organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-2-[(2-hy­droxy­phenyl)­iminometh­yl]phenol

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 March 2010; accepted 1 April 2010; online 14 April 2010)

The title compound, C13H10ClNO2, exists in a trans configuration about the central C=N bond. The two benzene rings are almost coplanar, making a dihedral angle of 2.48 (10)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into chains along [101]. Short C⋯Cl contacts [3.584 (2)–3.646 (2) Å] are observed. A short intramolecular C—H⋯O contact occurs.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff bases and their applications, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Wei & Atwood (1998[Wei, P. & Atwood, D. A. (1998). Inorg. Chem. 37, 4934-4938.]). For related structures, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094-o3095.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m2269-m2270.]); Pu (2008[Pu, X.-H. (2008). Acta Cryst. E64, o1734.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO2

  • Mr = 247.67

  • Monoclinic, P 21

  • a = 4.6681 (9) Å

  • b = 18.509 (3) Å

  • c = 6.2118 (11) Å

  • β = 90.980 (4)°

  • V = 536.63 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.55 × 0.14 × 0.07 mm

Data collection
  • Bruker APEX Duo CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.834, Tmax = 0.976

  • 4593 measured reflections

  • 2680 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.119

  • S = 1.20

  • 2680 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1125 Friedel pairs

  • Flack parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.82 1.74 2.553 (2) 169
O2—H1O2⋯N1 0.82 1.86 2.602 (2) 149
C7—H7⋯O1 0.93 2.16 2.789 (3) 124
Symmetry code: (i) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We have been interested in synthesis of Schiff base ligands and their complexes (Eltayeb et al., 2007a,b) due to their applications such as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. The title compound was used to synthesis the chelated borate catalyst (Wei & Atwood, 1998). Herein we report the crystal structure of the title Schiff base ligand (I).

The molecule of (I) (Fig. 1), C13H10ClNO2, crystallizes in a trans configuration about the CN bond [1.312 (3) Å] with a torsion angle C1–N1–C7–C8 = -179.2 (2)°. The molecule is almost planar with a dihedral angle between the two benzene rings being 2.48 (10)°. The chloro and two hydroxy groups lie on the same plane with their attached benzene rings with the r.m.s. of 0.0105 (2) Å for the seven non H atoms (C1, C2, C3, C4, C5, C6 and O1) and 0.0129 (2) Å for the eight non H atoms (C8, C9, C10, C11, C12, C13, O2 and Cl1). An intramolecular O—H···N hydrogen bond between the imine N atom and one hydroxy group generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Pu, 2008).

In the crystal packing (Fig. 2) , O—H···O hydrogen bonds (Table 1) which formed between the two hydroxy O atoms link the molecules into into chains along the [101] direction. The crystal is consolidated by O—H···O hydrogen bonds (Table 1) and C···Cl [3.584 (2)–3.646 (2) Å] short contacts.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Dao et al. (2000); Eltayeb & Ahmed (2005a,b); Karthikeyan et al. (2006); Sriram et al. (2006); Wei & Atwood (1998). For related structures, see: Eltayeb et al. (2007a,b); Pu (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding 5-chloro-2-hydroxybenzaldehyde (0.312 g, 2 mmol) to the solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow-orange solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after a few days.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.82 Å and d(C—H) = 0.93 Å. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atoms. The highest residual electron density peak is located at 0.70 Å from C5 and the deepest hole is located at 0.05 Å from H1O2.

Structure description top

We have been interested in synthesis of Schiff base ligands and their complexes (Eltayeb et al., 2007a,b) due to their applications such as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. The title compound was used to synthesis the chelated borate catalyst (Wei & Atwood, 1998). Herein we report the crystal structure of the title Schiff base ligand (I).

The molecule of (I) (Fig. 1), C13H10ClNO2, crystallizes in a trans configuration about the CN bond [1.312 (3) Å] with a torsion angle C1–N1–C7–C8 = -179.2 (2)°. The molecule is almost planar with a dihedral angle between the two benzene rings being 2.48 (10)°. The chloro and two hydroxy groups lie on the same plane with their attached benzene rings with the r.m.s. of 0.0105 (2) Å for the seven non H atoms (C1, C2, C3, C4, C5, C6 and O1) and 0.0129 (2) Å for the eight non H atoms (C8, C9, C10, C11, C12, C13, O2 and Cl1). An intramolecular O—H···N hydrogen bond between the imine N atom and one hydroxy group generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Pu, 2008).

In the crystal packing (Fig. 2) , O—H···O hydrogen bonds (Table 1) which formed between the two hydroxy O atoms link the molecules into into chains along the [101] direction. The crystal is consolidated by O—H···O hydrogen bonds (Table 1) and C···Cl [3.584 (2)–3.646 (2) Å] short contacts.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff bases and their applications, see: Dao et al. (2000); Eltayeb & Ahmed (2005a,b); Karthikeyan et al. (2006); Sriram et al. (2006); Wei & Atwood (1998). For related structures, see: Eltayeb et al. (2007a,b); Pu (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis, showing chains running along the [101] direction. Hydrogen bonds are shown as dashed lines.
(E)-4-Chloro-2-[(2-hydroxyphenylimino)methyl]phenol top
Crystal data top
C13H10ClNO2F(000) = 256
Mr = 247.67Dx = 1.533 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2680 reflections
a = 4.6681 (9) Åθ = 4.4–30.0°
b = 18.509 (3) ŵ = 0.34 mm1
c = 6.2118 (11) ÅT = 100 K
β = 90.980 (4)°Needle, yellow
V = 536.63 (17) Å30.55 × 0.14 × 0.07 mm
Z = 2
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
2680 independent reflections
Radiation source: sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 30.0°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.834, Tmax = 0.976k = 2426
4593 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.0404P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
2680 reflectionsΔρmax = 0.47 e Å3
154 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1125 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C13H10ClNO2V = 536.63 (17) Å3
Mr = 247.67Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.6681 (9) ŵ = 0.34 mm1
b = 18.509 (3) ÅT = 100 K
c = 6.2118 (11) Å0.55 × 0.14 × 0.07 mm
β = 90.980 (4)°
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
2680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2569 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.976Rint = 0.023
4593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.47 e Å3
S = 1.20Δρmin = 0.47 e Å3
2680 reflectionsAbsolute structure: Flack (1983), 1125 Friedel pairs
154 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02845 (11)1.08595 (3)0.36240 (8)0.01689 (14)
O11.1428 (4)0.82828 (9)0.5209 (2)0.0167 (3)
H1O11.28170.83790.59830.025*
O20.5318 (4)0.86922 (9)0.2123 (2)0.0151 (3)
H1O20.65500.84630.14620.018*
N10.8674 (4)0.83076 (10)0.1062 (3)0.0116 (3)
C11.0806 (4)0.78021 (11)0.1679 (3)0.0113 (4)
C21.2187 (4)0.77923 (11)0.3724 (3)0.0119 (4)
C31.4270 (5)0.72625 (12)0.4139 (3)0.0144 (4)
H31.51360.72360.54960.017*
C41.5066 (5)0.67719 (12)0.2539 (4)0.0157 (4)
H41.64810.64300.28280.019*
C51.3732 (5)0.67964 (12)0.0506 (4)0.0147 (4)
H51.42550.64710.05590.018*
C61.1629 (5)0.73071 (12)0.0089 (3)0.0140 (4)
H61.07470.73230.12640.017*
C70.7386 (5)0.87972 (12)0.2228 (3)0.0122 (4)
H70.78860.88450.36770.015*
C80.5237 (5)0.92579 (11)0.1321 (3)0.0114 (4)
C90.4240 (5)0.91833 (11)0.0859 (3)0.0115 (4)
C100.2019 (5)0.96567 (12)0.1572 (3)0.0132 (4)
H100.13280.96220.29810.016*
C110.0865 (5)1.01690 (12)0.0213 (3)0.0136 (4)
H110.05721.04760.07200.016*
C120.1857 (5)1.02276 (11)0.1934 (3)0.0127 (4)
C130.4000 (5)0.97834 (12)0.2706 (3)0.0124 (4)
H130.46410.98250.41260.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0209 (3)0.0156 (2)0.0141 (2)0.00493 (18)0.00206 (15)0.0037 (2)
O10.0172 (8)0.0217 (8)0.0111 (7)0.0046 (6)0.0046 (5)0.0049 (6)
O20.0166 (8)0.0178 (8)0.0108 (7)0.0039 (5)0.0021 (5)0.0036 (6)
N10.0124 (8)0.0118 (8)0.0106 (8)0.0001 (6)0.0010 (5)0.0005 (6)
C10.0108 (9)0.0113 (9)0.0116 (9)0.0006 (7)0.0013 (6)0.0001 (7)
C20.0120 (9)0.0139 (9)0.0098 (9)0.0003 (6)0.0006 (6)0.0006 (7)
C30.0148 (10)0.0187 (11)0.0097 (9)0.0017 (7)0.0025 (6)0.0017 (8)
C40.0143 (10)0.0143 (10)0.0183 (11)0.0024 (7)0.0012 (7)0.0015 (8)
C50.0157 (10)0.0145 (10)0.0140 (10)0.0002 (7)0.0012 (7)0.0013 (8)
C60.0152 (10)0.0154 (10)0.0113 (10)0.0010 (7)0.0011 (7)0.0025 (7)
C70.0117 (9)0.0138 (9)0.0111 (9)0.0001 (6)0.0000 (6)0.0000 (7)
C80.0120 (9)0.0128 (9)0.0092 (9)0.0002 (6)0.0012 (6)0.0003 (7)
C90.0126 (10)0.0130 (9)0.0090 (9)0.0001 (7)0.0002 (6)0.0004 (7)
C100.0155 (10)0.0157 (9)0.0083 (9)0.0009 (7)0.0011 (7)0.0016 (7)
C110.0142 (10)0.0134 (9)0.0132 (10)0.0006 (7)0.0008 (6)0.0016 (8)
C120.0143 (10)0.0121 (9)0.0117 (9)0.0007 (7)0.0017 (6)0.0012 (8)
C130.0138 (10)0.0155 (10)0.0077 (9)0.0011 (7)0.0001 (6)0.0005 (7)
Geometric parameters (Å, º) top
Cl1—C121.742 (2)C5—C61.384 (3)
O1—C21.346 (3)C5—H50.9300
O1—H1O10.8200C6—H60.9300
O2—C91.308 (3)C7—C81.425 (3)
O2—H1O20.8200C7—H70.9300
N1—C71.312 (3)C8—C131.427 (3)
N1—C11.414 (3)C8—C91.431 (3)
C1—C61.405 (3)C9—C101.422 (3)
C1—C21.415 (3)C10—C111.385 (3)
C2—C31.402 (3)C10—H100.9300
C3—C41.401 (3)C11—C121.408 (3)
C3—H30.9300C11—H110.9300
C4—C51.399 (3)C12—C131.375 (3)
C4—H40.9300C13—H130.9300
C2—O1—H1O1109.5N1—C7—C8121.39 (19)
C9—O2—H1O2109.5N1—C7—H7119.3
C7—N1—C1129.38 (18)C8—C7—H7119.3
C6—C1—N1116.14 (18)C7—C8—C13117.29 (18)
C6—C1—C2119.79 (18)C7—C8—C9122.13 (19)
N1—C1—C2124.01 (19)C13—C8—C9120.52 (18)
O1—C2—C3122.39 (18)O2—C9—C10121.83 (18)
O1—C2—C1119.04 (18)O2—C9—C8120.86 (18)
C3—C2—C1118.56 (19)C10—C9—C8117.30 (18)
C4—C3—C2120.96 (19)C11—C10—C9121.41 (18)
C4—C3—H3119.5C11—C10—H10119.3
C2—C3—H3119.5C9—C10—H10119.3
C5—C4—C3120.0 (2)C10—C11—C12120.33 (19)
C5—C4—H4120.0C10—C11—H11119.8
C3—C4—H4120.0C12—C11—H11119.8
C6—C5—C4119.6 (2)C13—C12—C11120.7 (2)
C6—C5—H5120.2C13—C12—Cl1120.17 (16)
C4—C5—H5120.2C11—C12—Cl1119.16 (17)
C5—C6—C1121.0 (2)C12—C13—C8119.77 (19)
C5—C6—H6119.5C12—C13—H13120.1
C1—C6—H6119.5C8—C13—H13120.1
C7—N1—C1—C6175.5 (2)N1—C7—C8—C94.0 (3)
C7—N1—C1—C27.2 (4)C7—C8—C9—O21.3 (3)
C6—C1—C2—O1178.20 (19)C13—C8—C9—O2178.44 (19)
N1—C1—C2—O11.0 (3)C7—C8—C9—C10177.9 (2)
C6—C1—C2—C32.8 (3)C13—C8—C9—C100.8 (3)
N1—C1—C2—C3180.0 (2)O2—C9—C10—C11179.1 (2)
O1—C2—C3—C4178.3 (2)C8—C9—C10—C110.1 (3)
C1—C2—C3—C42.8 (3)C9—C10—C11—C120.6 (3)
C2—C3—C4—C51.4 (3)C10—C11—C12—C130.6 (3)
C3—C4—C5—C60.0 (3)C10—C11—C12—Cl1178.08 (17)
C4—C5—C6—C10.1 (3)C11—C12—C13—C80.1 (3)
N1—C1—C6—C5178.9 (2)Cl1—C12—C13—C8178.79 (15)
C2—C1—C6—C51.5 (3)C7—C8—C13—C12178.1 (2)
C1—N1—C7—C8179.2 (2)C9—C8—C13—C120.8 (3)
N1—C7—C8—C13178.77 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.821.742.553 (2)169
O2—H1O2···N10.821.862.602 (2)149
C7—H7···O10.932.162.789 (3)124
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10ClNO2
Mr247.67
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.6681 (9), 18.509 (3), 6.2118 (11)
β (°) 90.980 (4)
V3)536.63 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.55 × 0.14 × 0.07
Data collection
DiffractometerBruker APEX Duo CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.834, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
4593, 2680, 2569
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.119, 1.20
No. of reflections2680
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.47
Absolute structureFlack (1983), 1125 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.821.742.553 (2)169
O2—H1O2···N10.821.862.602 (2)149
C7—H7···O10.932.162.789 (3)124
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

On study leave from Department of Chemistry, International University of Africa, Khartoum, Sudan, e-mail: nasertaha90@hotmail.com.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (PKIMIA/815002, and PKIMIA/811120). NEE would like to acknowledge Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094–o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m2269–m2270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPu, X.-H. (2008). Acta Cryst. E64, o1734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWei, P. & Atwood, D. A. (1998). Inorg. Chem. 37, 4934–4938.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds