organic compounds
2-Hydroxyamino-2-oxoacetohydrazide
aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, and bInstitute of General and Inorganic Chemistry, NAS Ukraine, prosp. Palladina 32/34, 03680 Kyiv, Ukraine
*Correspondence e-mail: trofymch@gmail.com
In the title compound, C2H5N3O3, the hydroxamic group adopts an anti orientation with respect to the hydrazide group. In the crystal, molecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into zigzag chains along the c axis.
Related literature
For et al. (1962); Komatsu et al. (2001). For the use of as strong chelating agents, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For as the basis for the synthesis of metallacrowns compounds, see: Bodwin et al. (2001); Gumienna-Kontecka et al. (2007). For related structures, see: Sliva et al. (1997a,b); Mokhir et al. (2002); Fritsky et al. (2006); Moroz et al. (2008).
in biological chemistry, see: KaczkaExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810012341/jh2142sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810012341/jh2142Isup2.hkl
Compound (1) was synthesized as a white powder precipitate by addition of 1 equiv. of N2H4. H2O to cooled ethanol solution of ethyl- 2-(hydroxyamino)-2-oxoacetate (250 mmol) following by recrystallization of the resulting product from water. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of aqueous solution at room temperature. 1H NMR (400 MHz, DMSO-d6, δ): 4.482 (s, 2H, NH2); 9.193 (br s, 1H, NH); 9.991(s, 1H, NH); 11.435 (br s, 1H, OH) ppm. 13C NMR (CDCl3, 100 MHz, δ): 162.07, 163.219 ppm.
The hydrogen atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uĩso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.77 Å from atom C1 and the deepest hole is located 0.81 Å from atom N2. In the absence of significant
effects, 150 Friedel pairs were averaged in the final refinement.Hydroxamic acids represent an important class of chelating agents and recently have been used for synthesis of metallocrown compounds (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000; Bodwin et al., 2001; Gumienna-Kontecka et al., 2007). Besides, it is known that
can act as inhibitors of enzymes as well as promising antitumor agents (Kaczka et al.,1962; Komatsu et al., 2001). Therefore, study of new is timely and important research topic. As a part of our on-going work, we report the structure of the title compound (1), which comprises several groups capable to form hydrogen bond interactions.The molecular structure of (1) is shown in Fig. 1. The hydroxamic group is in anti-position with respect to the hydrazide group. The carbonyl groups are in trans-position with respect to each other, and the NH2 group is cis with respect to the hydrazide carbonyl and the OH group is cis with respect to the hydroxamic carbonyl. The C1—N1 , N1—O1 , C1—O2, C2—O3, C2—N2, N2—N3 bond lengths are 1.319 (5) Å, 1.381 (5) Å, 1.242 (6) Å, 1.220 (5) Å, 1.321 (4) Å and 1.422 (6) Å respectively, adopt typical values to the hydroxamic and hydrazide groups (Sliva et al., 1997a, b); Mokhir et al., 2002; Fritsky et al., 2006; Moroz et al., 2008).
In the crystal the molecules are connected by N—H···O, O—H···N hydrogen bonds (Table 1, Fig. 2) into supramolecular zig-zag chains along the c-axis.
For
in biological chemistry, see: Kaczka et al. (1962); Komatsu et al. (2001). For the use of as strong chelating agents, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For as the basis for the synthesis of metallacrowns compounds, see: Bodwin et al. (2001); Gumienna-Kontecka et al. (2007). For related structures, see: Sliva et al. (1997a,b); Mokhir et al. (2002); Fritsky et al. (2006); Moroz et al. (2008).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C2H5N3O3 | F(000) = 248 |
Mr = 119.09 | Dx = 1.806 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1149 reflections |
a = 9.3968 (7) Å | θ = 3.2–26.5° |
b = 3.6728 (2) Å | µ = 0.17 mm−1 |
c = 12.7510 (8) Å | T = 77 K |
β = 95.598 (5)° | Block, colourless |
V = 437.97 (5) Å3 | 0.12 × 0.10 × 0.07 mm |
Z = 4 |
Bruker APEXII diffractometer | 445 independent reflections |
Radiation source: fine-focus sealed tube | 404 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.021 |
Detector resolution: 9 pixels mm-1 | θmax = 26.5°, θmin = 3.2° |
φ scans and ω scans with κ offset | h = −10→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | k = −4→4 |
Tmin = 0.980, Tmax = 0.988 | l = −15→15 |
1149 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3945P] where P = (Fo2 + 2Fc2)/3 |
445 reflections | (Δ/σ)max < 0.001 |
74 parameters | Δρmax = 0.19 e Å−3 |
3 restraints | Δρmin = −0.20 e Å−3 |
C2H5N3O3 | V = 437.97 (5) Å3 |
Mr = 119.09 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 9.3968 (7) Å | µ = 0.17 mm−1 |
b = 3.6728 (2) Å | T = 77 K |
c = 12.7510 (8) Å | 0.12 × 0.10 × 0.07 mm |
β = 95.598 (5)° |
Bruker APEXII diffractometer | 445 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 404 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.988 | Rint = 0.021 |
1149 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 3 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.19 e Å−3 |
445 reflections | Δρmin = −0.20 e Å−3 |
74 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4570 (5) | 0.6710 (10) | 0.8492 (3) | 0.0187 (10) | |
C2 | 0.4385 (4) | 0.8528 (9) | 0.7408 (3) | 0.0149 (9) | |
N1 | 0.3439 (4) | 0.7171 (8) | 0.9018 (3) | 0.0185 (8) | |
H1N1 | 0.2695 | 0.8396 | 0.8732 | 0.022* | |
N2 | 0.5546 (4) | 0.8238 (9) | 0.6907 (3) | 0.0199 (8) | |
H1N2 | 0.6295 | 0.7036 | 0.7194 | 0.024* | |
N3 | 0.5578 (4) | 0.9881 (9) | 0.5899 (3) | 0.0215 (9) | |
H1N3 | 0.6479 | 1.0696 | 0.5880 | 0.032* | |
H2N3 | 0.5534 | 0.8113 | 0.5371 | 0.032* | |
O1 | 0.3428 (3) | 0.5725 (8) | 1.0016 (2) | 0.0249 (8) | |
H1O1 | 0.4139 | 0.6969 | 1.0456 | 0.037* | |
O2 | 0.5674 (3) | 0.5033 (7) | 0.8820 (2) | 0.0236 (8) | |
O3 | 0.3288 (3) | 1.0094 (7) | 0.7077 (2) | 0.0248 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.016 (3) | 0.0199 (18) | 0.020 (2) | 0.0004 (15) | 0.0007 (17) | −0.0040 (15) |
C2 | 0.016 (2) | 0.0162 (16) | 0.013 (2) | 0.0003 (14) | 0.0037 (17) | −0.0026 (14) |
N1 | 0.0142 (17) | 0.0252 (17) | 0.0162 (19) | 0.0030 (13) | 0.0019 (14) | 0.0015 (14) |
N2 | 0.0194 (19) | 0.0256 (16) | 0.015 (2) | 0.0059 (14) | 0.0050 (14) | 0.0019 (14) |
N3 | 0.020 (2) | 0.0287 (16) | 0.017 (2) | 0.0034 (13) | 0.0093 (15) | 0.0020 (14) |
O1 | 0.0266 (19) | 0.0337 (15) | 0.0150 (17) | −0.0005 (13) | 0.0048 (13) | 0.0048 (14) |
O2 | 0.018 (2) | 0.0294 (17) | 0.024 (2) | 0.0081 (12) | 0.0057 (16) | 0.0060 (12) |
O3 | 0.020 (2) | 0.0373 (18) | 0.0173 (19) | 0.0095 (12) | 0.0025 (16) | 0.0031 (12) |
C1—O2 | 1.243 (6) | N1—H1N1 | 0.8800 |
C1—N1 | 1.322 (4) | N2—N3 | 1.422 (6) |
C1—C2 | 1.530 (4) | N2—H1N2 | 0.8800 |
C2—O3 | 1.220 (5) | N3—H1N3 | 0.9009 |
C2—N2 | 1.321 (4) | N3—H2N3 | 0.9332 |
N1—O1 | 1.380 (5) | O1—H1O1 | 0.9468 |
O2—C1—N1 | 125.4 (4) | O1—N1—H1N1 | 120.1 |
O2—C1—C2 | 122.5 (3) | C2—N2—N3 | 119.6 (4) |
N1—C1—C2 | 112.1 (3) | C2—N2—H1N2 | 120.2 |
O3—C2—N2 | 125.5 (4) | N3—N2—H1N2 | 120.2 |
O3—C2—C1 | 122.4 (3) | N2—N3—H1N3 | 105.5 |
N2—C2—C1 | 112.1 (3) | N2—N3—H2N3 | 110.6 |
C1—N1—O1 | 119.8 (4) | H1N3—N3—H2N3 | 100.8 |
C1—N1—H1N1 | 120.1 | N1—O1—H1O1 | 107.0 |
O2—C1—C2—O3 | 178.1 (5) | O2—C1—N1—O1 | 0.0 (6) |
N1—C1—C2—O3 | −2.3 (4) | C2—C1—N1—O1 | −179.6 (3) |
O2—C1—C2—N2 | −3.1 (4) | O3—C2—N2—N3 | 0.8 (6) |
N1—C1—C2—N2 | 176.5 (4) | C1—C2—N2—N3 | −178.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O3i | 0.88 | 2.02 | 2.813 (5) | 149 |
O1—H1O1···N3ii | 0.95 | 1.83 | 2.740 (4) | 161 |
O1—H1O1···N3ii | 0.95 | 1.83 | 2.740 (4) | 161 |
N3—H1N3···O1iii | 0.90 | 2.29 | 3.013 (3) | 137 |
N3—H2N3···O1iv | 0.93 | 2.44 | 3.024 (4) | 121 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x, −y+2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C2H5N3O3 |
Mr | 119.09 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 77 |
a, b, c (Å) | 9.3968 (7), 3.6728 (2), 12.7510 (8) |
β (°) | 95.598 (5) |
V (Å3) | 437.97 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.17 |
Crystal size (mm) | 0.12 × 0.10 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.980, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1149, 445, 404 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.077, 1.06 |
No. of reflections | 445 |
No. of parameters | 74 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.20 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O3i | 0.88 | 2.02 | 2.813 (5) | 148.7 |
O1—H1O1···N3ii | 0.95 | 1.83 | 2.740 (4) | 161.3 |
O1—H1O1···N3ii | 0.95 | 1.83 | 2.740 (4) | 161.3 |
N3—H1N3···O1iii | 0.90 | 2.29 | 3.013 (3) | 137.4 |
N3—H2N3···O1iv | 0.93 | 2.44 | 3.024 (4) | 121.0 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x, −y+2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) x, −y+1, z−1/2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009). We are grateful to Professor Igor O. Fritsky and Dr Yurii S. Moroz for helpful discussions.
References
Bodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev. 216–217, 489–512. Web of Science CrossRef CAS Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Glowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Światek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Web of Science CSD CrossRef CAS Google Scholar
Kaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340–343. CrossRef PubMed CAS Web of Science Google Scholar
Komatsu, Y., Tomizaki, K., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai, R., Yoshida, M., Horinouchi, S. & Hayashi, H. (2001). Cancer Res. 61, 4459–4466. Web of Science PubMed CAS Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozlowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Glowiak, T., Onindo, C. O., Fritsky, I. O. & Kozlowski, H. (1997b). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydroxamic acids represent an important class of chelating agents and recently have been used for synthesis of metallocrown compounds (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000; Bodwin et al., 2001; Gumienna-Kontecka et al., 2007). Besides, it is known that hydroxamic acids can act as inhibitors of enzymes as well as promising antitumor agents (Kaczka et al.,1962; Komatsu et al., 2001). Therefore, study of new hydroxamic acids is timely and important research topic. As a part of our on-going work, we report the structure of the title compound (1), which comprises several groups capable to form hydrogen bond interactions.
The molecular structure of (1) is shown in Fig. 1. The hydroxamic group is in anti-position with respect to the hydrazide group. The carbonyl groups are in trans-position with respect to each other, and the NH2 group is cis with respect to the hydrazide carbonyl and the OH group is cis with respect to the hydroxamic carbonyl. The C1—N1 , N1—O1 , C1—O2, C2—O3, C2—N2, N2—N3 bond lengths are 1.319 (5) Å, 1.381 (5) Å, 1.242 (6) Å, 1.220 (5) Å, 1.321 (4) Å and 1.422 (6) Å respectively, adopt typical values to the hydroxamic and hydrazide groups (Sliva et al., 1997a, b); Mokhir et al., 2002; Fritsky et al., 2006; Moroz et al., 2008).
In the crystal the molecules are connected by N—H···O, O—H···N hydrogen bonds (Table 1, Fig. 2) into supramolecular zig-zag chains along the c-axis.