2, the complex molecules are connected into a two-dimensional supramolecular layer-like structure via weak N—H···Cl and C—H···Cl hydrogen-bonding interactions (Table 1).

For general background to zinc(II) complexes with Schiff base ligands, see: Su et al. (1999); Ye et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the two-dimensional layer-like structure in the title compound.
Dichlorido[N-(2-pyridylmethylidene)benzene-1,4-diamine]zinc(II) top
Crystal data top
[ZnCl2(C12H11N3)]Z = 2
Mr = 333.53F(000) = 336
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5004 (15) ÅCell parameters from 2613 reflections
b = 9.1168 (18) Åθ = 3.2–26.5°
c = 10.186 (2) ŵ = 2.24 mm1
α = 84.36 (3)°T = 293 K
β = 82.27 (3)°Block, red
γ = 74.19 (3)°0.20 × 0.18 × 0.16 mm
V = 662.7 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.645, Tmax = 0.699k = 1111
6557 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.058P)2 + 0.9028P]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[ZnCl2(C12H11N3)]γ = 74.19 (3)°
Mr = 333.53V = 662.7 (3) Å3
Triclinic, P1Z = 2
a = 7.5004 (15) ÅMo Kα radiation
b = 9.1168 (18) ŵ = 2.24 mm1
c = 10.186 (2) ÅT = 293 K
α = 84.36 (3)°0.20 × 0.18 × 0.16 mm
β = 82.27 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3000 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2345 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.699Rint = 0.027
6557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.39 e Å3
3000 reflectionsΔρmin = 0.37 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27968 (6)0.38462 (4)0.24431 (4)0.03673 (14)
Cl20.09004 (13)0.22915 (11)0.26242 (10)0.0490 (2)
Cl40.55281 (14)0.29132 (12)0.13201 (10)0.0515 (3)
N40.1317 (4)0.6067 (3)0.2044 (3)0.0353 (6)
N60.2715 (4)0.4658 (3)0.4284 (3)0.0308 (6)
C20.0484 (6)0.8248 (5)0.0885 (4)0.0492 (9)
H20.09410.87040.00980.059*
C30.0912 (6)0.9047 (5)0.2008 (4)0.0508 (10)
C40.0201 (6)0.8340 (4)0.3174 (4)0.0455 (9)
C10.0631 (5)0.6763 (4)0.0925 (4)0.0433 (8)
H10.09120.62320.01570.052*
C110.5458 (6)0.1380 (4)0.6210 (4)0.0422 (8)
N110.5896 (5)0.0970 (4)0.8533 (3)0.0536 (9)
H110.65550.00520.84080.064*
H100.56980.13060.93140.064*
C90.4073 (5)0.3393 (4)0.7684 (3)0.0375 (7)
H80.38950.37640.85240.045*
C50.0910 (5)0.6854 (4)0.3156 (3)0.0342 (7)
C100.5160 (5)0.1897 (4)0.7488 (3)0.0366 (7)
C60.1730 (5)0.6044 (4)0.4344 (3)0.0357 (7)
H60.15360.65330.51310.043*
C80.3268 (5)0.4319 (4)0.6659 (3)0.0347 (7)
H70.25480.53060.68120.042*
C120.4640 (5)0.2327 (4)0.5178 (3)0.0382 (8)
H90.48450.19730.43300.046*
C70.3523 (4)0.3789 (4)0.5390 (3)0.0312 (7)
H50.604 (6)0.045 (5)0.601 (4)0.050 (12)*
H40.030 (7)0.890 (6)0.403 (5)0.070 (14)*
H30.189 (7)1.002 (6)0.196 (5)0.079 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0404 (2)0.0338 (2)0.0327 (2)0.00136 (17)0.00508 (16)0.00900 (15)
Cl20.0465 (5)0.0419 (5)0.0599 (6)0.0092 (4)0.0042 (4)0.0183 (4)
Cl40.0469 (5)0.0540 (5)0.0475 (5)0.0026 (4)0.0052 (4)0.0188 (4)
N40.0341 (15)0.0352 (15)0.0347 (14)0.0062 (12)0.0034 (12)0.0027 (12)
N60.0322 (14)0.0299 (13)0.0291 (13)0.0059 (11)0.0029 (11)0.0030 (10)
C20.051 (2)0.047 (2)0.049 (2)0.0123 (18)0.0147 (18)0.0131 (18)
C30.045 (2)0.038 (2)0.063 (3)0.0000 (17)0.0106 (19)0.0056 (18)
C40.049 (2)0.0335 (18)0.052 (2)0.0061 (16)0.0058 (18)0.0070 (16)
C10.042 (2)0.048 (2)0.0377 (18)0.0097 (16)0.0052 (15)0.0034 (16)
C110.054 (2)0.0295 (17)0.0401 (19)0.0002 (16)0.0105 (16)0.0089 (15)
N110.077 (3)0.0386 (17)0.0373 (16)0.0017 (16)0.0176 (16)0.0005 (13)
C90.043 (2)0.0383 (18)0.0299 (16)0.0080 (15)0.0015 (14)0.0092 (14)
C50.0333 (17)0.0323 (16)0.0369 (17)0.0084 (14)0.0036 (14)0.0024 (13)
C100.0409 (19)0.0344 (17)0.0348 (17)0.0098 (15)0.0049 (14)0.0029 (14)
C60.0389 (19)0.0352 (17)0.0327 (16)0.0079 (14)0.0017 (14)0.0089 (13)
C80.0386 (18)0.0311 (16)0.0334 (16)0.0067 (14)0.0006 (14)0.0085 (13)
C120.045 (2)0.0345 (17)0.0333 (16)0.0035 (15)0.0057 (14)0.0109 (14)
C70.0309 (16)0.0320 (16)0.0314 (15)0.0084 (13)0.0054 (13)0.0026 (12)
Geometric parameters (Å, º) top
Zn1—N42.057 (3)C11—C121.391 (5)
Zn1—N62.070 (3)C11—C101.396 (5)
Zn1—Cl42.2000 (13)C11—H50.87 (4)
Zn1—Cl22.2456 (12)N11—C101.371 (4)
N4—C11.343 (4)N11—H110.8600
N4—C51.356 (4)N11—H100.8600
N6—C61.281 (4)C9—C81.374 (5)
N6—C71.418 (4)C9—C101.403 (5)
C2—C31.370 (6)C9—H80.9300
C2—C11.384 (5)C5—C61.472 (5)
C2—H20.9300C6—H60.9300
C3—C41.394 (6)C8—C71.395 (4)
C3—H30.99 (5)C8—H70.9300
C4—C51.384 (5)C12—C71.387 (5)
C4—H41.03 (5)C12—H90.9300
C1—H10.9300
N4—Zn1—N681.72 (11)C10—C11—H5125 (3)
N4—Zn1—Cl4120.24 (9)C10—N11—H11120.0
N6—Zn1—Cl4118.70 (9)C10—N11—H10120.0
N4—Zn1—Cl2109.98 (9)H11—N11—H10120.0
N6—Zn1—Cl2108.64 (8)C8—C9—C10121.2 (3)
Cl4—Zn1—Cl2113.46 (4)C8—C9—H8119.4
C1—N4—C5118.7 (3)C10—C9—H8119.4
C1—N4—Zn1130.3 (3)N4—C5—C4122.1 (3)
C5—N4—Zn1110.8 (2)N4—C5—C6116.2 (3)
C6—N6—C7122.8 (3)C4—C5—C6121.7 (3)
C6—N6—Zn1111.6 (2)N11—C10—C11121.2 (3)
C7—N6—Zn1125.5 (2)N11—C10—C9120.4 (3)
C3—C2—C1119.9 (4)C11—C10—C9118.4 (3)
C3—C2—H2120.0N6—C6—C5119.3 (3)
C1—C2—H2120.0N6—C6—H6120.3
C2—C3—C4118.9 (4)C5—C6—H6120.3
C2—C3—H3116 (3)C9—C8—C7120.4 (3)
C4—C3—H3124 (3)C9—C8—H7119.8
C5—C4—C3118.7 (4)C7—C8—H7119.8
C5—C4—H4117 (3)C7—C12—C11121.2 (3)
C3—C4—H4124 (3)C7—C12—H9119.4
N4—C1—C2121.7 (4)C11—C12—H9119.4
N4—C1—H1119.1C12—C7—C8118.8 (3)
C2—C1—H1119.1C12—C7—N6117.2 (3)
C12—C11—C10120.0 (3)C8—C7—N6124.0 (3)
C12—C11—H5115 (3)
N6—Zn1—N4—C1179.7 (3)C3—C4—C5—N40.4 (6)
Cl4—Zn1—N4—C161.3 (3)C3—C4—C5—C6179.1 (3)
Cl2—Zn1—N4—C173.4 (3)C12—C11—C10—N11177.7 (4)
N6—Zn1—N4—C55.4 (2)C12—C11—C10—C91.9 (6)
Cl4—Zn1—N4—C5123.9 (2)C8—C9—C10—N11177.6 (3)
Cl2—Zn1—N4—C5101.5 (2)C8—C9—C10—C112.0 (5)
N4—Zn1—N6—C64.4 (2)C7—N6—C6—C5178.8 (3)
Cl4—Zn1—N6—C6124.4 (2)Zn1—N6—C6—C52.7 (4)
Cl2—Zn1—N6—C6104.0 (2)N4—C5—C6—N62.0 (5)
N4—Zn1—N6—C7179.7 (3)C4—C5—C6—N6178.4 (3)
Cl4—Zn1—N6—C759.6 (3)C10—C9—C8—C70.3 (5)
Cl2—Zn1—N6—C772.0 (3)C10—C11—C12—C70.1 (6)
C1—C2—C3—C40.3 (6)C11—C12—C7—C81.7 (5)
C2—C3—C4—C50.1 (6)C11—C12—C7—N6178.6 (3)
C5—N4—C1—C20.5 (5)C9—C8—C7—C121.6 (5)
Zn1—N4—C1—C2174.1 (3)C9—C8—C7—N6178.8 (3)
C3—C2—C1—N40.0 (6)C6—N6—C7—C12176.7 (3)
C1—N4—C5—C40.7 (5)Zn1—N6—C7—C127.8 (4)
Zn1—N4—C5—C4174.9 (3)C6—N6—C7—C83.0 (5)
C1—N4—C5—C6178.8 (3)Zn1—N6—C7—C8172.5 (2)
Zn1—N4—C5—C65.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H10···Cl4i0.862.603.433 (4)164
N11—H11···Cl2ii0.862.643.470 (4)161
C3—H3···Cl4iii0.99 (5)2.89 (5)3.864 (4)169 (4)
C6—H6···Cl2iv0.932.833.658 (4)149
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C12H11N3)]
Mr333.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5004 (15), 9.1168 (18), 10.186 (2)
α, β, γ (°)84.36 (3), 82.27 (3), 74.19 (3)
V3)662.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.645, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
6557, 3000, 2345
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 0.93
No. of reflections3000
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H10···Cl4i0.862.603.433 (4)164
N11—H11···Cl2ii0.862.643.470 (4)161
C3—H3···Cl4iii0.99 (5)2.89 (5)3.864 (4)169 (4)
C6—H6···Cl2iv0.932.833.658 (4)149
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1, y+1, z; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 60772019) and the Science and Technology Foundation of Education Office of Heilongjiang Province (No. 11541047).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Yang, X.-P., Liao, S., Mak, T. C. W. & Kang, B.-S. (1999). Inorg. Chem. Commun. 2, 383–385.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, K.-Q., Wu, Y., Guo, J.-H., Sun, Y.-H. & Wang, Y. (2005). Chem. J. Chin. Univ. 26, 93–96.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds