organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2-Chloro-8-methyl­quinolin-3-yl)­meth­yl]pyridin-2(1H)-one

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 March 2010; accepted 6 April 2010; online 10 April 2010)

In the title compound, C16H13ClN2O, the quinoline ring system is approximately planar [maximum deviation 0.021 (2) Å] and forms a dihedral angle of 85.93 (6)° with the pyridone ring. Inter­molecular C—H⋯O hydrogen bonding, together with weak C—H⋯π and ππ inter­actions [centroid-to-centroid distances 3.5533 (9) and 3.7793 (9) Å], characterize the crystal structure.

Related literature

For 2-pyridone analogues, see: Arman et al. (2009[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187.]); Clegg & Nichol (2004[Clegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433-o1436.]); Nichol & Clegg (2005[Nichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383-o385.]). For the synthesis of 2-pyridone derivatives, see: Banerjee & Sereda (2009[Banerjee, S. & Sereda, G. (2009). Tetrahedron Lett. 50, 6959-6962.]); Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.]); Roopan et al. (2010[Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. 51, 2309-2311.]); Dandepally & Williams (2009[Dandepally, S. R. & Williams, A. L. (2009). Tetrahedron Lett. 50, 1395-1398.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2O

  • Mr = 284.73

  • Monoclinic, P 21 /c

  • a = 10.1513 (2) Å

  • b = 9.3917 (2) Å

  • c = 14.1430 (2) Å

  • β = 90.948 (2)°

  • V = 1348.17 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.931, Tmax = 0.946

  • 17649 measured reflections

  • 2511 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.10

  • 2511 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.54 3.286 (2) 137
C6—H6⋯Cg1ii 0.93 2.61 3.4457 (18) 150
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our search for new quinoline analogues, we focused on N-alkylation of 2-pyridinone using 2-chloro-3-(chloromethyl)-8-methylquinoline. N-alkylations are used in the synthesis of various heterocyclic (Dandepally & Williams, 2009) naturally occurring alkaloids. The chemistry of N-alkylation has received much attention due to their usefulness as building blocks in organic synthesis (Roopan et al., 2010). Compounds found in nature display a wide range of diversity in terms of their structures and physical and biological properties. The synthesis of privileged medicinal scaffolds is highly important as these compounds often act as a platform for developing pharmaceutical agents for diverse applications (Roopan & Khan, 2009). These vast applications have inspired the development of a number of methods for the preparation of pyridine nucleus (Banerjee & Sereda, 2009). However, literature studies reveal that most of the methods involve low isolated yields and long reaction times. On the basis of the interesting structures and biological activities exhibited by several heterocyclic systems possessing quinoline and pyridinone nuclei, we have synthesized a quinoline coupled pyridinone, i.e. 1-[(2-chloro-8-methylquinolin-3yl)-methyl]-pyridine-2(1H)-one.

The quinoline ring system (N1/C1–C3/C8/C9) of the title molecule in Fig. 1 is approximately planar, with maximum deviations of 0.021 (2) Å for C7, -0.021 (1) Å for N1 and 0.018 (2) Å for C5. It makes a dihedral angle of 85.93 (6)° with the pyridinone ring (N2/C11–C15). Intramolecular C—H···N, intermolecular C—H···O hydrogen bonding, together with weak C—H···π (Table 1) and ππ interactions [Cg1···Cg2(-x, 1/2 + y, 1/2 - z) = 3.5533 (9) Å and Cg2···Cg3(-x, -1/2 + y, 1/2 - z) = 3.7793 (9) Å, where Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C3/C8/C9, N2/C11–C15 and C4–C9 rings, respectively], characterize the crystal structure. Fig. 2 shows the hydrogen bonding in terms of a packing diagrams of the title compound.

Related literature top

For 2-pyridone analogues, see: Arman et al. (2009); Clegg & Nichol (2004); Nichol & Clegg (2005). For related literature, see: Banerjee & Sereda (2009); Roopan & Khan (2009); Roopan et al. (2010); Dandepally & Williams (2009).

Experimental top

To a vigorously stirred solution of 2-pyridinone (95 mg, 1 mmol, in 2 ml DMF) KOtBu (112 mg, 1 mmol, in 10 ml THF) and 2-chloro-3-(chloromethyl)-8-methylquinoline (226 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. After the completion of the reaction it was cooled to room temperature and the excess of solvent was removed under reduced pressure. Crushed ice was mixed with the residue producing a white solid that was filtered and dried. Purification was performed by column chromatography using hexane and ethyl acetate (1:9) as the eluant. Crystals of suitable quality were grown by solvent evaporation from a solution of the compound in dichloromethane at room temperature.

Refinement top

H atoms were located geometrically with C—H = 0.93–0.97 Å and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Structure description top

As part of our search for new quinoline analogues, we focused on N-alkylation of 2-pyridinone using 2-chloro-3-(chloromethyl)-8-methylquinoline. N-alkylations are used in the synthesis of various heterocyclic (Dandepally & Williams, 2009) naturally occurring alkaloids. The chemistry of N-alkylation has received much attention due to their usefulness as building blocks in organic synthesis (Roopan et al., 2010). Compounds found in nature display a wide range of diversity in terms of their structures and physical and biological properties. The synthesis of privileged medicinal scaffolds is highly important as these compounds often act as a platform for developing pharmaceutical agents for diverse applications (Roopan & Khan, 2009). These vast applications have inspired the development of a number of methods for the preparation of pyridine nucleus (Banerjee & Sereda, 2009). However, literature studies reveal that most of the methods involve low isolated yields and long reaction times. On the basis of the interesting structures and biological activities exhibited by several heterocyclic systems possessing quinoline and pyridinone nuclei, we have synthesized a quinoline coupled pyridinone, i.e. 1-[(2-chloro-8-methylquinolin-3yl)-methyl]-pyridine-2(1H)-one.

The quinoline ring system (N1/C1–C3/C8/C9) of the title molecule in Fig. 1 is approximately planar, with maximum deviations of 0.021 (2) Å for C7, -0.021 (1) Å for N1 and 0.018 (2) Å for C5. It makes a dihedral angle of 85.93 (6)° with the pyridinone ring (N2/C11–C15). Intramolecular C—H···N, intermolecular C—H···O hydrogen bonding, together with weak C—H···π (Table 1) and ππ interactions [Cg1···Cg2(-x, 1/2 + y, 1/2 - z) = 3.5533 (9) Å and Cg2···Cg3(-x, -1/2 + y, 1/2 - z) = 3.7793 (9) Å, where Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C3/C8/C9, N2/C11–C15 and C4–C9 rings, respectively], characterize the crystal structure. Fig. 2 shows the hydrogen bonding in terms of a packing diagrams of the title compound.

For 2-pyridone analogues, see: Arman et al. (2009); Clegg & Nichol (2004); Nichol & Clegg (2005). For related literature, see: Banerjee & Sereda (2009); Roopan & Khan (2009); Roopan et al. (2010); Dandepally & Williams (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram and the hydrogen bonding interactions of the title compound viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-[(2-Chloro-8-methylquinolin-3-yl)methyl]pyridin-2(1H)-one top
Crystal data top
C16H13ClN2OF(000) = 592
Mr = 284.73Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1116 reflections
a = 10.1513 (2) Åθ = 2.0–21.0°
b = 9.3917 (2) ŵ = 0.28 mm1
c = 14.1430 (2) ÅT = 295 K
β = 90.948 (2)°Block, colourless
V = 1348.17 (4) Å30.26 × 0.24 × 0.20 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2511 independent reflections
Radiation source: Enhance (Mo) X-ray Source2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.931, Tmax = 0.946k = 1111
17649 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.062P]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H13ClN2OV = 1348.17 (4) Å3
Mr = 284.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1513 (2) ŵ = 0.28 mm1
b = 9.3917 (2) ÅT = 295 K
c = 14.1430 (2) Å0.26 × 0.24 × 0.20 mm
β = 90.948 (2)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2511 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2088 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.946Rint = 0.033
17649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.10Δρmax = 0.16 e Å3
2511 reflectionsΔρmin = 0.33 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17214 (4)0.42990 (4)0.02479 (2)0.0424 (1)
O10.08041 (10)0.28868 (13)0.35614 (8)0.0481 (4)
N10.32267 (11)0.61310 (13)0.11096 (8)0.0315 (4)
N20.05971 (11)0.45168 (13)0.28993 (8)0.0331 (4)
C10.21630 (13)0.53822 (15)0.12066 (9)0.0292 (4)
C20.13534 (13)0.53361 (14)0.20141 (9)0.0281 (4)
C30.17568 (13)0.61625 (16)0.27547 (10)0.0304 (4)
C40.33798 (15)0.78326 (17)0.34745 (11)0.0407 (5)
C50.45224 (16)0.8575 (2)0.33878 (12)0.0498 (6)
C60.52323 (16)0.8519 (2)0.25493 (12)0.0499 (6)
C70.48186 (15)0.77503 (17)0.17819 (12)0.0405 (5)
C80.36339 (13)0.69521 (15)0.18602 (10)0.0307 (4)
C90.29139 (13)0.69933 (15)0.27116 (10)0.0305 (4)
C100.01318 (15)0.44264 (17)0.20158 (10)0.0365 (5)
C110.16498 (15)0.54157 (17)0.29568 (12)0.0430 (5)
C120.23606 (17)0.54973 (19)0.37505 (14)0.0520 (6)
C130.20074 (17)0.4635 (2)0.45186 (13)0.0507 (6)
C140.09706 (16)0.37454 (18)0.44725 (11)0.0433 (5)
C150.01782 (14)0.36501 (16)0.36452 (10)0.0342 (5)
C160.55794 (17)0.7727 (2)0.08775 (14)0.0626 (7)
H30.126000.618000.330100.0360*
H40.290900.787800.403200.0490*
H50.483400.912600.389100.0600*
H60.601700.902600.251400.0600*
H10A0.044300.471700.149600.0440*
H10B0.038000.344300.190900.0440*
H110.188000.598000.244000.0520*
H120.307300.611600.378700.0630*
H130.249500.467600.506900.0610*
H140.076200.317700.499200.0520*
H16A0.510200.824500.039700.0940*
H16B0.569600.675900.067600.0940*
H16C0.642500.816100.098200.0940*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0429 (2)0.0526 (3)0.0316 (2)0.0044 (2)0.0012 (2)0.0104 (2)
O10.0446 (7)0.0512 (7)0.0485 (7)0.0098 (6)0.0006 (5)0.0002 (5)
N10.0289 (6)0.0345 (7)0.0311 (6)0.0019 (5)0.0023 (5)0.0027 (5)
N20.0289 (6)0.0350 (7)0.0354 (7)0.0063 (5)0.0027 (5)0.0005 (5)
C10.0295 (7)0.0312 (8)0.0269 (7)0.0038 (6)0.0021 (5)0.0010 (6)
C20.0258 (7)0.0286 (7)0.0298 (7)0.0023 (6)0.0000 (5)0.0022 (6)
C30.0297 (7)0.0331 (8)0.0286 (7)0.0013 (6)0.0038 (5)0.0001 (6)
C40.0464 (9)0.0410 (9)0.0347 (8)0.0080 (7)0.0020 (7)0.0044 (7)
C50.0568 (11)0.0489 (10)0.0433 (9)0.0172 (9)0.0076 (8)0.0057 (8)
C60.0423 (9)0.0503 (10)0.0570 (10)0.0196 (8)0.0006 (8)0.0013 (9)
C70.0345 (8)0.0406 (9)0.0466 (9)0.0065 (7)0.0036 (6)0.0031 (7)
C80.0293 (7)0.0288 (8)0.0341 (7)0.0018 (6)0.0005 (6)0.0026 (6)
C90.0314 (7)0.0288 (8)0.0314 (7)0.0001 (6)0.0001 (6)0.0007 (6)
C100.0358 (8)0.0439 (9)0.0299 (7)0.0073 (7)0.0017 (6)0.0022 (6)
C110.0366 (9)0.0367 (9)0.0556 (10)0.0018 (7)0.0006 (7)0.0073 (8)
C120.0406 (9)0.0459 (11)0.0701 (12)0.0062 (8)0.0151 (8)0.0027 (9)
C130.0518 (10)0.0521 (11)0.0487 (10)0.0047 (8)0.0186 (8)0.0046 (8)
C140.0475 (9)0.0463 (10)0.0363 (8)0.0073 (8)0.0046 (7)0.0008 (7)
C150.0351 (8)0.0324 (8)0.0352 (8)0.0072 (7)0.0003 (6)0.0032 (6)
C160.0502 (11)0.0774 (14)0.0609 (12)0.0236 (10)0.0197 (9)0.0053 (10)
Geometric parameters (Å, º) top
Cl1—C11.7476 (14)C11—C121.347 (3)
O1—C151.2354 (18)C12—C131.397 (3)
N1—C11.2978 (18)C13—C141.346 (2)
N1—C81.3704 (18)C14—C151.434 (2)
N2—C101.4651 (18)C3—H30.9300
N2—C111.3653 (19)C4—H40.9300
N2—C151.3934 (19)C5—H50.9300
C1—C21.4187 (18)C6—H60.9300
C2—C31.3612 (19)C10—H10A0.9700
C2—C101.506 (2)C10—H10B0.9700
C3—C91.4123 (19)C11—H110.9300
C4—C51.361 (2)C12—H120.9300
C4—C91.412 (2)C13—H130.9300
C5—C61.399 (2)C14—H140.9300
C6—C71.364 (2)C16—H16A0.9600
C7—C81.423 (2)C16—H16B0.9600
C7—C161.505 (3)C16—H16C0.9600
C8—C91.419 (2)
Cl1···O1i3.2706 (12)C14···C14ix3.401 (2)
Cl1···H10A2.8700C15···C3iv3.441 (2)
Cl1···H10Aii2.9200C15···C2iv3.456 (2)
Cl1···H16Biii3.1100C15···C33.331 (2)
Cl1···H10B2.8500C1···H6vi2.8600
O1···C23.2298 (17)C2···H6vi3.0000
O1···C2iv3.3375 (17)C3···H6vi3.0500
O1···C11iv3.286 (2)C3···H10Bvii3.0900
O1···Cl1v3.2706 (12)C8···H6vi2.9100
O1···H10B2.4300C9···H6vi3.0100
O1···H11iv2.5400C11···H33.0700
O1···H16Cvi2.8900C15···H32.8400
N1···C14vii3.448 (2)H3···N22.5100
N1···C5vi3.382 (2)H3···C113.0700
N2···C9iv3.4391 (18)H3···C152.8400
N1···H16B2.6600H3···H42.5200
N1···H5vi2.7200H3···H14ix2.5500
N1···H6vi2.8700H4···H32.5200
N1···H16A2.9400H5···N1viii2.7200
N2···H32.5100H6···H16C2.3600
C1···C14vii3.511 (2)H6···N1viii2.8700
C2···C15vii3.456 (2)H6···C1viii2.8600
C2···O13.2298 (17)H6···C2viii3.0000
C2···O1vii3.3375 (17)H6···C3viii3.0500
C3···C15vii3.441 (2)H6···C8viii2.9100
C3···C113.545 (2)H6···C9viii3.0100
C3···C153.331 (2)H10A···Cl12.8700
C4···C11vii3.599 (2)H10A···H112.3200
C5···N1viii3.382 (2)H10A···Cl1ii2.9200
C6···C8viii3.519 (2)H10B···Cl12.8500
C8···C13vii3.574 (2)H10B···O12.4300
C8···C6vi3.519 (2)H10B···C3iv3.0900
C9···C11vii3.582 (2)H11···H10A2.3200
C9···N2vii3.4391 (18)H11···O1vii2.5400
C11···C9iv3.582 (2)H14···H3ix2.5500
C11···C33.545 (2)H16A···N12.9400
C11···C4iv3.599 (2)H16B···N12.6600
C11···O1vii3.286 (2)H16B···Cl1iii3.1100
C13···C8iv3.574 (2)H16C···H62.3600
C14···N1iv3.448 (2)H16C···O1viii2.8900
C14···C1iv3.511 (2)
C1—N1—C8117.64 (12)O1—C15—C14125.40 (14)
C10—N2—C11119.57 (12)N2—C15—C14114.40 (13)
C10—N2—C15117.37 (12)C2—C3—H3119.00
C11—N2—C15123.06 (12)C9—C3—H3119.00
Cl1—C1—N1115.89 (10)C5—C4—H4120.00
Cl1—C1—C2117.53 (10)C9—C4—H4120.00
N1—C1—C2126.57 (12)C4—C5—H5120.00
C1—C2—C3115.54 (12)C6—C5—H5120.00
C1—C2—C10120.44 (12)C5—C6—H6119.00
C3—C2—C10124.02 (12)C7—C6—H6119.00
C2—C3—C9121.44 (13)N2—C10—H10A109.00
C5—C4—C9119.52 (14)N2—C10—H10B109.00
C4—C5—C6120.60 (16)C2—C10—H10A109.00
C5—C6—C7122.57 (16)C2—C10—H10B109.00
C6—C7—C8117.80 (15)H10A—C10—H10B108.00
C6—C7—C16121.89 (15)N2—C11—H11120.00
C8—C7—C16120.31 (14)C12—C11—H11119.00
N1—C8—C7118.73 (13)C11—C12—H12121.00
N1—C8—C9121.30 (12)C13—C12—H12121.00
C7—C8—C9119.96 (13)C12—C13—H13120.00
C3—C9—C4122.95 (13)C14—C13—H13120.00
C3—C9—C8117.51 (13)C13—C14—H14119.00
C4—C9—C8119.54 (13)C15—C14—H14119.00
N2—C10—C2113.33 (12)C7—C16—H16A110.00
N2—C11—C12121.03 (15)C7—C16—H16B109.00
C11—C12—C13118.75 (16)C7—C16—H16C109.00
C12—C13—C14120.86 (16)H16A—C16—H16B109.00
C13—C14—C15121.87 (15)H16A—C16—H16C109.00
O1—C15—N2120.20 (13)H16B—C16—H16C109.00
C8—N1—C1—Cl1177.53 (10)C2—C3—C9—C80.9 (2)
C8—N1—C1—C20.9 (2)C9—C4—C5—C60.4 (3)
C1—N1—C8—C7178.16 (13)C5—C4—C9—C3178.26 (15)
C1—N1—C8—C90.5 (2)C5—C4—C9—C80.9 (2)
C11—N2—C10—C297.14 (15)C4—C5—C6—C71.0 (3)
C15—N2—C10—C283.63 (16)C5—C6—C7—C81.7 (3)
C10—N2—C11—C12178.31 (15)C5—C6—C7—C16178.65 (17)
C15—N2—C11—C120.9 (2)C6—C7—C8—N1177.62 (14)
C10—N2—C15—O12.8 (2)C6—C7—C8—C91.1 (2)
C10—N2—C15—C14177.33 (13)C16—C7—C8—N12.1 (2)
C11—N2—C15—O1177.96 (14)C16—C7—C8—C9179.25 (14)
C11—N2—C15—C141.9 (2)N1—C8—C9—C30.4 (2)
Cl1—C1—C2—C3178.03 (10)N1—C8—C9—C4178.84 (13)
Cl1—C1—C2—C102.45 (18)C7—C8—C9—C3179.02 (13)
N1—C1—C2—C30.4 (2)C7—C8—C9—C40.2 (2)
N1—C1—C2—C10179.10 (14)N2—C11—C12—C130.4 (3)
C1—C2—C3—C90.6 (2)C11—C12—C13—C140.5 (3)
C10—C2—C3—C9179.96 (14)C12—C13—C14—C150.6 (3)
C1—C2—C10—N2179.27 (12)C13—C14—C15—O1178.08 (16)
C3—C2—C10—N20.2 (2)C13—C14—C15—N21.7 (2)
C2—C3—C9—C4178.28 (14)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+1, y+1/2, z+1/2; (ix) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.512.8560 (18)103
C11—H11···O1vii0.932.543.286 (2)137
C6—H6···Cg1viii0.932.613.4457 (18)150
Symmetry codes: (vii) x, y+1/2, z+1/2; (viii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClN2O
Mr284.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.1513 (2), 9.3917 (2), 14.1430 (2)
β (°) 90.948 (2)
V3)1348.17 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.931, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
17649, 2511, 2088
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.10
No. of reflections2511
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.512.8560 (18)103
C11—H11···O1i0.932.543.286 (2)137
C6—H6···Cg1ii0.932.613.4457 (18)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the FIST programme for the data collection on the Oxford single-crystal diffractometer at SSCU, IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanerjee, S. & Sereda, G. (2009). Tetrahedron Lett. 50, 6959–6962.  Web of Science CrossRef CAS Google Scholar
First citationClegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433–o1436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDandepally, S. R. & Williams, A. L. (2009). Tetrahedron Lett. 50, 1395–1398.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383–o385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. 51, 2309–2311.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds