organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2,4,6-Tri­hydroxy­benzyl­­idene)isonicotinohydrazide sesquihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 March 2010; accepted 23 April 2010; online 28 April 2010)

In the title compound, C13H11N3O4·1.5H2O, the pyridine ring forms a dihedral angle of 1.50 (6)° with the benzene ring. An intra­molecular O—H⋯N hydrogen bond forms a six-membered ring with an S(6) ring motif. In the crystal structure, one water mol­ecule is disordered over two positions around an inversion centre with site-occupancy factors of 0.5. Inter­molecular O—H⋯N, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds consolidate the structure into a three dimensional network. A ππ stacking inter­action with a centroid–centroid distance of 3.5949 (7) Å is also present.

Related literature

For biological applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]). For the biological activity of Schiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For related structures, see: Naveenkumar et al. (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540-o2541.]); Naveenkumar, Sadikun, Ibrahim, Quah & Fun (2010[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o291.]); Naveenkumar, Sadikun, Ibrahim, Yeap & Fun (2010[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o579.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O4·1.5H2O

  • Mr = 300.27

  • Monoclinic, P 21 /c

  • a = 8.4639 (1) Å

  • b = 13.2279 (2) Å

  • c = 13.4363 (2) Å

  • β = 120.037 (1)°

  • V = 1302.30 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.48 × 0.46 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.977

  • 14912 measured reflections

  • 3795 independent reflections

  • 3090 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.05

  • 3795 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4 0.76 2.05 2.8134 (13) 176
O1W—H2W1⋯O2i 0.82 2.09 2.8886 (14) 165
O2W—H1W2⋯O4ii 0.83 2.06 2.864 (3) 162
O2W—H2W2⋯O4 0.83 2.17 2.844 (3) 139
N2—H1N2⋯O1Wiii 0.87 (2) 1.99 (2) 2.8548 (13) 170 (3)
O1—H1O1⋯N1 0.87 (3) 1.78 (2) 2.5696 (15) 149 (2)
O2—H1O2⋯N3iv 0.87 (3) 1.82 (3) 2.6470 (14) 158 (3)
O3—H1O3⋯O1v 0.72 (3) 2.16 (3) 2.7579 (15) 142 (3)
O3—H1O3⋯O2Wvi 0.72 (3) 2.40 (3) 2.970 (2) 138 (3)
C4—H4A⋯O2Wvi 0.984 (18) 2.290 (17) 3.135 (2) 143.3 (14)
C7—H7A⋯O1Wiii 0.993 (19) 2.539 (19) 3.3185 (16) 135.2 (14)
C10—H10A⋯O1Wiii 0.996 (18) 2.355 (18) 3.3063 (17) 159.4 (13)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+2, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of a current work of synthesis of (E)-N'-(substituted-benzylidene)isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), contains one (E)-N'-(2,4,6-trihydroxybenzylidene) isonicotinohydrazide and one and a half water molecules. The partially-occupied water molecule (O2W, H1W2, H2W2) is disordered across a crystallographic inversion center. The pyridine ring (C9–C11/N3/C12/C13) is essentially planar with a maximum deviation of 0.006 (1) Å at atom C9 and forms a dihedral angle of 1.51 (6)° with the benzene ring (C1–C6). An intramolecular O1—H1O1···N1 hydrogen bond forms a six-membered ring with an S(6) ring motif (Bernstein et al., 1995). The bond lengths are within normal values (Allen et al., 1987) and are comparable to those observed for closely related structures (Naveenkumar et al., 2009; Naveenkumar, Sadikun, Ibrahim, Quah & Fun, 2010; Naveenkumar, Sadikun, Ibrahim, Yeap & Fun, 2010; Shi, 2005).

In the crystal packing (Fig. 2), intermolecular O1W—H1W1···O4, O1W—H2W1···O2, O2W—H1W2···O4, O2W—H2W2···O4, N2—H1N2···O1W, O2—H1O2···N3, O3—H1O3···O1, O3—H1O3···O2W, C4—H4A···O2W, C7—H7A···O1W and C10—H10A···O1W hydrogen bonds (Table 1) consolidate the structure into a three dimensional network. The crystal structure is further stabilized by ππ stacking interactions involving the pyridine (Cg1) and benzene (Cg2) rings with a centroid–centroid distance of 3.5949 (7) Å (symmetry code = -1+x, y, z).

Related literature top

For biological applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000). For the biological activity of Schiff bases, see: Kahwa et al. (1986). For related structures, see: Naveenkumar et al. (2009); Naveenkumar, Sadikun, Ibrahim, Quah & Fun (2010); Naveenkumar, Sadikun, Ibrahim, Yeap & Fun (2010); Shi (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Lourenco et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid derivative was prepared following the procedure by Lourenco et al. (2008). (E)-N'-(2,4,6-trihydroxybenzylidene)isonicotinohydrazide hydrate was prepared by reaction between the 2,4,6-trihydroxy benzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1 to 3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue after being purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. Colourless single crystals suitable for X-ray analysis were obtained by recrystallization with methanol.

Refinement top

All the H atoms were located from a difference Fourier map. H1W1, H2W1, H1W2 and H2W2 were allowed to ride on their parent atoms to which they were attached, with Uiso(H) = 1.5Ueq(parent atom). The remaining H were refined freely. [O—H = 0.74 (3)–0.974 (10) Å, N—H = 0.88 (2) Å and C—H = 0.895 (19)–1.025 (18) Å]. The partially-occupied disordered water molecule was fixed at 50% occupancy in the final refinement.

Structure description top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of a current work of synthesis of (E)-N'-(substituted-benzylidene)isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), contains one (E)-N'-(2,4,6-trihydroxybenzylidene) isonicotinohydrazide and one and a half water molecules. The partially-occupied water molecule (O2W, H1W2, H2W2) is disordered across a crystallographic inversion center. The pyridine ring (C9–C11/N3/C12/C13) is essentially planar with a maximum deviation of 0.006 (1) Å at atom C9 and forms a dihedral angle of 1.51 (6)° with the benzene ring (C1–C6). An intramolecular O1—H1O1···N1 hydrogen bond forms a six-membered ring with an S(6) ring motif (Bernstein et al., 1995). The bond lengths are within normal values (Allen et al., 1987) and are comparable to those observed for closely related structures (Naveenkumar et al., 2009; Naveenkumar, Sadikun, Ibrahim, Quah & Fun, 2010; Naveenkumar, Sadikun, Ibrahim, Yeap & Fun, 2010; Shi, 2005).

In the crystal packing (Fig. 2), intermolecular O1W—H1W1···O4, O1W—H2W1···O2, O2W—H1W2···O4, O2W—H2W2···O4, N2—H1N2···O1W, O2—H1O2···N3, O3—H1O3···O1, O3—H1O3···O2W, C4—H4A···O2W, C7—H7A···O1W and C10—H10A···O1W hydrogen bonds (Table 1) consolidate the structure into a three dimensional network. The crystal structure is further stabilized by ππ stacking interactions involving the pyridine (Cg1) and benzene (Cg2) rings with a centroid–centroid distance of 3.5949 (7) Å (symmetry code = -1+x, y, z).

For biological applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000). For the biological activity of Schiff bases, see: Kahwa et al. (1986). For related structures, see: Naveenkumar et al. (2009); Naveenkumar, Sadikun, Ibrahim, Quah & Fun (2010); Naveenkumar, Sadikun, Ibrahim, Yeap & Fun (2010); Shi (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Lourenco et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed line indicates the intramolecular hydrogen bond. Atom O2WA was generated by symmetry code -x+1, -y+1, -z.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(E)-N'-(2,4,6-Trihydroxybenzylidene)isonicotinohydrazide sesquihydrate top
Crystal data top
C13H11N3O4·1.5H2OF(000) = 628
Mr = 300.27Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6535 reflections
a = 8.4639 (1) Åθ = 2.3–30.0°
b = 13.2279 (2) ŵ = 0.12 mm1
c = 13.4363 (2) ÅT = 100 K
β = 120.037 (1)°Block, brown
V = 1302.30 (3) Å30.48 × 0.46 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3795 independent reflections
Radiation source: fine-focus sealed tube3090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 119
Tmin = 0.944, Tmax = 0.977k = 1618
14912 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.086P)2 + 0.1988P]
where P = (Fo2 + 2Fc2)/3
3795 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C13H11N3O4·1.5H2OV = 1302.30 (3) Å3
Mr = 300.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4639 (1) ŵ = 0.12 mm1
b = 13.2279 (2) ÅT = 100 K
c = 13.4363 (2) Å0.48 × 0.46 × 0.19 mm
β = 120.037 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3795 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3090 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.977Rint = 0.025
14912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
3795 reflectionsΔρmin = 0.38 e Å3
244 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1W0.52172 (13)0.55973 (6)0.31668 (9)0.0306 (2)
H1W10.47840.52430.26490.046*
H2W10.51740.51820.36040.046*
O2W0.4201 (3)0.47492 (16)0.05523 (19)0.0394 (5)0.50
H1W20.49910.50750.06090.059*0.50
H2W20.45650.46230.01320.059*0.50
O21.48904 (12)0.38723 (8)0.43699 (8)0.0293 (2)
O31.05057 (15)0.11707 (7)0.32046 (9)0.0306 (2)
O40.34364 (13)0.43232 (6)0.12386 (8)0.0280 (2)
C10.99950 (15)0.38970 (8)0.31225 (10)0.0201 (2)
C21.17860 (16)0.42239 (9)0.35826 (11)0.0232 (3)
C31.31689 (15)0.35102 (9)0.39166 (10)0.0209 (2)
C41.27822 (16)0.24762 (9)0.37910 (10)0.0216 (2)
C51.09857 (16)0.21590 (8)0.33268 (9)0.0193 (2)
C60.95461 (15)0.28593 (8)0.29762 (9)0.0169 (2)
C70.76941 (16)0.25025 (8)0.25037 (9)0.0188 (2)
C80.32356 (16)0.34043 (8)0.13119 (10)0.0192 (2)
C90.13728 (15)0.29709 (8)0.08915 (9)0.0168 (2)
C100.09871 (15)0.19404 (8)0.07857 (10)0.0185 (2)
C110.08123 (16)0.16375 (9)0.03428 (10)0.0204 (2)
C120.18124 (17)0.32760 (10)0.01401 (11)0.0247 (3)
C130.00643 (17)0.36473 (9)0.05683 (11)0.0229 (2)
N10.63769 (13)0.31447 (7)0.21721 (8)0.0204 (2)
N20.46426 (13)0.27539 (8)0.17637 (8)0.0190 (2)
N30.22009 (14)0.22835 (8)0.00221 (8)0.0223 (2)
O10.86777 (13)0.46088 (7)0.28226 (10)0.0343 (3)
H2A1.208 (2)0.4987 (14)0.3659 (15)0.040 (4)*
H4A1.371 (3)0.1941 (13)0.4038 (14)0.034 (4)*
H7A0.751 (2)0.1759 (14)0.2465 (14)0.038 (5)*
H10A0.191 (2)0.1392 (12)0.1008 (14)0.030 (4)*
H11A0.111 (2)0.0914 (12)0.0240 (14)0.031 (4)*
H12A0.275 (3)0.3696 (13)0.0081 (15)0.038 (4)*
H13A0.015 (3)0.4324 (14)0.0657 (15)0.040 (5)*
H1N20.456 (3)0.2097 (15)0.1781 (16)0.042 (5)*
H1O10.763 (3)0.4296 (17)0.2534 (18)0.067 (7)*
H1O21.567 (4)0.3379 (19)0.460 (2)0.082 (8)*
H1O31.115 (4)0.083 (2)0.318 (2)0.091 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0255 (5)0.0203 (4)0.0424 (6)0.0037 (3)0.0141 (4)0.0053 (4)
O2W0.0331 (11)0.0438 (12)0.0422 (12)0.0075 (9)0.0195 (10)0.0002 (9)
O20.0091 (4)0.0362 (5)0.0367 (5)0.0001 (3)0.0070 (4)0.0033 (4)
O30.0389 (6)0.0164 (4)0.0446 (6)0.0028 (4)0.0270 (5)0.0006 (4)
O40.0243 (5)0.0181 (4)0.0412 (5)0.0043 (3)0.0159 (4)0.0009 (3)
C10.0129 (5)0.0171 (5)0.0280 (6)0.0008 (4)0.0084 (5)0.0002 (4)
C20.0152 (5)0.0197 (5)0.0339 (6)0.0024 (4)0.0116 (5)0.0053 (4)
C30.0104 (5)0.0295 (6)0.0202 (5)0.0005 (4)0.0056 (4)0.0026 (4)
C40.0172 (6)0.0261 (6)0.0211 (5)0.0076 (4)0.0092 (5)0.0031 (4)
C50.0219 (6)0.0181 (5)0.0193 (5)0.0026 (4)0.0114 (5)0.0009 (4)
C60.0137 (5)0.0174 (5)0.0169 (5)0.0011 (4)0.0057 (4)0.0002 (4)
C70.0178 (5)0.0200 (5)0.0170 (5)0.0042 (4)0.0076 (4)0.0005 (4)
C80.0161 (5)0.0204 (5)0.0195 (5)0.0037 (4)0.0078 (4)0.0004 (4)
C90.0139 (5)0.0194 (5)0.0163 (5)0.0016 (4)0.0068 (4)0.0007 (4)
C100.0132 (5)0.0200 (5)0.0201 (5)0.0012 (4)0.0067 (4)0.0003 (4)
C110.0146 (5)0.0242 (6)0.0206 (5)0.0041 (4)0.0073 (4)0.0024 (4)
C120.0169 (6)0.0289 (6)0.0277 (6)0.0051 (5)0.0109 (5)0.0052 (5)
C130.0209 (6)0.0202 (5)0.0278 (6)0.0017 (4)0.0124 (5)0.0035 (4)
N10.0117 (4)0.0254 (5)0.0200 (5)0.0053 (4)0.0048 (4)0.0015 (4)
N20.0114 (4)0.0199 (5)0.0215 (5)0.0052 (3)0.0052 (4)0.0005 (3)
N30.0135 (4)0.0324 (5)0.0195 (5)0.0008 (4)0.0073 (4)0.0004 (4)
O10.0166 (5)0.0175 (4)0.0695 (7)0.0026 (3)0.0221 (5)0.0055 (4)
Geometric parameters (Å, º) top
O1W—H1W10.7630C6—C71.4445 (15)
O1W—H2W10.8193C7—N11.2908 (15)
O2W—O2Wi1.569 (4)C7—H7A0.994 (18)
O2W—H1W20.8308C8—N21.3428 (15)
O2W—H2W20.8278C8—C91.4973 (15)
O2—C31.3546 (14)C9—C101.3923 (15)
O2—H1O20.87 (3)C9—C131.3928 (16)
O3—C51.3544 (14)C10—C111.3881 (15)
O3—H1O30.72 (3)C10—H10A0.998 (17)
O4—C81.2380 (13)C11—N31.3380 (15)
C1—O11.3573 (14)C11—H11A0.981 (16)
C1—C21.3888 (16)C12—N31.3434 (16)
C1—C61.4115 (15)C12—C131.3817 (17)
C2—C31.3918 (16)C12—H12A0.892 (19)
C2—H2A1.033 (18)C13—H13A0.908 (18)
C3—C41.3968 (17)N1—N21.3845 (13)
C4—C51.3884 (17)N2—H1N20.87 (2)
C4—H4A0.984 (18)O1—H1O10.87 (3)
C5—C61.4107 (15)
H1W1—O1W—H2W193.9C6—C7—H7A117.1 (10)
O2Wi—O2W—H1W261.0O4—C8—N2122.62 (11)
O2Wi—O2W—H2W250.9O4—C8—C9120.43 (10)
H1W2—O2W—H2W2109.7N2—C8—C9116.95 (9)
C3—O2—H1O2110.3 (18)C10—C9—C13118.27 (11)
C5—O3—H1O3115 (2)C10—C9—C8124.21 (10)
O1—C1—C2117.87 (10)C13—C9—C8117.51 (10)
O1—C1—C6120.62 (10)C11—C10—C9118.50 (11)
C2—C1—C6121.50 (10)C11—C10—H10A116.6 (9)
C1—C2—C3119.12 (10)C9—C10—H10A124.9 (9)
C1—C2—H2A120.4 (10)N3—C11—C10123.51 (11)
C3—C2—H2A120.4 (10)N3—C11—H11A117.2 (10)
O2—C3—C2116.54 (11)C10—C11—H11A119.3 (10)
O2—C3—C4122.33 (11)N3—C12—C13122.98 (11)
C2—C3—C4121.13 (11)N3—C12—H12A116.4 (11)
C5—C4—C3119.20 (10)C13—C12—H12A120.7 (11)
C5—C4—H4A116.4 (10)C12—C13—C9119.18 (11)
C3—C4—H4A124.4 (10)C12—C13—H13A120.3 (12)
O3—C5—C4122.73 (11)C9—C13—H13A120.5 (12)
O3—C5—C6115.90 (10)C7—N1—N2116.89 (10)
C4—C5—C6121.35 (10)C8—N2—N1117.66 (10)
C5—C6—C1117.70 (10)C8—N2—H1N2126.0 (13)
C5—C6—C7119.87 (10)N1—N2—H1N2116.2 (13)
C1—C6—C7122.43 (10)C11—N3—C12117.55 (10)
N1—C7—C6119.76 (10)C1—O1—H1O1107.7 (15)
N1—C7—H7A123.1 (10)
O1—C1—C2—C3178.88 (11)C1—C6—C7—N11.73 (16)
C6—C1—C2—C30.63 (19)O4—C8—C9—C10170.29 (11)
C1—C2—C3—O2179.37 (10)N2—C8—C9—C109.79 (16)
C1—C2—C3—C40.32 (19)O4—C8—C9—C138.54 (16)
O2—C3—C4—C5179.54 (10)N2—C8—C9—C13171.38 (10)
C2—C3—C4—C50.15 (18)C13—C9—C10—C111.26 (16)
C3—C4—C5—O3178.26 (10)C8—C9—C10—C11177.57 (10)
C3—C4—C5—C60.26 (17)C9—C10—C11—N30.76 (17)
O3—C5—C6—C1178.08 (10)N3—C12—C13—C90.27 (19)
C4—C5—C6—C10.54 (16)C10—C9—C13—C121.03 (17)
O3—C5—C6—C70.98 (15)C8—C9—C13—C12177.87 (10)
C4—C5—C6—C7179.60 (10)C6—C7—N1—N2177.87 (9)
O1—C1—C6—C5178.77 (10)O4—C8—N2—N10.86 (17)
C2—C1—C6—C50.73 (17)C9—C8—N2—N1179.06 (9)
O1—C1—C6—C70.27 (17)C7—N1—N2—C8173.68 (10)
C2—C1—C6—C7179.76 (11)C10—C11—N3—C120.01 (17)
C5—C6—C7—N1179.26 (10)C13—C12—N3—C110.26 (18)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O40.762.052.8134 (13)176
O1W—H2W1···O2ii0.822.092.8886 (14)165
O2W—H1W2···O4i0.832.062.864 (3)162
O2W—H2W2···O40.832.172.844 (3)139
N2—H1N2···O1Wiii0.87 (2)1.99 (2)2.8548 (13)170 (3)
O1—H1O1···N10.87 (3)1.78 (2)2.5696 (15)149 (2)
O2—H1O2···N3iv0.87 (3)1.82 (3)2.6470 (14)158 (3)
O3—H1O3···O1v0.72 (3)2.16 (3)2.7579 (15)142 (3)
O3—H1O3···O2Wvi0.72 (3)2.40 (3)2.970 (2)138 (3)
C4—H4A···O2Wvi0.984 (18)2.290 (17)3.135 (2)143.3 (14)
C7—H7A···O1Wiii0.993 (19)2.539 (19)3.3185 (16)135.2 (14)
C10—H10A···O1Wiii0.996 (18)2.355 (18)3.3063 (17)159.4 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O4·1.5H2O
Mr300.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.4639 (1), 13.2279 (2), 13.4363 (2)
β (°) 120.037 (1)
V3)1302.30 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.48 × 0.46 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.944, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
14912, 3795, 3090
Rint0.025
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.05
No. of reflections3795
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O40.76002.05002.8134 (13)176.00
O1W—H2W1···O2i0.82002.09002.8886 (14)165.00
O2W—H1W2···O4ii0.83002.06002.864 (3)162.00
O2W—H2W2···O40.83002.17002.844 (3)139.00
N2—H1N2···O1Wiii0.87 (2)1.99 (2)2.8548 (13)170 (3)
O1—H1O1···N10.87 (3)1.78 (2)2.5696 (15)149 (2)
O2—H1O2···N3iv0.87 (3)1.82 (3)2.6470 (14)158 (3)
O3—H1O3···O1v0.72 (3)2.16 (3)2.7579 (15)142 (3)
O3—H1O3···O2Wvi0.72 (3)2.40 (3)2.970 (2)138 (3)
C4—H4A···O2Wvi0.984 (18)2.290 (17)3.135 (2)143.3 (14)
C7—H7A···O1Wiii0.993 (19)2.539 (19)3.3185 (16)135.2 (14)
C10—H10A···O1Wiii0.996 (18)2.355 (18)3.3063 (17)159.4 (13)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: C-7581-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the University Research Grant (1001/PFARMASI/815005). HKF and WSL thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). HSNK and WSL are grateful for the award of USM fellowships for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds