organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-nitro­pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 February 2010; accepted 30 March 2010; online 2 April 2010)

In the title compound, C5H3ClN2O2, the nitro group is twisted by 38.5 (2)° with respect to the pyridine ring. In the crystal, adjacent mol­ecules are linked by non-classical C—H⋯N and C—H⋯O hydrogen bonds, forming a layer motif.

Related literature

For the crystal structure of isostructural 2-iodo-3-nitro­pyridine, see: Mao & Chen (2009[Mao, L.-H. & Chen, Y. (2009). Acta Cryst. E65, o1428.]). For the crystal structure of 2-chloro-5-nitro­pyridine, see: Ng (2010[Ng, S. W. (2010). Acta Cryst. E66, o848.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3ClN2O2

  • Mr = 158.54

  • Monoclinic, P 21 /n

  • a = 7.613 (1) Å

  • b = 12.232 (2) Å

  • c = 7.716 (1) Å

  • β = 118.485 (2)°

  • V = 631.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 0.862

  • 5889 measured reflections

  • 1445 independent reflections

  • 1061 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.02

  • 1445 reflections

  • 103 parameters

  • 3 restraints

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 (1) 2.53 (1) 3.430 (3) 166 (2)
C4—H4⋯O1ii 0.93 (1) 2.64 (2) 3.327 (3) 132 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

According to a recent report on the crystal structure of 2-chloro-5-nitropyridine the respective molecule is planar (maximum r.m.s. deviation of non-hydrogen atoms is 0.090 Å). This molecule has the electron withdrawing substituents para to each other. The substituents interact through a short Cl···O contact of 3.068 (4) Å to generate a chain motif (Ng, 2010).

In the title compound 2-chloro-3-nitropyridine with the nitro group ortho to the chlorine substituent (Scheme I, Fig. 1), a similar Cl···O contact is also observed but the nitro group is twisted to avoid repulsion. Adjacent molecules are linked by non-classical C–H···N and C–H···O hydrogen bonds to form a layer motif (Fig. 2, Table 1). The C–H···N interaction is almost linear (Table 1).

2-Chloro-3-nitropyridine is isostructural with the iodo analog. In the iodo compound, the I···O contact is necessarily longer (Mao & Chen, 2009).

Related literature top

For the crystal structure of isostructural 2-iodo-3-nitropyridine, see: Mao & Chen (2009). For the crystal structure of 2-chloro-5-nitropyridine, see: Ng (2010).

Experimental top

2-Chloro-3-nitropyridine was obtained from the Aldrich Chemical Company, and was recrystallized from ethyl acetate.

Refinement top

Carbon bound H-atoms were located in a difference Fourier map. They were refined with a distance restraint of C–H 0.93±0.01 Å; their temperature factors were refined without constraints.

Structure description top

According to a recent report on the crystal structure of 2-chloro-5-nitropyridine the respective molecule is planar (maximum r.m.s. deviation of non-hydrogen atoms is 0.090 Å). This molecule has the electron withdrawing substituents para to each other. The substituents interact through a short Cl···O contact of 3.068 (4) Å to generate a chain motif (Ng, 2010).

In the title compound 2-chloro-3-nitropyridine with the nitro group ortho to the chlorine substituent (Scheme I, Fig. 1), a similar Cl···O contact is also observed but the nitro group is twisted to avoid repulsion. Adjacent molecules are linked by non-classical C–H···N and C–H···O hydrogen bonds to form a layer motif (Fig. 2, Table 1). The C–H···N interaction is almost linear (Table 1).

2-Chloro-3-nitropyridine is isostructural with the iodo analog. In the iodo compound, the I···O contact is necessarily longer (Mao & Chen, 2009).

For the crystal structure of isostructural 2-iodo-3-nitropyridine, see: Mao & Chen (2009). For the crystal structure of 2-chloro-5-nitropyridine, see: Ng (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C5H3ClNO2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Non-classical hydrogen-bonded layer motif.
2-chloro-3-nitropyridine top
Crystal data top
C5H3ClN2O2F(000) = 320
Mr = 158.54Dx = 1.668 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1393 reflections
a = 7.613 (1) Åθ = 3.3–24.8°
b = 12.232 (2) ŵ = 0.53 mm1
c = 7.716 (1) ÅT = 293 K
β = 118.485 (2)°Block, faint yellow
V = 631.5 (2) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1445 independent reflections
Radiation source: fine-focus sealed tube1061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.771, Tmax = 0.862k = 1515
5889 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1169P]
where P = (Fo2 + 2Fc2)/3
1445 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
C5H3ClN2O2V = 631.5 (2) Å3
Mr = 158.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.613 (1) ŵ = 0.53 mm1
b = 12.232 (2) ÅT = 293 K
c = 7.716 (1) Å0.30 × 0.20 × 0.05 mm
β = 118.485 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1445 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1061 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.862Rint = 0.040
5889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.02Δρmax = 0.22 e Å3
1445 reflectionsΔρmin = 0.29 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67770 (9)0.67094 (4)0.54558 (9)0.0583 (2)
O10.5971 (3)0.89254 (15)0.6322 (3)0.0793 (6)
O20.8242 (3)1.00241 (15)0.6464 (3)0.0804 (6)
N10.6852 (3)0.71189 (13)0.2214 (3)0.0471 (4)
N20.7123 (3)0.92525 (15)0.5760 (3)0.0514 (5)
C10.6891 (3)0.75880 (14)0.3767 (3)0.0381 (4)
C20.7109 (3)0.87120 (14)0.4062 (3)0.0375 (4)
C30.7322 (3)0.93592 (16)0.2719 (3)0.0468 (5)
C40.7252 (4)0.88674 (18)0.1090 (3)0.0522 (5)
C50.7011 (3)0.77541 (19)0.0896 (3)0.0516 (5)
H30.751 (3)1.0104 (9)0.294 (3)0.060 (7)*
H40.740 (3)0.9261 (17)0.013 (3)0.061 (7)*
H50.693 (3)0.7407 (18)0.021 (2)0.060 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0742 (4)0.0455 (3)0.0605 (4)0.0024 (2)0.0366 (3)0.0121 (2)
O10.1151 (16)0.0782 (12)0.0759 (13)0.0077 (11)0.0709 (13)0.0011 (9)
O20.0855 (13)0.0709 (11)0.0755 (12)0.0105 (10)0.0308 (11)0.0382 (10)
N10.0558 (11)0.0367 (8)0.0490 (10)0.0028 (7)0.0252 (9)0.0068 (7)
N20.0605 (12)0.0499 (10)0.0427 (10)0.0115 (8)0.0236 (9)0.0031 (8)
C10.0370 (10)0.0354 (9)0.0399 (10)0.0002 (7)0.0168 (8)0.0023 (7)
C20.0385 (10)0.0340 (8)0.0378 (10)0.0031 (7)0.0164 (8)0.0014 (7)
C30.0585 (13)0.0324 (9)0.0497 (12)0.0014 (8)0.0260 (10)0.0009 (8)
C40.0671 (14)0.0491 (12)0.0507 (13)0.0024 (10)0.0366 (11)0.0038 (9)
C50.0640 (14)0.0520 (12)0.0447 (12)0.0029 (10)0.0307 (11)0.0083 (9)
Geometric parameters (Å, º) top
Cl1—C11.7226 (18)C2—C31.374 (3)
O1—N21.217 (2)C3—C41.371 (3)
O2—N21.213 (2)C3—H30.925 (9)
N1—C11.317 (2)C4—C51.373 (3)
N1—C51.330 (3)C4—H40.930 (10)
N2—C21.462 (2)C5—H50.929 (10)
C1—C21.391 (3)
C1—N1—C5118.07 (17)C4—C3—C2118.15 (18)
O2—N2—O1124.60 (19)C4—C3—H3122.2 (15)
O2—N2—C2117.20 (19)C2—C3—H3119.7 (15)
O1—N2—C2118.15 (18)C3—C4—C5118.67 (19)
N1—C1—C2121.95 (16)C3—C4—H4122.2 (15)
N1—C1—Cl1115.43 (14)C5—C4—H4119.2 (15)
C2—C1—Cl1122.55 (14)N1—C5—C4123.54 (18)
C3—C2—C1119.58 (17)N1—C5—H5116.5 (15)
C3—C2—N2117.52 (16)C4—C5—H5120.0 (15)
C1—C2—N2122.90 (17)
C5—N1—C1—C20.5 (3)O2—N2—C2—C1143.2 (2)
C5—N1—C1—Cl1177.56 (15)O1—N2—C2—C139.3 (3)
N1—C1—C2—C31.1 (3)C1—C2—C3—C41.9 (3)
Cl1—C1—C2—C3175.72 (15)N2—C2—C3—C4178.09 (19)
N1—C1—C2—N2178.96 (18)C2—C3—C4—C51.2 (3)
Cl1—C1—C2—N24.2 (3)C1—N1—C5—C41.3 (3)
O2—N2—C2—C336.8 (3)C3—C4—C5—N10.4 (4)
O1—N2—C2—C3140.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.93 (1)2.53 (1)3.430 (3)166 (2)
C4—H4···O1ii0.93 (1)2.64 (2)3.327 (3)132 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC5H3ClN2O2
Mr158.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.613 (1), 12.232 (2), 7.716 (1)
β (°) 118.485 (2)
V3)631.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.771, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
5889, 1445, 1061
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.02
No. of reflections1445
No. of parameters103
No. of restraints3
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.93 (1)2.53 (1)3.430 (3)166 (2)
C4—H4···O1ii0.93 (1)2.64 (2)3.327 (3)132 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z1.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMao, L.-H. & Chen, Y. (2009). Acta Cryst. E65, o1428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (2010). Acta Cryst. E66, o848.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds