organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­droxy­amino-2-oxoacetohydrazide

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, and bInstitute of General and Inorganic Chemistry, NAS Ukraine, prosp. Palladina 32/34, 03680 Kyiv, Ukraine
*Correspondence e-mail: trofymch@gmail.com

(Received 25 March 2010; accepted 1 April 2010; online 14 April 2010)

In the title compound, C2H5N3O3, the hydroxamic group adopts an anti orientation with respect to the hydrazide group. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into zigzag chains along the c axis.

Related literature

For hydroxamic acids in biological chemistry, see: Kaczka et al. (1962[Kaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340-343.]); Komatsu et al. (2001[Komatsu, Y., Tomizaki, K., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai, R., Yoshida, M., Horinouchi, S. & Hayashi, H. (2001). Cancer Res. 61, 4459-4466.]). For the use of hydroxamic acids as strong chelating agents, see: Dobosz et al. (1999[Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Glowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743-749.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For hydroxamic acids as the basis for the synthesis of metallacrowns compounds, see: Bodwin et al. (2001[Bodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev. 216-217, 489-512.]); Gumienna-Kontecka et al. (2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Światek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]). For related structures, see: Sliva et al. (1997a[Sliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozlowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.],b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Glowiak, T., Onindo, C. O., Fritsky, I. O. & Kozlowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Fritsky et al. (2006[Fritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Moroz et al. (2008[Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656-5665.]).

[Scheme 1]

Experimental

Crystal data
  • C2H5N3O3

  • Mr = 119.09

  • Monoclinic, C c

  • a = 9.3968 (7) Å

  • b = 3.6728 (2) Å

  • c = 12.7510 (8) Å

  • β = 95.598 (5)°

  • V = 437.97 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 77 K

  • 0.12 × 0.10 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.980, Tmax = 0.988

  • 1149 measured reflections

  • 445 independent reflections

  • 404 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.06

  • 445 reflections

  • 74 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.88 2.02 2.813 (5) 149
O1—H1O1⋯N3ii 0.95 1.83 2.740 (4) 161
O1—H1O1⋯N3ii 0.95 1.83 2.740 (4) 161
N3—H1N3⋯O1iii 0.90 2.29 3.013 (3) 137
N3—H2N3⋯O1iv 0.93 2.44 3.024 (4) 121
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acids represent an important class of chelating agents and recently have been used for synthesis of metallocrown compounds (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000; Bodwin et al., 2001; Gumienna-Kontecka et al., 2007). Besides, it is known that hydroxamic acids can act as inhibitors of enzymes as well as promising antitumor agents (Kaczka et al.,1962; Komatsu et al., 2001). Therefore, study of new hydroxamic acids is timely and important research topic. As a part of our on-going work, we report the structure of the title compound (1), which comprises several groups capable to form hydrogen bond interactions.

The molecular structure of (1) is shown in Fig. 1. The hydroxamic group is in anti-position with respect to the hydrazide group. The carbonyl groups are in trans-position with respect to each other, and the NH2 group is cis with respect to the hydrazide carbonyl and the OH group is cis with respect to the hydroxamic carbonyl. The C1—N1 , N1—O1 , C1—O2, C2—O3, C2—N2, N2—N3 bond lengths are 1.319 (5) Å, 1.381 (5) Å, 1.242 (6) Å, 1.220 (5) Å, 1.321 (4) Å and 1.422 (6) Å respectively, adopt typical values to the hydroxamic and hydrazide groups (Sliva et al., 1997a, b); Mokhir et al., 2002; Fritsky et al., 2006; Moroz et al., 2008).

In the crystal the molecules are connected by N—H···O, O—H···N hydrogen bonds (Table 1, Fig. 2) into supramolecular zig-zag chains along the c-axis.

Related literature top

For hydroxamic acids in biological chemistry, see: Kaczka et al. (1962); Komatsu et al. (2001). For the use of hydroxamic acids as strong chelating agents, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For hydroxamic acids as the basis for the synthesis of metallacrowns compounds, see: Bodwin et al. (2001); Gumienna-Kontecka et al. (2007). For related structures, see: Sliva et al. (1997a,b); Mokhir et al. (2002); Fritsky et al. (2006); Moroz et al. (2008).

Experimental top

Compound (1) was synthesized as a white powder precipitate by addition of 1 equiv. of N2H4. H2O to cooled ethanol solution of ethyl- 2-(hydroxyamino)-2-oxoacetate (250 mmol) following by recrystallization of the resulting product from water. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of aqueous solution at room temperature. 1H NMR (400 MHz, DMSO-d6, δ): 4.482 (s, 2H, NH2); 9.193 (br s, 1H, NH); 9.991(s, 1H, NH); 11.435 (br s, 1H, OH) ppm. 13C NMR (CDCl3, 100 MHz, δ): 162.07, 163.219 ppm.

Refinement top

The hydrogen atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uĩso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.77 Å from atom C1 and the deepest hole is located 0.81 Å from atom N2. In the absence of significant anomalous scattering effects, 150 Friedel pairs were averaged in the final refinement.

Structure description top

Hydroxamic acids represent an important class of chelating agents and recently have been used for synthesis of metallocrown compounds (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000; Bodwin et al., 2001; Gumienna-Kontecka et al., 2007). Besides, it is known that hydroxamic acids can act as inhibitors of enzymes as well as promising antitumor agents (Kaczka et al.,1962; Komatsu et al., 2001). Therefore, study of new hydroxamic acids is timely and important research topic. As a part of our on-going work, we report the structure of the title compound (1), which comprises several groups capable to form hydrogen bond interactions.

The molecular structure of (1) is shown in Fig. 1. The hydroxamic group is in anti-position with respect to the hydrazide group. The carbonyl groups are in trans-position with respect to each other, and the NH2 group is cis with respect to the hydrazide carbonyl and the OH group is cis with respect to the hydroxamic carbonyl. The C1—N1 , N1—O1 , C1—O2, C2—O3, C2—N2, N2—N3 bond lengths are 1.319 (5) Å, 1.381 (5) Å, 1.242 (6) Å, 1.220 (5) Å, 1.321 (4) Å and 1.422 (6) Å respectively, adopt typical values to the hydroxamic and hydrazide groups (Sliva et al., 1997a, b); Mokhir et al., 2002; Fritsky et al., 2006; Moroz et al., 2008).

In the crystal the molecules are connected by N—H···O, O—H···N hydrogen bonds (Table 1, Fig. 2) into supramolecular zig-zag chains along the c-axis.

For hydroxamic acids in biological chemistry, see: Kaczka et al. (1962); Komatsu et al. (2001). For the use of hydroxamic acids as strong chelating agents, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For hydroxamic acids as the basis for the synthesis of metallacrowns compounds, see: Bodwin et al. (2001); Gumienna-Kontecka et al. (2007). For related structures, see: Sliva et al. (1997a,b); Mokhir et al. (2002); Fritsky et al. (2006); Moroz et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), with 40% probability displacement ellipsoids showing the atom-numbering scheme employed.
[Figure 2] Fig. 2. A packing diagram for (1) compound. Hydrogen bonds are indicated by dashed lines.
2-Hydroxyamino-2-oxoacetohydrazide top
Crystal data top
C2H5N3O3F(000) = 248
Mr = 119.09Dx = 1.806 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1149 reflections
a = 9.3968 (7) Åθ = 3.2–26.5°
b = 3.6728 (2) ŵ = 0.17 mm1
c = 12.7510 (8) ÅT = 77 K
β = 95.598 (5)°Block, colourless
V = 437.97 (5) Å30.12 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
445 independent reflections
Radiation source: fine-focus sealed tube404 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 26.5°, θmin = 3.2°
φ scans and ω scans with κ offseth = 1011
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 44
Tmin = 0.980, Tmax = 0.988l = 1515
1149 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3945P]
where P = (Fo2 + 2Fc2)/3
445 reflections(Δ/σ)max < 0.001
74 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
C2H5N3O3V = 437.97 (5) Å3
Mr = 119.09Z = 4
Monoclinic, CcMo Kα radiation
a = 9.3968 (7) ŵ = 0.17 mm1
b = 3.6728 (2) ÅT = 77 K
c = 12.7510 (8) Å0.12 × 0.10 × 0.07 mm
β = 95.598 (5)°
Data collection top
Bruker APEXII
diffractometer
445 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
404 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.021
1149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
445 reflectionsΔρmin = 0.20 e Å3
74 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4570 (5)0.6710 (10)0.8492 (3)0.0187 (10)
C20.4385 (4)0.8528 (9)0.7408 (3)0.0149 (9)
N10.3439 (4)0.7171 (8)0.9018 (3)0.0185 (8)
H1N10.26950.83960.87320.022*
N20.5546 (4)0.8238 (9)0.6907 (3)0.0199 (8)
H1N20.62950.70360.71940.024*
N30.5578 (4)0.9881 (9)0.5899 (3)0.0215 (9)
H1N30.64791.06960.58800.032*
H2N30.55340.81130.53710.032*
O10.3428 (3)0.5725 (8)1.0016 (2)0.0249 (8)
H1O10.41390.69691.04560.037*
O20.5674 (3)0.5033 (7)0.8820 (2)0.0236 (8)
O30.3288 (3)1.0094 (7)0.7077 (2)0.0248 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.016 (3)0.0199 (18)0.020 (2)0.0004 (15)0.0007 (17)0.0040 (15)
C20.016 (2)0.0162 (16)0.013 (2)0.0003 (14)0.0037 (17)0.0026 (14)
N10.0142 (17)0.0252 (17)0.0162 (19)0.0030 (13)0.0019 (14)0.0015 (14)
N20.0194 (19)0.0256 (16)0.015 (2)0.0059 (14)0.0050 (14)0.0019 (14)
N30.020 (2)0.0287 (16)0.017 (2)0.0034 (13)0.0093 (15)0.0020 (14)
O10.0266 (19)0.0337 (15)0.0150 (17)0.0005 (13)0.0048 (13)0.0048 (14)
O20.018 (2)0.0294 (17)0.024 (2)0.0081 (12)0.0057 (16)0.0060 (12)
O30.020 (2)0.0373 (18)0.0173 (19)0.0095 (12)0.0025 (16)0.0031 (12)
Geometric parameters (Å, º) top
C1—O21.243 (6)N1—H1N10.8800
C1—N11.322 (4)N2—N31.422 (6)
C1—C21.530 (4)N2—H1N20.8800
C2—O31.220 (5)N3—H1N30.9009
C2—N21.321 (4)N3—H2N30.9332
N1—O11.380 (5)O1—H1O10.9468
O2—C1—N1125.4 (4)O1—N1—H1N1120.1
O2—C1—C2122.5 (3)C2—N2—N3119.6 (4)
N1—C1—C2112.1 (3)C2—N2—H1N2120.2
O3—C2—N2125.5 (4)N3—N2—H1N2120.2
O3—C2—C1122.4 (3)N2—N3—H1N3105.5
N2—C2—C1112.1 (3)N2—N3—H2N3110.6
C1—N1—O1119.8 (4)H1N3—N3—H2N3100.8
C1—N1—H1N1120.1N1—O1—H1O1107.0
O2—C1—C2—O3178.1 (5)O2—C1—N1—O10.0 (6)
N1—C1—C2—O32.3 (4)C2—C1—N1—O1179.6 (3)
O2—C1—C2—N23.1 (4)O3—C2—N2—N30.8 (6)
N1—C1—C2—N2176.5 (4)C1—C2—N2—N3178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.882.022.813 (5)149
O1—H1O1···N3ii0.951.832.740 (4)161
O1—H1O1···N3ii0.951.832.740 (4)161
N3—H1N3···O1iii0.902.293.013 (3)137
N3—H2N3···O1iv0.932.443.024 (4)121
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC2H5N3O3
Mr119.09
Crystal system, space groupMonoclinic, Cc
Temperature (K)77
a, b, c (Å)9.3968 (7), 3.6728 (2), 12.7510 (8)
β (°) 95.598 (5)
V3)437.97 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.12 × 0.10 × 0.07
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
1149, 445, 404
Rint0.021
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.06
No. of reflections445
No. of parameters74
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.882.022.813 (5)148.7
O1—H1O1···N3ii0.951.832.740 (4)161.3
O1—H1O1···N3ii0.951.832.740 (4)161.3
N3—H1N3···O1iii0.902.293.013 (3)137.4
N3—H2N3···O1iv0.932.443.024 (4)121.0
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y+1, z1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009). We are grateful to Professor Igor O. Fritsky and Dr Yurii S. Moroz for helpful discussions.

References

First citationBodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev. 216–217, 489–512.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDobosz, A., Dudarenko, N. M., Fritsky, I. O., Glowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Światek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340–343.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKomatsu, Y., Tomizaki, K., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai, R., Yoshida, M., Horinouchi, S. & Hayashi, H. (2001). Cancer Res. 61, 4459–4466.  Web of Science PubMed CAS Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozlowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Glowiak, T., Onindo, C. O., Fritsky, I. O. & Kozlowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds