organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3-(5-Oxo-10,11-di­hydro-5H-dibenzo[a,d]cyclo­hepten-2-ylamino)phen­yl]furan-3-carboxamide

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, ohannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 9 March 2010; accepted 12 April 2010; online 17 April 2010)

In the title compound, C26H20N2O3, the two aromatic rings of the tricyclic unit are oriented at a dihedral angle of 54.53 (9)°. The crystal structure displays inter­molecular N—H⋯O hydrogen bonding.

Related literature

For palladium-catalyzed amination reactions of aryl halides with anilines, see: Jensen et al. (2004[Jensen, T. A., Liang, X., Tanner, D. & Skjaerbaek, N. J. (2004). J. Org. Chem. 69, 4936-4947.]); Grasa et al. (2001[Grasa, G. A., Viciu, M. S., Huang, J. & Nolan, S. P. (2001). J. Org. Chem. 66, 7729-7737.]). For p38 inhibitors based on dibenzosuberones, see: Laufer et al. (2006[Laufer, S. A., Ahrens, G. M., Karcher, S. C., Hering, J. S. & Niess, R. (2006). J. Med. Chem. 49, 7912-7915.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O3

  • Mr = 408.44

  • Monoclinic, P 21 /c

  • a = 10.7691 (7) Å

  • b = 21.746 (1) Å

  • c = 8.8666 (6) Å

  • β = 101.934 (2)°

  • V = 2031.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 22214 measured reflections

  • 4856 independent reflections

  • 3347 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.115

  • S = 0.99

  • 4856 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯O16i 0.87 2.14 2.900 (2) 146
N24—H24⋯O26ii 0.91 2.00 2.839 (2) 153
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

p38 mitogen activated protein (MAP) kinase is a key enzyme in inflammatory diseases as it is involved in the biosynthesis of proinflammatory cytokines such as TNF-α and IL-1β (Laufer et al. 2006). Small molecule p38 inhibitors suppress the production of these cytokines and therefore p38 is an attractive and promising drug target for novel anti-inflammatory therapeutics (Laufer et al. 2006). Recently, we designed and synthesized a series of p38 inhibitors based on dibenzosuberones (Laufer et al. 2006). The title compound was prepared in the course of our studies on dibenzo[a,d]cycloheptan-5-ones as potent p38 MAP kinase inhibitors.

The structure of the title compound, at 173 (2) K has monoclinic (P21/c) symmetry. In the molecule (Fig.1), rings A (C1—C4, C14, C15) and B (C6—C11) are, of course, planar and they are oriented at a dihedral angle of A/B = 54.53 (9)°. The intramolecular C21—H21···O26 (2.66 Å) interaction stabilizes the conformation of the molecule. In the crystal structure the hydrogen bonds N17—H17···O16 (2.90 Å) and N24—H24···O26 (2.84 Å) link the molecule into double layers.

Related literature top

For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen et al. (2004); Grasa et al. (2001). For p38 inhibitors based on dibenzosuberones, see: Laufer et al. (2006).

Experimental top

For the preparation of the title compound a mixture of 500 mg (2.1 mmol) 2-chloro-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-one, 420 mg (2.1 mmol) N-(3-aminophenyl)-3-furamide, 940 mg (8.4 mmol) KOtert-Bu, 90 mg (0.19 mmol) 2-(dicyclohexylphosphino)-2'-, 4'-, 6'-triisopropylbiphenyl and 20 mg (0.09 mmol) Pd(OAc)2 in 3 ml absolute tert-butanol and 7 ml absolute toluol was stirred for 4 h at 363 K under an atmosphere of argon. The mixture was diluted with water and then extracted with ethyl acetate. The extracts were combined, washed with saturated saline solution, dried over Na2SO4 and then evaporated under reduced pressure. The residue was purified by flash chromatography (SiO2 60, n-hexane / ethyl acetate 3 + 2) (yield: 17.2 %). Crystals of the title compound were obtained by slow evaporation of a methanol / diethyl ether solution at room temperature.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to N17 and N24 were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Structure description top

p38 mitogen activated protein (MAP) kinase is a key enzyme in inflammatory diseases as it is involved in the biosynthesis of proinflammatory cytokines such as TNF-α and IL-1β (Laufer et al. 2006). Small molecule p38 inhibitors suppress the production of these cytokines and therefore p38 is an attractive and promising drug target for novel anti-inflammatory therapeutics (Laufer et al. 2006). Recently, we designed and synthesized a series of p38 inhibitors based on dibenzosuberones (Laufer et al. 2006). The title compound was prepared in the course of our studies on dibenzo[a,d]cycloheptan-5-ones as potent p38 MAP kinase inhibitors.

The structure of the title compound, at 173 (2) K has monoclinic (P21/c) symmetry. In the molecule (Fig.1), rings A (C1—C4, C14, C15) and B (C6—C11) are, of course, planar and they are oriented at a dihedral angle of A/B = 54.53 (9)°. The intramolecular C21—H21···O26 (2.66 Å) interaction stabilizes the conformation of the molecule. In the crystal structure the hydrogen bonds N17—H17···O16 (2.90 Å) and N24—H24···O26 (2.84 Å) link the molecule into double layers.

For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen et al. (2004); Grasa et al. (2001). For p38 inhibitors based on dibenzosuberones, see: Laufer et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing showing the supramoleculare structure. View along the a-axis.
N-[3-(5-Oxo-10,11-dihydro-5H- dibenzo[a,d]cyclohepten-2-ylamino)phenyl]furan-3-carboxamide top
Crystal data top
C26H20N2O3F(000) = 856
Mr = 408.44Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3910 reflections
a = 10.7691 (7) Åθ = 2.5–25.8°
b = 21.746 (1) ŵ = 0.09 mm1
c = 8.8666 (6) ÅT = 173 K
β = 101.934 (2)°Plate, yellow
V = 2031.6 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3347 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.044
Graphite monochromatorθmax = 27.9°, θmin = 1.9°
CCD scanh = 1414
22214 measured reflectionsk = 2828
4856 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.2737P]
where P = (Fo2 + 2Fc2)/3
4856 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C26H20N2O3V = 2031.6 (2) Å3
Mr = 408.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7691 (7) ŵ = 0.09 mm1
b = 21.746 (1) ÅT = 173 K
c = 8.8666 (6) Å0.30 × 0.20 × 0.10 mm
β = 101.934 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
3347 reflections with I > 2σ(I)
22214 measured reflectionsRint = 0.044
4856 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
4856 reflectionsΔρmin = 0.30 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33786 (17)0.51791 (8)0.78886 (19)0.0268 (4)
C20.35431 (17)0.55527 (8)0.92028 (19)0.0282 (4)
H20.37140.59790.91310.034*
C30.34553 (17)0.52992 (8)1.05935 (19)0.0278 (4)
H30.35790.55591.14740.033*
C40.31908 (16)0.46745 (8)1.07779 (18)0.0255 (4)
C50.30193 (18)0.45074 (8)1.23480 (19)0.0293 (4)
C60.23344 (17)0.39443 (8)1.26987 (19)0.0306 (4)
C70.15301 (19)0.40150 (10)1.3739 (2)0.0394 (5)
H70.14350.44091.41660.047*
C80.0873 (2)0.35182 (12)1.4151 (3)0.0521 (6)
H80.03190.35721.48470.063*
C90.1023 (2)0.29455 (11)1.3551 (3)0.0528 (6)
H90.05720.26031.38340.063*
C100.1828 (2)0.28669 (10)1.2539 (2)0.0420 (5)
H100.19320.24691.21410.050*
C110.24914 (18)0.33624 (8)1.2092 (2)0.0323 (4)
C120.3358 (2)0.32699 (8)1.0986 (2)0.0359 (4)
H12A0.34300.28251.07880.043*
H12B0.42150.34251.14580.043*
C130.2882 (2)0.36007 (8)0.9458 (2)0.0345 (4)
H13A0.33160.34220.86800.041*
H13B0.19640.35140.91180.041*
C140.30687 (17)0.42898 (8)0.94687 (19)0.0269 (4)
C150.31629 (17)0.45534 (8)0.80680 (19)0.0272 (4)
H150.30760.42940.71890.033*
O160.33648 (14)0.48724 (6)1.34167 (14)0.0397 (3)
N170.34715 (16)0.53956 (6)0.64489 (16)0.0325 (4)
H170.35300.51030.57920.039*
C180.36701 (17)0.60072 (8)0.60389 (18)0.0279 (4)
C190.29900 (17)0.64925 (8)0.65027 (18)0.0269 (4)
H190.23920.64150.71310.032*
C200.31876 (17)0.70897 (8)0.60449 (18)0.0267 (4)
C210.40671 (18)0.72084 (8)0.5136 (2)0.0312 (4)
H210.42300.76190.48630.037*
C220.47030 (18)0.67210 (9)0.4632 (2)0.0344 (4)
H220.52800.67980.39760.041*
C230.45104 (18)0.61242 (8)0.5069 (2)0.0321 (4)
H230.49500.57940.47090.039*
N240.24633 (15)0.75736 (6)0.65095 (15)0.0291 (3)
H240.22550.75220.74440.035*
C250.18520 (17)0.80036 (8)0.55246 (18)0.0262 (4)
O260.18260 (14)0.79914 (6)0.41345 (14)0.0400 (3)
C270.12282 (16)0.85057 (8)0.61918 (19)0.0265 (4)
C280.04935 (19)0.89762 (9)0.5342 (2)0.0392 (5)
H280.02800.90080.42500.047*
C290.01532 (18)0.93667 (9)0.6332 (2)0.0373 (4)
H290.03510.97240.60590.045*
O300.06443 (17)0.91741 (7)0.78210 (18)0.0579 (4)
C310.1293 (2)0.86527 (9)0.7692 (2)0.0451 (5)
H310.17370.84190.85400.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0327 (9)0.0268 (9)0.0223 (8)0.0032 (7)0.0090 (7)0.0015 (7)
C20.0391 (10)0.0206 (8)0.0256 (8)0.0007 (7)0.0085 (7)0.0008 (7)
C30.0372 (10)0.0252 (9)0.0212 (8)0.0037 (7)0.0066 (7)0.0032 (7)
C40.0328 (9)0.0227 (8)0.0222 (8)0.0043 (7)0.0087 (7)0.0015 (6)
C50.0394 (10)0.0263 (9)0.0238 (8)0.0076 (8)0.0103 (7)0.0019 (7)
C60.0350 (10)0.0349 (10)0.0222 (8)0.0031 (8)0.0062 (7)0.0055 (7)
C70.0417 (11)0.0512 (12)0.0266 (9)0.0012 (9)0.0099 (8)0.0027 (8)
C80.0502 (13)0.0741 (17)0.0365 (11)0.0102 (12)0.0191 (10)0.0075 (11)
C90.0576 (14)0.0616 (15)0.0399 (12)0.0216 (12)0.0118 (10)0.0123 (11)
C100.0523 (13)0.0376 (11)0.0346 (10)0.0071 (9)0.0056 (9)0.0092 (8)
C110.0367 (10)0.0314 (10)0.0277 (9)0.0010 (8)0.0042 (8)0.0079 (7)
C120.0489 (12)0.0223 (9)0.0389 (10)0.0044 (8)0.0146 (9)0.0030 (8)
C130.0557 (12)0.0220 (9)0.0299 (9)0.0011 (8)0.0186 (9)0.0022 (7)
C140.0319 (9)0.0230 (8)0.0274 (9)0.0016 (7)0.0099 (7)0.0002 (7)
C150.0372 (10)0.0232 (9)0.0227 (8)0.0004 (7)0.0095 (7)0.0048 (7)
O160.0678 (10)0.0308 (7)0.0232 (6)0.0006 (7)0.0153 (6)0.0017 (5)
N170.0580 (10)0.0222 (7)0.0210 (7)0.0026 (7)0.0165 (7)0.0009 (6)
C180.0394 (10)0.0263 (9)0.0184 (8)0.0003 (8)0.0072 (7)0.0013 (7)
C190.0374 (10)0.0285 (9)0.0161 (7)0.0002 (7)0.0083 (7)0.0009 (6)
C200.0358 (10)0.0267 (9)0.0170 (7)0.0007 (7)0.0042 (7)0.0009 (6)
C210.0388 (10)0.0268 (9)0.0293 (9)0.0033 (8)0.0097 (8)0.0021 (7)
C220.0375 (10)0.0358 (10)0.0337 (10)0.0002 (8)0.0163 (8)0.0032 (8)
C230.0400 (10)0.0297 (9)0.0294 (9)0.0051 (8)0.0137 (8)0.0007 (7)
N240.0469 (9)0.0267 (8)0.0162 (7)0.0040 (7)0.0123 (6)0.0019 (6)
C250.0347 (9)0.0259 (9)0.0191 (8)0.0048 (7)0.0083 (7)0.0001 (7)
O260.0628 (9)0.0406 (8)0.0188 (6)0.0125 (7)0.0136 (6)0.0047 (5)
C270.0316 (9)0.0249 (9)0.0236 (8)0.0032 (7)0.0070 (7)0.0018 (7)
C280.0436 (11)0.0396 (11)0.0331 (10)0.0046 (9)0.0046 (9)0.0084 (8)
C290.0349 (10)0.0269 (10)0.0503 (12)0.0082 (8)0.0093 (9)0.0054 (8)
O300.0789 (12)0.0513 (10)0.0456 (9)0.0208 (9)0.0179 (8)0.0055 (7)
C310.0696 (15)0.0386 (11)0.0267 (10)0.0212 (11)0.0087 (9)0.0009 (8)
Geometric parameters (Å, º) top
C1—N171.384 (2)C14—C151.391 (2)
C1—C151.395 (2)C15—H150.9500
C1—C21.401 (2)N17—C181.407 (2)
C2—C31.372 (2)N17—H170.8739
C2—H20.9500C18—C191.394 (2)
C3—C41.405 (2)C18—C231.395 (2)
C3—H30.9500C19—C201.390 (2)
C4—C141.415 (2)C19—H190.9500
C4—C51.487 (2)C20—C211.389 (2)
C5—O161.233 (2)C20—N241.421 (2)
C5—C61.495 (3)C21—C221.385 (3)
C6—C71.398 (3)C21—H210.9500
C6—C111.399 (3)C22—C231.382 (3)
C7—C81.382 (3)C22—H220.9500
C7—H70.9500C23—H230.9500
C8—C91.377 (3)N24—C251.354 (2)
C8—H80.9500N24—H240.9089
C9—C101.381 (3)C25—O261.2274 (19)
C9—H90.9500C25—C271.469 (2)
C10—C111.395 (3)C27—C311.356 (2)
C10—H100.9500C27—C281.412 (2)
C11—C121.501 (3)C28—C291.326 (3)
C12—C131.525 (3)C28—H280.9500
C12—H12A0.9900C29—O301.382 (2)
C12—H12B0.9900C29—H290.9500
C13—C141.512 (2)O30—C311.349 (2)
C13—H13A0.9900C31—H310.9500
C13—H13B0.9900
N17—C1—C15118.86 (15)C15—C14—C13115.93 (15)
N17—C1—C2123.30 (16)C4—C14—C13125.51 (15)
C15—C1—C2117.79 (15)C14—C15—C1123.27 (15)
C3—C2—C1119.60 (16)C14—C15—H15118.4
C3—C2—H2120.2C1—C15—H15118.4
C1—C2—H2120.2C1—N17—C18127.17 (14)
C2—C3—C4123.15 (16)C1—N17—H17113.4
C2—C3—H3118.4C18—N17—H17118.7
C4—C3—H3118.4C19—C18—C23119.41 (16)
C3—C4—C14117.59 (15)C19—C18—N17121.48 (15)
C3—C4—C5114.38 (14)C23—C18—N17118.99 (15)
C14—C4—C5127.98 (15)C20—C19—C18119.97 (16)
O16—C5—C4119.09 (16)C20—C19—H19120.0
O16—C5—C6116.80 (15)C18—C19—H19120.0
C4—C5—C6123.85 (15)C21—C20—C19120.47 (16)
C7—C6—C11119.61 (17)C21—C20—N24120.79 (15)
C7—C6—C5116.52 (17)C19—C20—N24118.74 (15)
C11—C6—C5123.83 (16)C22—C21—C20119.14 (16)
C8—C7—C6120.6 (2)C22—C21—H21120.4
C8—C7—H7119.7C20—C21—H21120.4
C6—C7—H7119.7C23—C22—C21121.02 (17)
C9—C8—C7119.8 (2)C23—C22—H22119.5
C9—C8—H8120.1C21—C22—H22119.5
C7—C8—H8120.1C22—C23—C18119.89 (16)
C8—C9—C10120.2 (2)C22—C23—H23120.1
C8—C9—H9119.9C18—C23—H23120.1
C10—C9—H9119.9C25—N24—C20123.20 (14)
C9—C10—C11121.1 (2)C25—N24—H24119.6
C9—C10—H10119.5C20—N24—H24115.3
C11—C10—H10119.5O26—C25—N24122.68 (16)
C10—C11—C6118.66 (18)O26—C25—C27120.20 (16)
C10—C11—C12120.43 (17)N24—C25—C27117.10 (14)
C6—C11—C12120.91 (16)C31—C27—C28105.22 (16)
C11—C12—C13112.11 (16)C31—C27—C25129.44 (16)
C11—C12—H12A109.2C28—C27—C25125.17 (16)
C13—C12—H12A109.2C29—C28—C27108.14 (17)
C11—C12—H12B109.2C29—C28—H28125.9
C13—C12—H12B109.2C27—C28—H28125.9
H12A—C12—H12B107.9C28—C29—O30109.57 (17)
C14—C13—C12116.24 (16)C28—C29—H29125.2
C14—C13—H13A108.2O30—C29—H29125.2
C12—C13—H13A108.2C31—O30—C29106.05 (15)
C14—C13—H13B108.2O30—C31—C27111.01 (17)
C12—C13—H13B108.2O30—C31—H31124.5
H13A—C13—H13B107.4C27—C31—H31124.5
C15—C14—C4118.53 (15)
N17—C1—C2—C3178.94 (17)C4—C14—C15—C10.3 (3)
C15—C1—C2—C31.7 (3)C13—C14—C15—C1177.81 (17)
C1—C2—C3—C40.7 (3)N17—C1—C15—C14179.27 (17)
C2—C3—C4—C142.9 (3)C2—C1—C15—C141.9 (3)
C2—C3—C4—C5174.59 (17)C15—C1—N17—C18179.19 (17)
C3—C4—C5—O1614.7 (2)C2—C1—N17—C183.6 (3)
C14—C4—C5—O16168.12 (18)C1—N17—C18—C1945.9 (3)
C3—C4—C5—C6159.21 (16)C1—N17—C18—C23138.03 (19)
C14—C4—C5—C618.0 (3)C23—C18—C19—C202.4 (3)
O16—C5—C6—C735.6 (2)N17—C18—C19—C20178.41 (16)
C4—C5—C6—C7138.42 (18)C18—C19—C20—C210.5 (3)
O16—C5—C6—C11142.16 (18)C18—C19—C20—N24178.77 (15)
C4—C5—C6—C1143.8 (3)C19—C20—C21—C222.9 (3)
C11—C6—C7—C81.1 (3)N24—C20—C21—C22176.33 (16)
C5—C6—C7—C8178.99 (18)C20—C21—C22—C232.5 (3)
C6—C7—C8—C90.9 (3)C21—C22—C23—C180.4 (3)
C7—C8—C9—C100.0 (3)C19—C18—C23—C222.8 (3)
C8—C9—C10—C110.7 (3)N17—C18—C23—C22178.94 (17)
C9—C10—C11—C60.5 (3)C21—C20—N24—C2547.7 (2)
C9—C10—C11—C12179.72 (19)C19—C20—N24—C25131.59 (18)
C7—C6—C11—C100.4 (3)C20—N24—C25—O263.6 (3)
C5—C6—C11—C10178.11 (17)C20—N24—C25—C27175.05 (15)
C7—C6—C11—C12179.36 (17)O26—C25—C27—C31169.7 (2)
C5—C6—C11—C121.7 (3)N24—C25—C27—C319.0 (3)
C10—C11—C12—C13114.25 (19)O26—C25—C27—C284.7 (3)
C6—C11—C12—C1366.0 (2)N24—C25—C27—C28176.57 (17)
C11—C12—C13—C1475.8 (2)C31—C27—C28—C290.6 (2)
C3—C4—C14—C152.7 (2)C25—C27—C28—C29176.09 (17)
C5—C4—C14—C15174.47 (17)C27—C28—C29—O300.4 (2)
C3—C4—C14—C13175.28 (17)C28—C29—O30—C310.0 (2)
C5—C4—C14—C137.6 (3)C29—O30—C31—C270.3 (3)
C12—C13—C14—C15153.30 (17)C28—C27—C31—O300.6 (2)
C12—C13—C14—C424.7 (3)C25—C27—C31—O30175.83 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O16i0.872.142.900 (2)146
N24—H24···O26ii0.912.002.839 (2)153
C21—H21···O210.952.662.937 (2)97
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H20N2O3
Mr408.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.7691 (7), 21.746 (1), 8.8666 (6)
β (°) 101.934 (2)
V3)2031.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22214, 4856, 3347
Rint0.044
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.115, 0.99
No. of reflections4856
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O16i0.872.142.900 (2)146
N24—H24···O26ii0.912.002.839 (2)153
C21—H21···O210.952.662.937 (2)97
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrasa, G. A., Viciu, M. S., Huang, J. & Nolan, S. P. (2001). J. Org. Chem. 66, 7729–7737.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJensen, T. A., Liang, X., Tanner, D. & Skjaerbaek, N. J. (2004). J. Org. Chem. 69, 4936–4947.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. A., Ahrens, G. M., Karcher, S. C., Hering, J. S. & Niess, R. (2006). J. Med. Chem. 49, 7912–7915.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds