organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Di­methyl-2,3-di­hydro-1H-1,4-diazepin-4-ium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 April 2010; accepted 22 April 2010; online 28 April 2010)

In the cation of the title compound, C7H13N2+·C6H2N3O7, the seven-membered 1,4-diazepine ring forms a twist chair conformation. The two o-nitro groups in the anion are twisted by 35.0 (7) and 36.0 (9)° from the benzene ring. In the crystal, N—H⋯O hydrogen bonds between the cation and anion along with weak C—H⋯O hydrogen bonds produce chains along the b axis. C—H⋯O hydrogen bonds connecting the chains are also present.

Related literature

For biological applications of 1,4-diazepine derivatives, see: Andrews et al. (2001[Andrews, I. P., Atkins, R. J., Badham, R. F., Bellingham, R. K., Breen, G. F., Carey, J. S., Etridge, S. K., Haynes, J. F., Hussain, N., Morgan, D. O., Share, A. C., Smith, S. A. C., Walsgore, T. C. & Wells, A. S. (2001). Tetrahedron Lett. 42, 4915-4917.]); Block et al. (1989[Block, M. G., DiPardo, R. M., Evans, B. E., Rittle, K. E., Witter, W. L., Veber, D. F., Anderson, P. S. & Freidinger, R. M. (1989). J. Med. Chem. 32, 13-16.]); Carp (1999[Carp, G. M. (1999). J. Org. Chem. 64, 8156-8160.]); Moroz (2004[Moroz, G. (2004). J. Clin. Psychol. 65, 13-18.]). For treatment of CNS disorders, see: Walser et al. (1978[Walser, A., Benjamin, L. E., Flynn, T., Mason, C., Schwarts, R. & Fryer, R. I. (1978). J. Org. Chem. 43, 936-944.]). For pharmacological profiles, see: Carlos et al. (2004[Carlos, D. P., Alberto, M., Eduardo, A. & Javier, G. (2004). Synthesis, 16, 2697-2703.]). For related structures, see: Ferguson et al. (1990[Ferguson, G., Parvez, M., Lloyd, D., McNab, H. & Marshall, D. R. (1990). Acta Cryst. C46, 1248-1251.]); Harrison et al. (2005[Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810-o3812.]); Peeters et al. (1997[Peeters, O. M., Blaton, N. M. & de Ranter, C. J. (1997). Acta Cryst. C53, 95-97.]); Petcher et al. (1985[Petcher, T. J., Widmer, A., Maetzel, U. & Zeugner, H. (1985). Acta Cryst. C41, 909-912.]); Rashid et al. (2006[Rashid, N., Hasan, M., Yusof, N. M. & Yamin, B. M. (2006). Acta Cryst. E62, o5887-o5888.]); Yang et al. (2007[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Ding, T.-Z. (2007). Acta Cryst. E63, o188-o190.]). For density functional theory calculations, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.]); Hehre et al. (1986[Hehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C7H13N2+·C6H2N3O7−

  • Mr = 353.30

  • Monoclinic, P 21 /n

  • a = 7.2341 (3) Å

  • b = 27.6458 (6) Å

  • c = 8.2831 (3) Å

  • β = 110.611 (4)°

  • V = 1550.52 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 200 K

  • 0.45 × 0.37 × 0.24 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.962, Tmax = 0.970

  • 24773 measured reflections

  • 6353 independent reflections

  • 4493 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.150

  • S = 1.04

  • 6353 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1BC⋯O1A 0.88 1.98 2.8434 (13) 169
N2B—H2BC⋯O42Ai 0.88 2.09 2.9657 (14) 176
C5A—H5AA⋯O22Aii 0.95 2.54 3.4570 (16) 162
C7B—H7BA⋯O1A 0.98 2.55 3.2817 (17) 131
C1B—H1BA⋯O62A 0.99 2.45 3.2861 (15) 142
C1B—H1BB⋯O1Aiii 0.99 2.51 3.4477 (16) 158
C2B—H2BA⋯O61Aiv 0.99 2.48 3.0678 (16) 117
C2B—H2BB⋯O1Av 0.99 2.46 3.3135 (16) 144
C4B—H4BA⋯O42Ai 0.98 2.59 3.4692 (17) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y, z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4-Diazepine derivatives display tranquilizing, muscle-relaxant, anti-convulsant and sedative effects (Block et al., 1989). Today many diazepine derivatives are widely used as daytime sedatives, tranquilizers, sleep inducers, anesthetics, anticonvulsants and muscle relaxants (Moroz, 2004). The use of this class of compounds with therapeutic purposes is not only confined to anxiety and stress conditions, given that minor changes in their structures can produce a host of different biological activities, and novel applications are continuously emerging (Andrews et al., 2001; Carp, 1999). Five-atom heterocyclic fused benzodiazepine ring systems occupy a prominent place among drugs for treatment of CNS disorders (Walser et al., 1978). The introduction of alprazolam, triazolam and midazolam in chemotherapy has enhanced the interest in the preparation of novel five-atom heterocyclic fused benzodiazepine ring systems. Numerous analogs of alprazolam, triazolam and midazolam have been described, and they have shown different pharmacological profiles related to those of their parent compounds (Carlos et al., 2004). In continuation of our work on picrates of biologically important molecules, we have prepared a new picrate of 5,7-dimethyl-2,3-dihydro-1H-1,4-diazepine, C7H13N2+.C6H2N3O7-, and its crystal structure is reported.

The title compound, C13H15N5O7, crystallizes as a salt with one C7H13N2+.C6H2N3O7- cation-anion pair in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the benzene and 1,4-diazepine rings is 4.4 (6)°. In the cation, the seven membered 1,4-diazepine ring forms a twist chair conformation with Cs asymmetry parameters of -0.4004 and 0.3553°, for the sp3 hybridized C1B and C2B atoms, respectively. The two o-nitro groups in the anion are twisted by 35.0 (7) and 36.0 (9)° from the mean plane of the benzene ring. Bond distances and angles in both the cation and anion are in normal ranges. Cation-anion N—H···O hydrogen bonds [N1B—H1BC···O1A & N2B—H2BC···O42A] along with weak C—H···O intermolecular interactions (Table 1) produce a network of infinite N1B—H1BC···O1A/N2B—H2BC···O42A chains along the b axis which helps to establish crystal packing (Fig. 2).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the independent cation-anion pair (C7H13N2+.C6H2N3O7-) within the asymmetric unit with the B3LYP/6-311+G(d,p) basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The dihedral angle between the mean planes of the benzene and 1,4-diazepine rings increases to 30.9 (5)°. In the anion, the mean planes of the two o-nitro groups each become twisted by 35.5 (3)°, from the mean plane of the benzene ring. The mean plane of the p-nitro group remains planar to the benzene ring. These observations suggest that the N—H···O hydrogen bonds and weak C—H···O intermolecular interactions play a significant role in crystal stability.

Related literature top

For biological applications of 1,4-diazepine derivatives, see: Andrews et al. (2001); Block et al. (1989); Carp (1999); Moroz (2004). For treatment of CNS disorders, see: Walser et al. (1978). For pharmacological profiles, see: Carlos et al. (2004). For related structures, see: Ferguson et al. (1990); Harrison et al. (2005); Peeters et al. (1997); Petcher et al. (1985); Rashid et al. (2006); Yang et al. (2007). For density functional theory calculations, see: Schmidt & Polik (2007); Hehre et al. (1986).

Experimental top

5,7-Dimethyl-2,3-dihydro-1H-1,4-diazepine (1.24 g, 0.01 mol) was dissolved in 20 ml of alcohol. Picric acid (2.29 g, 0.01 mol) was dissolved in 40 ml of water. Both the solutions were mixed and to this, 5 ml of 3M HCl was added and stirred for few minutes. The formed complex was filtered and dried (m.p. 425 K). Composition: Found (calculated): C 44.15 (44.20), H 4.22 (4.28), N 19.78% (19.82%).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model, with C—H = 0.95–0.99 Å and N—H = 0.88 Å, and with Uiso(H) = 1.18–1.51Ueq(C, N).

Structure description top

1,4-Diazepine derivatives display tranquilizing, muscle-relaxant, anti-convulsant and sedative effects (Block et al., 1989). Today many diazepine derivatives are widely used as daytime sedatives, tranquilizers, sleep inducers, anesthetics, anticonvulsants and muscle relaxants (Moroz, 2004). The use of this class of compounds with therapeutic purposes is not only confined to anxiety and stress conditions, given that minor changes in their structures can produce a host of different biological activities, and novel applications are continuously emerging (Andrews et al., 2001; Carp, 1999). Five-atom heterocyclic fused benzodiazepine ring systems occupy a prominent place among drugs for treatment of CNS disorders (Walser et al., 1978). The introduction of alprazolam, triazolam and midazolam in chemotherapy has enhanced the interest in the preparation of novel five-atom heterocyclic fused benzodiazepine ring systems. Numerous analogs of alprazolam, triazolam and midazolam have been described, and they have shown different pharmacological profiles related to those of their parent compounds (Carlos et al., 2004). In continuation of our work on picrates of biologically important molecules, we have prepared a new picrate of 5,7-dimethyl-2,3-dihydro-1H-1,4-diazepine, C7H13N2+.C6H2N3O7-, and its crystal structure is reported.

The title compound, C13H15N5O7, crystallizes as a salt with one C7H13N2+.C6H2N3O7- cation-anion pair in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the benzene and 1,4-diazepine rings is 4.4 (6)°. In the cation, the seven membered 1,4-diazepine ring forms a twist chair conformation with Cs asymmetry parameters of -0.4004 and 0.3553°, for the sp3 hybridized C1B and C2B atoms, respectively. The two o-nitro groups in the anion are twisted by 35.0 (7) and 36.0 (9)° from the mean plane of the benzene ring. Bond distances and angles in both the cation and anion are in normal ranges. Cation-anion N—H···O hydrogen bonds [N1B—H1BC···O1A & N2B—H2BC···O42A] along with weak C—H···O intermolecular interactions (Table 1) produce a network of infinite N1B—H1BC···O1A/N2B—H2BC···O42A chains along the b axis which helps to establish crystal packing (Fig. 2).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the independent cation-anion pair (C7H13N2+.C6H2N3O7-) within the asymmetric unit with the B3LYP/6-311+G(d,p) basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The dihedral angle between the mean planes of the benzene and 1,4-diazepine rings increases to 30.9 (5)°. In the anion, the mean planes of the two o-nitro groups each become twisted by 35.5 (3)°, from the mean plane of the benzene ring. The mean plane of the p-nitro group remains planar to the benzene ring. These observations suggest that the N—H···O hydrogen bonds and weak C—H···O intermolecular interactions play a significant role in crystal stability.

For biological applications of 1,4-diazepine derivatives, see: Andrews et al. (2001); Block et al. (1989); Carp (1999); Moroz (2004). For treatment of CNS disorders, see: Walser et al. (1978). For pharmacological profiles, see: Carlos et al. (2004). For related structures, see: Ferguson et al. (1990); Harrison et al. (2005); Peeters et al. (1997); Petcher et al. (1985); Rashid et al. (2006); Yang et al. (2007). For density functional theory calculations, see: Schmidt & Polik (2007); Hehre et al. (1986).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the C7H13N2+.C6H2N3O7- cation-anion pair, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate intermolecular N—H···O hydrogen bonds and weak C—H···O hydrogen bond interactions.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate intermolecular N—H···O hydrogen bonds and weak C—H···O hydrogen bonds.
5,7-Dimethyl-2,3-dihydro-1H-1,4-diazepin-4-ium picrate top
Crystal data top
C7H13N2+·C6H2N3O7F(000) = 736
Mr = 353.30Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9544 reflections
a = 7.2341 (3) Åθ = 4.7–34.7°
b = 27.6458 (6) ŵ = 0.13 mm1
c = 8.2831 (3) ÅT = 200 K
β = 110.611 (4)°Chunk, colorless
V = 1550.52 (9) Å30.45 × 0.37 × 0.24 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
6353 independent reflections
Radiation source: fine-focus sealed tube4493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 34.8°, θmin = 4.7°
φ and ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 4344
Tmin = 0.962, Tmax = 0.970l = 1313
24773 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.074P)2 + 0.3582P]
where P = (Fo2 + 2Fc2)/3
6353 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C7H13N2+·C6H2N3O7V = 1550.52 (9) Å3
Mr = 353.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2341 (3) ŵ = 0.13 mm1
b = 27.6458 (6) ÅT = 200 K
c = 8.2831 (3) Å0.45 × 0.37 × 0.24 mm
β = 110.611 (4)°
Data collection top
Oxford Diffraction Gemini
diffractometer
6353 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4493 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.970Rint = 0.028
24773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
6353 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.30761 (14)0.42368 (3)0.49438 (11)0.02584 (19)
O21A0.1166 (2)0.37603 (5)0.19050 (14)0.0569 (4)
O22A0.2759 (3)0.30970 (5)0.20409 (16)0.0696 (5)
O41A0.2539 (2)0.20668 (4)0.67603 (15)0.0493 (3)
O42A0.2899 (2)0.23953 (4)0.92133 (14)0.0444 (3)
O61A0.4592 (2)0.41131 (4)0.99837 (13)0.0466 (3)
O62A0.26070 (17)0.45405 (3)0.79164 (13)0.0374 (2)
N2A0.2123 (2)0.34203 (4)0.27069 (14)0.0367 (3)
N4A0.27398 (18)0.24249 (4)0.76838 (15)0.0295 (2)
N6A0.34729 (18)0.41624 (4)0.84935 (13)0.0257 (2)
C1A0.28914 (16)0.38355 (4)0.55484 (14)0.0188 (2)
C2A0.25139 (19)0.33908 (4)0.45574 (14)0.0230 (2)
C3A0.2521 (2)0.29387 (4)0.52339 (15)0.0247 (2)
H3AA0.23310.26600.45240.030*
C4A0.28112 (19)0.28952 (4)0.69802 (15)0.0224 (2)
C5A0.31328 (18)0.32993 (4)0.80487 (15)0.0213 (2)
H5AA0.33400.32650.92410.026*
C6A0.31432 (17)0.37484 (4)0.73403 (14)0.0194 (2)
C7B0.2662 (3)0.50023 (5)0.18073 (19)0.0357 (3)
H7BA0.21990.46910.20880.054*
H7BB0.40740.49810.19930.054*
H7BC0.19290.50820.05970.054*
N1B0.23246 (16)0.52460 (3)0.44657 (14)0.0252 (2)
H1BC0.26480.49430.47620.030*
N2B0.24482 (17)0.63760 (3)0.48145 (13)0.0250 (2)
H2BC0.23280.66740.51410.030*
C1B0.1824 (2)0.55501 (4)0.56818 (17)0.0277 (3)
H1BA0.20140.53620.67460.033*
H1BB0.04090.56380.51780.033*
C2B0.3044 (2)0.60105 (4)0.61571 (16)0.0267 (2)
H2BA0.29270.61460.72230.032*
H2BB0.44500.59290.64060.032*
C3B0.20682 (17)0.63060 (4)0.31478 (15)0.0212 (2)
C4B0.1720 (2)0.67590 (4)0.20732 (17)0.0283 (3)
H4BA0.16550.70380.27820.042*
H4BB0.04720.67300.10980.042*
H4BC0.28060.68040.16400.042*
C5B0.20560 (19)0.58659 (4)0.23242 (15)0.0236 (2)
H5BA0.18190.58930.11250.028*
C6B0.23301 (18)0.53901 (4)0.29478 (16)0.0236 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0363 (5)0.0169 (4)0.0265 (4)0.0020 (3)0.0138 (4)0.0052 (3)
O21A0.0920 (11)0.0391 (6)0.0227 (5)0.0056 (6)0.0006 (6)0.0072 (4)
O22A0.1363 (15)0.0502 (7)0.0365 (6)0.0110 (8)0.0483 (8)0.0054 (5)
O41A0.0938 (10)0.0162 (4)0.0481 (6)0.0019 (5)0.0378 (7)0.0017 (4)
O42A0.0815 (9)0.0244 (5)0.0330 (5)0.0010 (5)0.0272 (6)0.0081 (4)
O61A0.0723 (8)0.0370 (6)0.0193 (5)0.0035 (5)0.0023 (5)0.0045 (4)
O62A0.0584 (7)0.0192 (4)0.0337 (5)0.0086 (4)0.0150 (5)0.0019 (4)
N2A0.0604 (8)0.0305 (6)0.0191 (5)0.0096 (5)0.0139 (5)0.0011 (4)
N4A0.0437 (6)0.0171 (4)0.0323 (5)0.0016 (4)0.0190 (5)0.0044 (4)
N6A0.0378 (6)0.0195 (4)0.0210 (5)0.0017 (4)0.0119 (4)0.0019 (3)
C1A0.0215 (5)0.0170 (4)0.0183 (5)0.0017 (4)0.0075 (4)0.0011 (3)
C2A0.0325 (6)0.0205 (5)0.0165 (5)0.0013 (4)0.0093 (4)0.0003 (4)
C3A0.0355 (6)0.0173 (5)0.0231 (5)0.0019 (4)0.0127 (5)0.0020 (4)
C4A0.0315 (6)0.0143 (4)0.0246 (5)0.0011 (4)0.0137 (5)0.0031 (4)
C5A0.0277 (5)0.0182 (4)0.0197 (5)0.0015 (4)0.0105 (4)0.0024 (4)
C6A0.0251 (5)0.0153 (4)0.0184 (5)0.0008 (4)0.0083 (4)0.0009 (3)
C7B0.0506 (9)0.0219 (5)0.0345 (7)0.0020 (5)0.0146 (7)0.0077 (5)
N1B0.0317 (5)0.0142 (4)0.0306 (5)0.0025 (4)0.0120 (4)0.0028 (3)
N2B0.0366 (6)0.0156 (4)0.0234 (5)0.0027 (4)0.0115 (4)0.0005 (3)
C1B0.0352 (7)0.0209 (5)0.0322 (6)0.0049 (5)0.0185 (5)0.0059 (4)
C2B0.0371 (7)0.0217 (5)0.0213 (5)0.0045 (5)0.0104 (5)0.0008 (4)
C3B0.0232 (5)0.0169 (4)0.0232 (5)0.0010 (4)0.0078 (4)0.0019 (4)
C4B0.0371 (7)0.0194 (5)0.0297 (6)0.0039 (5)0.0135 (5)0.0070 (4)
C5B0.0308 (6)0.0190 (5)0.0198 (5)0.0013 (4)0.0074 (5)0.0004 (4)
C6B0.0252 (5)0.0170 (4)0.0269 (5)0.0002 (4)0.0071 (5)0.0027 (4)
Geometric parameters (Å, º) top
O1A—C1A1.2438 (13)C7B—H7BB0.9800
O21A—N2A1.2165 (17)C7B—H7BC0.9800
O22A—N2A1.2219 (18)N1B—C6B1.3202 (16)
O41A—N4A1.2281 (15)N1B—C1B1.4524 (16)
O42A—N4A1.2338 (15)N1B—H1BC0.8800
O61A—N6A1.2223 (15)N2B—C3B1.3235 (15)
O62A—N6A1.2257 (14)N2B—C2B1.4512 (15)
N2A—C2A1.4597 (15)N2B—H2BC0.8800
N4A—C4A1.4332 (14)C1B—C2B1.5199 (18)
N6A—C6A1.4558 (14)C1B—H1BA0.9900
C1A—C2A1.4496 (15)C1B—H1BB0.9900
C1A—C6A1.4504 (15)C2B—H2BA0.9900
C2A—C3A1.3692 (16)C2B—H2BB0.9900
C3A—C4A1.3918 (16)C3B—C5B1.3935 (15)
C3A—H3AA0.9500C3B—C4B1.5055 (16)
C4A—C5A1.3929 (15)C4B—H4BA0.9800
C5A—C6A1.3744 (15)C4B—H4BB0.9800
C5A—H5AA0.9500C4B—H4BC0.9800
C7B—C6B1.5031 (17)C5B—C6B1.4014 (16)
C7B—H7BA0.9800C5B—H5BA0.9500
O21A—N2A—O22A123.42 (13)C6B—N1B—C1B124.82 (10)
O21A—N2A—C2A118.62 (12)C6B—N1B—H1BC117.6
O22A—N2A—C2A117.95 (12)C1B—N1B—H1BC117.6
O41A—N4A—O42A122.28 (11)C3B—N2B—C2B126.45 (10)
O41A—N4A—C4A119.43 (11)C3B—N2B—H2BC116.8
O42A—N4A—C4A118.29 (10)C2B—N2B—H2BC116.8
O61A—N6A—O62A123.71 (11)N1B—C1B—C2B113.60 (10)
O61A—N6A—C6A118.17 (10)N1B—C1B—H1BA108.8
O62A—N6A—C6A118.12 (10)C2B—C1B—H1BA108.8
O1A—C1A—C2A123.64 (10)N1B—C1B—H1BB108.8
O1A—C1A—C6A124.58 (10)C2B—C1B—H1BB108.8
C2A—C1A—C6A111.68 (9)H1BA—C1B—H1BB107.7
C3A—C2A—C1A124.72 (10)N2B—C2B—C1B113.33 (11)
C3A—C2A—N2A116.88 (10)N2B—C2B—H2BA108.9
C1A—C2A—N2A118.39 (10)C1B—C2B—H2BA108.9
C2A—C3A—C4A118.80 (10)N2B—C2B—H2BB108.9
C2A—C3A—H3AA120.6C1B—C2B—H2BB108.9
C4A—C3A—H3AA120.6H2BA—C2B—H2BB107.7
C3A—C4A—C5A121.43 (10)N2B—C3B—C5B126.98 (10)
C3A—C4A—N4A119.15 (10)N2B—C3B—C4B115.16 (10)
C5A—C4A—N4A119.41 (10)C5B—C3B—C4B117.78 (10)
C6A—C5A—C4A118.55 (10)C3B—C4B—H4BA109.5
C6A—C5A—H5AA120.7C3B—C4B—H4BB109.5
C4A—C5A—H5AA120.7H4BA—C4B—H4BB109.5
C5A—C6A—C1A124.70 (10)C3B—C4B—H4BC109.5
C5A—C6A—N6A117.03 (10)H4BA—C4B—H4BC109.5
C1A—C6A—N6A118.26 (9)H4BB—C4B—H4BC109.5
C6B—C7B—H7BA109.5C3B—C5B—C6B131.55 (11)
C6B—C7B—H7BB109.5C3B—C5B—H5BA114.2
H7BA—C7B—H7BB109.5C6B—C5B—H5BA114.2
C6B—C7B—H7BC109.5N1B—C6B—C5B125.93 (11)
H7BA—C7B—H7BC109.5N1B—C6B—C7B115.97 (11)
H7BB—C7B—H7BC109.5C5B—C6B—C7B118.10 (11)
O1A—C1A—C2A—C3A172.43 (12)O1A—C1A—C6A—C5A173.26 (12)
C6A—C1A—C2A—C3A4.09 (18)C2A—C1A—C6A—C5A3.22 (17)
O1A—C1A—C2A—N2A6.66 (18)O1A—C1A—C6A—N6A5.39 (18)
C6A—C1A—C2A—N2A176.82 (11)C2A—C1A—C6A—N6A178.13 (10)
O21A—N2A—C2A—C3A143.77 (15)O61A—N6A—C6A—C5A34.74 (17)
O22A—N2A—C2A—C3A35.4 (2)O62A—N6A—C6A—C5A145.02 (12)
O21A—N2A—C2A—C1A37.07 (19)O61A—N6A—C6A—C1A144.01 (13)
O22A—N2A—C2A—C1A143.81 (15)O62A—N6A—C6A—C1A36.22 (16)
C1A—C2A—C3A—C4A3.4 (2)C6B—N1B—C1B—C2B55.05 (17)
N2A—C2A—C3A—C4A177.54 (12)C3B—N2B—C2B—C1B45.65 (17)
C2A—C3A—C4A—C5A1.33 (19)N1B—C1B—C2B—N2B75.70 (14)
C2A—C3A—C4A—N4A177.46 (12)C2B—N2B—C3B—C5B3.7 (2)
O41A—N4A—C4A—C3A4.2 (2)C2B—N2B—C3B—C4B172.89 (12)
O42A—N4A—C4A—C3A176.34 (13)N2B—C3B—C5B—C6B3.3 (2)
O41A—N4A—C4A—C5A176.96 (13)C4B—C3B—C5B—C6B179.87 (13)
O42A—N4A—C4A—C5A2.48 (19)C1B—N1B—C6B—C5B6.9 (2)
C3A—C4A—C5A—C6A0.53 (19)C1B—N1B—C6B—C7B173.08 (13)
N4A—C4A—C5A—C6A178.27 (11)C3B—C5B—C6B—N1B13.0 (2)
C4A—C5A—C6A—C1A1.66 (19)C3B—C5B—C6B—C7B167.02 (14)
C4A—C5A—C6A—N6A179.67 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BC···O1A0.881.982.8434 (13)169
N2B—H2BC···O42Ai0.882.092.9657 (14)176
C5A—H5AA···O22Aii0.952.543.4570 (16)162
C7B—H7BA···O1A0.982.553.2817 (17)131
C1B—H1BA···O62A0.992.453.2861 (15)142
C1B—H1BB···O1Aiii0.992.513.4477 (16)158
C2B—H2BA···O61Aiv0.992.483.0678 (16)117
C2B—H2BB···O1Av0.992.463.3135 (16)144
C4B—H4BA···O42Ai0.982.593.4692 (17)149
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H13N2+·C6H2N3O7
Mr353.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)7.2341 (3), 27.6458 (6), 8.2831 (3)
β (°) 110.611 (4)
V3)1550.52 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.45 × 0.37 × 0.24
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.962, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
24773, 6353, 4493
Rint0.028
(sin θ/λ)max1)0.802
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.150, 1.04
No. of reflections6353
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BC···O1A0.881.982.8434 (13)168.7
N2B—H2BC···O42Ai0.882.092.9657 (14)176.3
C5A—H5AA···O22Aii0.952.543.4570 (16)161.9
C7B—H7BA···O1A0.982.553.2817 (17)131.1
C1B—H1BA···O62A0.992.453.2861 (15)142.2
C1B—H1BB···O1Aiii0.992.513.4477 (16)157.6
C2B—H2BA···O61Aiv0.992.483.0678 (16)117.4
C2B—H2BB···O1Av0.992.463.3135 (16)143.6
C4B—H4BA···O42Ai0.982.593.4692 (17)149.3
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1.
 

Acknowledgements

BN thanks Mangalore University for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAndrews, I. P., Atkins, R. J., Badham, R. F., Bellingham, R. K., Breen, G. F., Carey, J. S., Etridge, S. K., Haynes, J. F., Hussain, N., Morgan, D. O., Share, A. C., Smith, S. A. C., Walsgore, T. C. & Wells, A. S. (2001). Tetrahedron Lett. 42, 4915–4917.  Web of Science CrossRef CAS Google Scholar
First citationBlock, M. G., DiPardo, R. M., Evans, B. E., Rittle, K. E., Witter, W. L., Veber, D. F., Anderson, P. S. & Freidinger, R. M. (1989). J. Med. Chem. 32, 13–16.  CrossRef PubMed Web of Science Google Scholar
First citationCarlos, D. P., Alberto, M., Eduardo, A. & Javier, G. (2004). Synthesis, 16, 2697–2703.  Google Scholar
First citationCarp, G. M. (1999). J. Org. Chem. 64, 8156–8160.  PubMed Google Scholar
First citationFerguson, G., Parvez, M., Lloyd, D., McNab, H. & Marshall, D. R. (1990). Acta Cryst. C46, 1248–1251.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K., Narayana, B. & Lobo, K. G. (2005). Acta Cryst. E61, o3810–o3812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHehre, W. J., Random, L., Schleyer, P. R. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationMoroz, G. (2004). J. Clin. Psychol. 65, 13–18.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & de Ranter, C. J. (1997). Acta Cryst. C53, 95–97.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPetcher, T. J., Widmer, A., Maetzel, U. & Zeugner, H. (1985). Acta Cryst. C41, 909–912.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRashid, N., Hasan, M., Yusof, N. M. & Yamin, B. M. (2006). Acta Cryst. E62, o5887–o5888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalser, A., Benjamin, L. E., Flynn, T., Mason, C., Schwarts, R. & Fryer, R. I. (1978). J. Org. Chem. 43, 936–944.  CrossRef CAS Web of Science Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Ding, T.-Z. (2007). Acta Cryst. E63, o188–o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds