organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 3-(3,4-di­hydroxy­phen­yl)-2-hy­droxy­propanoate

aCollege of Life Scineces, Northwest University, Xi'an 710069, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, People's Republic of China
*Correspondence e-mail: zhengxh@nwu.edu.cn

(Received 16 March 2010; accepted 10 April 2010; online 17 April 2010)

The title compound, C12H16O5, is a derivative of β-(3,4-dihydroxy­phen­yl)-α-hydr­oxy acid. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the anti­oxidant properties and vasorelaxant activity of the title compound, see: Tian et al. (2008[Tian, J., Li, G., Liu, Z., Zhang, S., Qu, G., Jiang, W. & Fu, F. (2008). Neurosci. Lett. 442, 279-283.]); Wang et al. (2008[Wang, S., Zang, W., Kong, S., Yu, X., Sun, L., Zhao, X., Wang, S. & Zheng, X. (2008). Eur. J. Pharmacol. 579, 283-288.]). For the preparation, see: Zhang et al. (2009[Zhang, Q., Dong, Y., Nan, Y., Cai, X. & Zheng, X. (2009). Youji Huaxue, 29, 1466-1469.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16O5

  • Mr = 240.25

  • Monoclinic, P 21 /n

  • a = 5.7691 (13) Å

  • b = 14.271 (3) Å

  • c = 14.955 (3) Å

  • β = 96.360 (3)°

  • V = 1223.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.38 × 0.27 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 5934 measured reflections

  • 2174 independent reflections

  • 1598 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.14

  • 2174 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.96 2.7621 (14) 164
O2—H2⋯O3ii 0.82 1.93 2.7417 (15) 169
O3—H3⋯O1iii 0.82 2.00 2.7832 (14) 160
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The antioxidant property (Tian et al., 2008) and vasorelaxant activity (Wang et al., 2008) of the title compound (I) is already described. At 296 K, X-ray structure analysis was carried out in order to structurally characterised (I). The molecular structure of the title compound and the atom-numbering scheme are shown in Fig.1. In the Fig.1, the hydrogen atoms are omitted for clarity. As shown in Fig.2, both the carbonyl oxygen and the hydroxyl oxygen form hydrogen bonds with the hydrogen of the hydroxyl in another moleculars. The distance of O1 and O4 is 2.7622 (14)/%A. The distance is longer than that between O2 and O3(2.7417/%A), shorter than O3 and O1(2.7832/%A). All the data, listed in table 1 suggest strong hydrogen bond interactions.

Related literature top

For the antioxidant properties and vasorelaxant activity of the title compound, see: Tian et al. (2008); Wang et al. (2008). For the preparation, see: Zhang et al. (2009).

Experimental top

The synthesis of the crude product was carried out according to reported methods(Zhang et al., 2009). The title compound was crystalised from ether and water at room temperature. Spectroscopic analysis: IR(KBr, χm-1): 3256, 2952, 1678, 1656; 1H NMR (DMSO, δ, p.p.m.): 12.389 (s, 1 H), 9.492 (s, 1 H), 9.316 (s, 1 H), 7.286—7.282 (d, 1 H), 7.196 (s, 1 H), 7.088—7.068 (m, 1 H), 6.797—6.781 (d, 1 H), 3.771 (s, 3 H), 1.985 (s, 3 H).

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.8200 and N—H = 0.8600 Å, and with Uĩso~(H) = 1.2U~eq~(N,O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.93–0.96 Å.

Structure description top

The antioxidant property (Tian et al., 2008) and vasorelaxant activity (Wang et al., 2008) of the title compound (I) is already described. At 296 K, X-ray structure analysis was carried out in order to structurally characterised (I). The molecular structure of the title compound and the atom-numbering scheme are shown in Fig.1. In the Fig.1, the hydrogen atoms are omitted for clarity. As shown in Fig.2, both the carbonyl oxygen and the hydroxyl oxygen form hydrogen bonds with the hydrogen of the hydroxyl in another moleculars. The distance of O1 and O4 is 2.7622 (14)/%A. The distance is longer than that between O2 and O3(2.7417/%A), shorter than O3 and O1(2.7832/%A). All the data, listed in table 1 suggest strong hydrogen bond interactions.

For the antioxidant properties and vasorelaxant activity of the title compound, see: Tian et al. (2008); Wang et al. (2008). For the preparation, see: Zhang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis, molecules are connected by O—H···O hydrogen bonds shown as dashed lines.
Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate top
Crystal data top
C12H16O5Dx = 1.304 Mg m3
Mr = 240.25Melting point: 360 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.7691 (13) ÅCell parameters from 2102 reflections
b = 14.271 (3) Åθ = 2.7–25.9°
c = 14.955 (3) ŵ = 0.10 mm1
β = 96.360 (3)°T = 296 K
V = 1223.7 (5) Å3Block, colorless
Z = 40.38 × 0.27 × 0.18 mm
F(000) = 512
Data collection top
Bruker SMART CCD area-detector
diffractometer
1598 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
phi and ω scansh = 66
5934 measured reflectionsk = 179
2174 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
2174 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H16O5V = 1223.7 (5) Å3
Mr = 240.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7691 (13) ŵ = 0.10 mm1
b = 14.271 (3) ÅT = 296 K
c = 14.955 (3) Å0.38 × 0.27 × 0.18 mm
β = 96.360 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1598 reflections with I > 2σ(I)
5934 measured reflectionsRint = 0.029
2174 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.14Δρmax = 0.18 e Å3
2174 reflectionsΔρmin = 0.18 e Å3
159 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71641 (18)0.75521 (7)0.11545 (6)0.0508 (3)
H10.62200.73900.07330.076*
O21.09466 (18)0.79570 (7)0.22404 (8)0.0554 (3)
H21.23170.80590.24230.083*
O30.94395 (17)0.34163 (7)0.23630 (6)0.0457 (3)
H30.86480.32030.27380.068*
O40.5296 (2)0.29738 (8)0.04573 (8)0.0709 (4)
O50.77917 (17)0.20274 (7)0.12753 (6)0.0464 (3)
C10.8694 (2)0.68321 (10)0.13822 (9)0.0384 (4)
C21.0709 (2)0.70525 (10)0.19423 (10)0.0427 (4)
C31.2329 (3)0.63583 (11)0.21636 (11)0.0535 (4)
H3A1.36980.64990.25270.064*
C41.1939 (3)0.54492 (11)0.18498 (11)0.0518 (4)
H41.30580.49910.20040.062*
C50.9928 (2)0.52155 (10)0.13152 (9)0.0411 (4)
C60.8304 (3)0.59214 (10)0.10876 (9)0.0405 (4)
H60.69280.57770.07300.049*
C70.9418 (3)0.42345 (10)0.09809 (9)0.0461 (4)
H7A1.08810.39110.09390.055*
H7B0.85890.42650.03810.055*
C80.7973 (2)0.36720 (10)0.15824 (9)0.0395 (4)
H80.67270.40750.17600.047*
C90.6870 (3)0.28507 (11)0.10523 (10)0.0439 (4)
C100.6941 (3)0.12093 (10)0.07388 (10)0.0504 (4)
H100.52540.12660.05770.061*
C110.7441 (4)0.03703 (11)0.13364 (12)0.0705 (6)
H11A0.67080.04500.18770.106*
H11B0.90960.03080.14860.106*
H11C0.68400.01830.10270.106*
C120.8141 (4)0.11835 (14)0.01037 (13)0.0812 (6)
H12A0.97980.11490.00540.122*
H12B0.77680.17410.04490.122*
H12C0.76250.06440.04540.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0510 (7)0.0484 (7)0.0490 (6)0.0097 (5)0.0127 (5)0.0090 (5)
O20.0500 (7)0.0482 (7)0.0644 (8)0.0019 (5)0.0092 (6)0.0115 (5)
O30.0503 (6)0.0477 (7)0.0368 (5)0.0044 (5)0.0051 (5)0.0048 (4)
O40.0797 (9)0.0563 (8)0.0668 (8)0.0092 (6)0.0370 (7)0.0063 (6)
O50.0533 (6)0.0363 (6)0.0468 (6)0.0017 (5)0.0070 (5)0.0023 (4)
C10.0381 (8)0.0432 (9)0.0330 (7)0.0041 (6)0.0004 (6)0.0008 (6)
C20.0434 (9)0.0430 (10)0.0411 (8)0.0032 (7)0.0023 (7)0.0023 (6)
C30.0421 (9)0.0515 (11)0.0631 (10)0.0005 (8)0.0113 (7)0.0021 (8)
C40.0460 (9)0.0482 (10)0.0595 (10)0.0067 (8)0.0022 (8)0.0076 (8)
C50.0464 (9)0.0416 (9)0.0360 (7)0.0005 (7)0.0076 (7)0.0052 (6)
C60.0415 (8)0.0470 (9)0.0321 (7)0.0023 (7)0.0006 (6)0.0000 (6)
C70.0558 (10)0.0454 (9)0.0376 (8)0.0036 (7)0.0073 (7)0.0008 (7)
C80.0418 (8)0.0389 (9)0.0369 (8)0.0040 (6)0.0001 (6)0.0003 (6)
C90.0472 (9)0.0419 (9)0.0404 (8)0.0041 (7)0.0044 (7)0.0004 (6)
C100.0579 (10)0.0417 (9)0.0499 (9)0.0054 (7)0.0021 (7)0.0093 (7)
C110.1035 (15)0.0405 (10)0.0672 (11)0.0069 (10)0.0076 (11)0.0050 (8)
C120.1136 (17)0.0685 (13)0.0647 (11)0.0007 (12)0.0244 (11)0.0088 (10)
Geometric parameters (Å, º) top
O1—C11.3725 (16)C5—C71.505 (2)
O1—H10.8200C6—H60.9300
O2—C21.3676 (17)C7—C81.5212 (19)
O2—H20.8200C7—H7A0.9700
O3—C81.4116 (16)C7—H7B0.9700
O3—H30.8200C8—C91.515 (2)
O4—C91.2119 (17)C8—H80.9800
O5—C91.3172 (17)C10—C111.503 (2)
O5—C101.4698 (17)C10—C121.504 (2)
C1—C61.3827 (19)C10—H100.9800
C1—C21.392 (2)C11—H11A0.9600
C2—C31.377 (2)C11—H11B0.9600
C3—C41.389 (2)C11—H11C0.9600
C3—H3A0.9300C12—H12A0.9600
C4—C51.375 (2)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.3920 (19)
C1—O1—H1109.5O3—C8—C9114.28 (11)
C2—O2—H2109.5O3—C8—C7107.94 (11)
C8—O3—H3109.5C9—C8—C7108.95 (11)
C9—O5—C10117.99 (11)O3—C8—H8108.5
O1—C1—C6123.19 (12)C9—C8—H8108.5
O1—C1—C2116.83 (13)C7—C8—H8108.5
C6—C1—C2119.97 (13)O4—C9—O5124.32 (14)
O2—C2—C3124.07 (13)O4—C9—C8120.62 (14)
O2—C2—C1117.15 (13)O5—C9—C8115.04 (12)
C3—C2—C1118.78 (14)O5—C10—C11106.12 (12)
C2—C3—C4120.72 (14)O5—C10—C12108.65 (14)
C2—C3—H3A119.6C11—C10—C12113.75 (15)
C4—C3—H3A119.6O5—C10—H10109.4
C5—C4—C3121.15 (15)C11—C10—H10109.4
C5—C4—H4119.4C12—C10—H10109.4
C3—C4—H4119.4C10—C11—H11A109.5
C4—C5—C6117.93 (14)C10—C11—H11B109.5
C4—C5—C7122.71 (14)H11A—C11—H11B109.5
C6—C5—C7119.37 (13)C10—C11—H11C109.5
C1—C6—C5121.41 (13)H11A—C11—H11C109.5
C1—C6—H6119.3H11B—C11—H11C109.5
C5—C6—H6119.3C10—C12—H12A109.5
C5—C7—C8113.23 (11)C10—C12—H12B109.5
C5—C7—H7A108.9H12A—C12—H12B109.5
C8—C7—H7A108.9C10—C12—H12C109.5
C5—C7—H7B108.9H12A—C12—H12C109.5
C8—C7—H7B108.9H12B—C12—H12C109.5
H7A—C7—H7B107.7
O1—C1—C2—O22.23 (19)C4—C5—C7—C893.95 (16)
C6—C1—C2—O2177.37 (13)C6—C5—C7—C885.35 (15)
O1—C1—C2—C3177.87 (13)C5—C7—C8—O374.53 (15)
C6—C1—C2—C32.5 (2)C5—C7—C8—C9160.84 (12)
O2—C2—C3—C4178.56 (15)C10—O5—C9—O43.3 (2)
C1—C2—C3—C41.3 (2)C10—O5—C9—C8174.98 (12)
C2—C3—C4—C50.4 (2)O3—C8—C9—O4167.89 (15)
C3—C4—C5—C60.8 (2)C7—C8—C9—O471.30 (18)
C3—C4—C5—C7178.48 (14)O3—C8—C9—O513.79 (18)
O1—C1—C6—C5178.33 (12)C7—C8—C9—O5107.02 (14)
C2—C1—C6—C52.1 (2)C9—O5—C10—C11156.25 (14)
C4—C5—C6—C10.41 (19)C9—O5—C10—C1281.06 (17)
C7—C5—C6—C1179.74 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.962.7621 (14)164
O2—H2···O3ii0.821.932.7417 (15)169
O3—H3···O1iii0.822.002.7832 (14)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16O5
Mr240.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.7691 (13), 14.271 (3), 14.955 (3)
β (°) 96.360 (3)
V3)1223.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.27 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5934, 2174, 1598
Rint0.029
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.14
No. of reflections2174
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.962.7621 (14)164.4
O2—H2···O3ii0.821.932.7417 (15)169.2
O3—H3···O1iii0.822.002.7832 (14)159.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the Ministry of Education of Shaanxi Province (Nos. 08 J K476, 09 J K702), the National Natural Sciences Foundation of China (No. 20875074) and the West Light Foundation of the Chinese Academy of Sciences (No. 2007DF02).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, J., Li, G., Liu, Z., Zhang, S., Qu, G., Jiang, W. & Fu, F. (2008). Neurosci. Lett. 442, 279–283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, S., Zang, W., Kong, S., Yu, X., Sun, L., Zhao, X., Wang, S. & Zheng, X. (2008). Eur. J. Pharmacol. 579, 283–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Dong, Y., Nan, Y., Cai, X. & Zheng, X. (2009). Youji Huaxue, 29, 1466–1469.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds