organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[Bis(di­methyl­amino)phosphinoyl]-2,2,2-tri­chloro­acetamide

aKyiv National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: amirkhalex@gmail.com

(Received 12 April 2010; accepted 13 April 2010; online 17 April 2010)

In the title compound, C6H13Cl3N3O2P or CCl3C(O)NHP(O)(N(CH3)2), the phosphinoyl group is synclinal to the carbonyl group and acts as an acceptor for an inter­molecular N—H⋯O hydrogen bond from the amide group as the donor.

Related literature

For the biological and pharmacological properties of carbacyl­amido­phosphate derivatives, see: Adams et al. (2002[Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004-2005.]); Grimes et al. (2008[Grimes, K. D., Lu, Y.-J., Zhang, Y.-M., Luna, V. A., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, C. O. & Lee, R. E. (2008). ChemMedChem, 3, 1936-1945.]). For structural and conformation studies of related mol­ecules, see: Gholivand et al. (2008a[Gholivand, K., Alizadehgan, A., Mojahed, F. & Soleimani, P. (2008a). Polyhedron, 27, 1639-1649.],b[Gholivand, K., Vedova, C., Erben, M., Mahzouni, H., Shariatinia, Z. & Amiri, S. (2008b). J. Mol. Struct. 874, 178-186.]); Skopenko et al. (2004[Skopenko, V., Amirkhanov, V., Sliva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797-813.]); Znovjyak et al. (2009a[Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009a). Polyhedron, 28, 3731-3738.],b[Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V. & Amirkhanov, V. M. (2009b). Acta Cryst. E65, o2812.]). For details of the synthesis, see: Kirsanov & Derkach (1956[Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009-2014.]). For P—O bond lengths in compounds with amide substituents close to phospho­rus atoms, see: Rebrova et al. (1982[Rebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk USSR, 324, 103-108.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13Cl3N3O2P

  • Mr = 296.51

  • Orthorhombic, P b c a

  • a = 15.794 (3) Å

  • b = 15.820 (3) Å

  • c = 9.739 (2) Å

  • V = 2433.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 100 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.624, Tmax = 0.845

  • 35140 measured reflections

  • 5631 independent reflections

  • 4869 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.15

  • 5631 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.828 (16) 1.968 (16) 2.7586 (11) 159.3 (16)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

P, N-substituted analogues of β-diketones – carbacylamidophosphates (CAPh), which comprise C(O)NHP(O) structural fragment, have attracted attention because of their using in pharmacology, as insecticides, pesticides and ureas inhibitor (Adams et al., 2002; Grimes et al., 2008). A variety of new coordination compounds with s-, p-, d- and f-metals based on the CAPh have been synthesized and characterized up to date (Skopenko et al., 2004; Znovjyak et al., 2009a). Thus, the syntheses and structure analysis of CAPh have been of increased interest (Gholivand et al., 2008a). In this paper we report the crystal structure of a new CAPh – N-[bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide (1).

In the crystal packing molecules of 1 are linked to each other by intermolecular hydrogen bonds (N–H···O), where amide nitrogen atom of one molecule acts as donor and oxygen atom of phosphinoyl group of neighboring molecule acts as acceptor (Fig. 2). The bond distance P(1)—O(1) (1.478 (1) Å) is typical for compounds with amide substituents close to phosphorus atoms (Rebrova et al., 1982) and CAPh (Znovjyak et al., 2009b). The values of C(1)—O(2) and C(1)—N(1) are 1.215 (1) Å and 1.355 (1) Å, respectively and close to the corresponding values of the CAPh (Gholivand et al., 2008b). The P(1)—N(1) (1.714 (1) Å) distance in 1 is longer on average by 0.08 Å than P—N bond distances between amide substituents and phosphorus atoms (P(1)—N(2), P(1)—N(3)). The geometry around the phosphorus atom in 1 can be described as a distorted tetrahedron and which is similar to early reported CAPh. The O(1)—P(1)—N(1) angle value is close to near tetrahedral one (109.61 (4)°), while other O—P—N angels have values 113.19 (4)° and 116.53 (4)°, that may be explained by the repulsion between amide substituents and PO group. Fragment O(2)—C(1)—N(1)—P(1) is close to planarity (the torsion angle is -176.6°).

Related literature top

For the biological and pharmacological properties of carbacylamidophosphate derivatives, see: Adams et al. (2002); Grimes et al. (2008). For structural and conformation studies of related molecules, see: Gholivand et al. (2008a,b); Skopenko et al. (2004); Znovjyak et al. (2009a,b). For details of the synthesis, see: Kirsanov & Derkach (1956). For P—O bond lengths in compounds with amide substituents close to phosphorus atoms, see: Rebrova et al. (1982).

Experimental top

The dichloranhydride of trichloroacetylamidophosphoric acid (CCl3C(O)NHP(O)Cl2) was prepared according to the method reported by Kirsanov (Kirsanov et al., 1956).

The dioxane solution (200 ml) of CCl3C(O)NHP(O)Cl2 (27.9 g, 0.1 mol) was placed in a three-neck round-bottomed flask and cooled by ice to 268 K. Then the dry dimethylamine (18.03 g, 0.4 mol) was bubbled through the dioxane solution of CCl3C(O)NHP(O)Cl2 under stirring until the solution became alkaline. The temperature was not allowed to rise above 278 K. The stirring was continued for 1 h and the solution was left under ambient conditions. HN(CH3)2.HCl was filtered off after 12 h and the filtrate was evaporated. The oily precipitate of 1 was isolated and recrystallized from 2-propanol which led to formation of white crystalline powder (yield 80%). White needle-shaped crystals suitable for X-ray analysis were formed over a period of 5 days from the 2-propanol/hexane solution. IR (KBr pellet, cm-1): 3070 (ν(NH)), 1715 (ν(CO)), 1205 (ν(PO)), 1000 (ν(PNamine)), 867 (ν(PNamide)), 676 (ν(CCl)).

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Structure description top

P, N-substituted analogues of β-diketones – carbacylamidophosphates (CAPh), which comprise C(O)NHP(O) structural fragment, have attracted attention because of their using in pharmacology, as insecticides, pesticides and ureas inhibitor (Adams et al., 2002; Grimes et al., 2008). A variety of new coordination compounds with s-, p-, d- and f-metals based on the CAPh have been synthesized and characterized up to date (Skopenko et al., 2004; Znovjyak et al., 2009a). Thus, the syntheses and structure analysis of CAPh have been of increased interest (Gholivand et al., 2008a). In this paper we report the crystal structure of a new CAPh – N-[bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide (1).

In the crystal packing molecules of 1 are linked to each other by intermolecular hydrogen bonds (N–H···O), where amide nitrogen atom of one molecule acts as donor and oxygen atom of phosphinoyl group of neighboring molecule acts as acceptor (Fig. 2). The bond distance P(1)—O(1) (1.478 (1) Å) is typical for compounds with amide substituents close to phosphorus atoms (Rebrova et al., 1982) and CAPh (Znovjyak et al., 2009b). The values of C(1)—O(2) and C(1)—N(1) are 1.215 (1) Å and 1.355 (1) Å, respectively and close to the corresponding values of the CAPh (Gholivand et al., 2008b). The P(1)—N(1) (1.714 (1) Å) distance in 1 is longer on average by 0.08 Å than P—N bond distances between amide substituents and phosphorus atoms (P(1)—N(2), P(1)—N(3)). The geometry around the phosphorus atom in 1 can be described as a distorted tetrahedron and which is similar to early reported CAPh. The O(1)—P(1)—N(1) angle value is close to near tetrahedral one (109.61 (4)°), while other O—P—N angels have values 113.19 (4)° and 116.53 (4)°, that may be explained by the repulsion between amide substituents and PO group. Fragment O(2)—C(1)—N(1)—P(1) is close to planarity (the torsion angle is -176.6°).

For the biological and pharmacological properties of carbacylamidophosphate derivatives, see: Adams et al. (2002); Grimes et al. (2008). For structural and conformation studies of related molecules, see: Gholivand et al. (2008a,b); Skopenko et al. (2004); Znovjyak et al. (2009a,b). For details of the synthesis, see: Kirsanov & Derkach (1956). For P—O bond lengths in compounds with amide substituents close to phosphorus atoms, see: Rebrova et al. (1982).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structural representation of 1 with atom numbering scheme and 50% probability thermal ellipsoid. The hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A projection of packing diagram of the title compound along the y direction. Hydrogen bonds are indicated by dashed lines. H and Cl atoms are omitted for clarity.
N-[Bis(dimethylamino)phosphinoyl]-2,2,2-trichloroacetamide top
Crystal data top
C6H13Cl3N3O2PF(000) = 1216
Mr = 296.51Dx = 1.619 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 35140 reflections
a = 15.794 (3) Åθ = 3.6–36.1°
b = 15.820 (3) ŵ = 0.87 mm1
c = 9.739 (2) ÅT = 100 K
V = 2433.4 (8) Å3Block, white
Z = 80.60 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
5631 independent reflections
Radiation source: Enhance (Mo) X-ray Source4869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3359 pixels mm-1θmax = 36.1°, θmin = 3.6°
ω scansh = 2626
Absorption correction: gaussian
Coppens et al. (1965)
k = 2525
Tmin = 0.624, Tmax = 0.845l = 1215
35140 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.5268P]
where P = (Fo2 + 2Fc2)/3
5631 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C6H13Cl3N3O2PV = 2433.4 (8) Å3
Mr = 296.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.794 (3) ŵ = 0.87 mm1
b = 15.820 (3) ÅT = 100 K
c = 9.739 (2) Å0.60 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
5631 independent reflections
Absorption correction: gaussian
Coppens et al. (1965)
4869 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.845Rint = 0.032
35140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.46 e Å3
5631 reflectionsΔρmin = 0.40 e Å3
144 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.285320 (15)0.522358 (14)0.42665 (2)0.00982 (5)
C10.14518 (6)0.60952 (6)0.48883 (9)0.01181 (14)
C20.06928 (6)0.62610 (5)0.58869 (9)0.01177 (15)
Cl10.033556 (15)0.534225 (14)0.67522 (3)0.01615 (5)
Cl20.104133 (16)0.701650 (14)0.71094 (2)0.01672 (5)
Cl30.015884 (16)0.668869 (15)0.49346 (3)0.01985 (6)
O10.26191 (5)0.51406 (5)0.28033 (7)0.01480 (12)
O20.15469 (5)0.65692 (5)0.39188 (8)0.02050 (15)
N10.19672 (5)0.54418 (5)0.52192 (8)0.01086 (13)
N20.35444 (5)0.59761 (5)0.45503 (8)0.01341 (14)
N30.32000 (5)0.43758 (5)0.50197 (9)0.01413 (14)
C30.36307 (7)0.63290 (7)0.59326 (10)0.01877 (18)
H3A0.34490.59080.66100.028*
H3B0.32770.68350.60140.028*
H3C0.42240.64790.60990.028*
C40.37770 (7)0.65551 (6)0.34435 (11)0.01709 (17)
H4A0.34340.70700.35100.026*
H4B0.36750.62820.25560.026*
H4C0.43780.67020.35230.026*
C50.40306 (6)0.42489 (7)0.56243 (11)0.01898 (18)
H5A0.43710.47620.55070.028*
H5B0.43130.37740.51690.028*
H5C0.39690.41260.66050.028*
C60.26438 (7)0.36368 (6)0.51134 (12)0.01950 (19)
H6A0.29060.31580.46360.029*
H6B0.20980.37670.46860.029*
H6C0.25560.34910.60810.029*
H1N0.1961 (10)0.5241 (9)0.6005 (17)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01062 (9)0.01090 (9)0.00794 (9)0.00005 (7)0.00106 (7)0.00067 (7)
C10.0138 (4)0.0121 (3)0.0095 (3)0.0019 (3)0.0007 (3)0.0001 (3)
C20.0123 (3)0.0113 (3)0.0117 (4)0.0021 (3)0.0013 (3)0.0018 (3)
Cl10.01546 (10)0.01469 (9)0.01831 (11)0.00068 (7)0.00464 (8)0.00048 (7)
Cl20.02070 (10)0.01642 (10)0.01304 (10)0.00216 (7)0.00055 (8)0.00503 (7)
Cl30.01663 (10)0.01936 (10)0.02357 (12)0.00705 (8)0.00704 (9)0.00265 (8)
O10.0174 (3)0.0188 (3)0.0082 (3)0.0010 (2)0.0010 (2)0.0026 (2)
O20.0275 (4)0.0196 (3)0.0144 (3)0.0069 (3)0.0044 (3)0.0073 (3)
N10.0119 (3)0.0131 (3)0.0076 (3)0.0026 (2)0.0013 (2)0.0018 (2)
N20.0165 (3)0.0145 (3)0.0092 (3)0.0034 (3)0.0001 (3)0.0002 (2)
N30.0116 (3)0.0120 (3)0.0188 (4)0.0006 (2)0.0001 (3)0.0027 (3)
C30.0226 (5)0.0203 (4)0.0134 (4)0.0056 (3)0.0021 (3)0.0032 (3)
C40.0195 (4)0.0157 (4)0.0160 (4)0.0041 (3)0.0007 (3)0.0031 (3)
C50.0147 (4)0.0214 (4)0.0208 (5)0.0021 (3)0.0032 (4)0.0047 (4)
C60.0177 (4)0.0124 (4)0.0284 (5)0.0003 (3)0.0031 (4)0.0013 (3)
Geometric parameters (Å, º) top
P1—O11.4780 (8)N3—C61.4652 (13)
P1—N31.6239 (8)C3—H3A0.9800
P1—N21.6388 (8)C3—H3B0.9800
P1—N11.7141 (8)C3—H3C0.9800
C1—O21.2151 (11)C4—H4A0.9800
C1—N11.3546 (12)C4—H4B0.9800
C1—C21.5658 (13)C4—H4C0.9800
C2—Cl31.7684 (9)C5—H5A0.9800
C2—Cl11.7723 (10)C5—H5B0.9800
C2—Cl21.7745 (9)C5—H5C0.9800
N1—H1N0.828 (16)C6—H6A0.9800
N2—C41.4614 (13)C6—H6B0.9800
N2—C31.4637 (13)C6—H6C0.9800
N3—C51.4518 (13)
O1—P1—N3116.53 (4)N2—C3—H3A109.5
O1—P1—N2113.19 (4)N2—C3—H3B109.5
N3—P1—N2107.40 (4)H3A—C3—H3B109.5
O1—P1—N1109.61 (4)N2—C3—H3C109.5
N3—P1—N1101.37 (4)H3A—C3—H3C109.5
N2—P1—N1107.83 (4)H3B—C3—H3C109.5
O2—C1—N1125.55 (9)N2—C4—H4A109.5
O2—C1—C2118.29 (8)N2—C4—H4B109.5
N1—C1—C2116.12 (8)H4A—C4—H4B109.5
C1—C2—Cl3108.70 (6)N2—C4—H4C109.5
C1—C2—Cl1113.68 (6)H4A—C4—H4C109.5
Cl3—C2—Cl1108.72 (5)H4B—C4—H4C109.5
C1—C2—Cl2106.98 (6)N3—C5—H5A109.5
Cl3—C2—Cl2109.28 (5)N3—C5—H5B109.5
Cl1—C2—Cl2109.40 (5)H5A—C5—H5B109.5
C1—N1—P1121.03 (7)N3—C5—H5C109.5
C1—N1—H1N120.3 (11)H5A—C5—H5C109.5
P1—N1—H1N115.7 (11)H5B—C5—H5C109.5
C4—N2—C3114.58 (8)N3—C6—H6A109.5
C4—N2—P1119.89 (7)N3—C6—H6B109.5
C3—N2—P1119.62 (7)H6A—C6—H6B109.5
C5—N3—C6113.97 (8)N3—C6—H6C109.5
C5—N3—P1127.02 (7)H6A—C6—H6C109.5
C6—N3—P1119.00 (7)H6B—C6—H6C109.5
O2—C1—C2—Cl332.74 (11)N3—P1—N2—C4138.23 (8)
N1—C1—C2—Cl3149.48 (7)N1—P1—N2—C4113.24 (8)
O2—C1—C2—Cl1153.97 (8)O1—P1—N2—C3159.66 (7)
N1—C1—C2—Cl128.25 (10)N3—P1—N2—C370.29 (8)
O2—C1—C2—Cl285.16 (10)N1—P1—N2—C338.24 (9)
N1—C1—C2—Cl292.62 (8)O1—P1—N3—C5118.05 (9)
O2—C1—N1—P11.02 (14)N2—P1—N3—C510.10 (10)
C2—C1—N1—P1176.58 (6)N1—P1—N3—C5123.08 (9)
O1—P1—N1—C153.07 (8)O1—P1—N3—C661.17 (9)
N3—P1—N1—C1176.80 (7)N2—P1—N3—C6170.68 (7)
N2—P1—N1—C170.54 (8)N1—P1—N3—C657.70 (8)
O1—P1—N2—C48.18 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.828 (16)1.968 (16)2.7586 (11)159.3 (16)
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H13Cl3N3O2P
Mr296.51
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)15.794 (3), 15.820 (3), 9.739 (2)
V3)2433.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 (large Be window)
Absorption correctionGaussian
Coppens et al. (1965)
Tmin, Tmax0.624, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
35140, 5631, 4869
Rint0.032
(sin θ/λ)max1)0.828
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.15
No. of reflections5631
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.828 (16)1.968 (16)2.7586 (11)159.3 (16)
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to Dr Yu. S. Moroz for his kind assistance in the preparation of the manuscript.

References

First citationAdams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martín, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. pp. 2004–2005.  Web of Science CrossRef Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Alizadehgan, A., Mojahed, F. & Soleimani, P. (2008a). Polyhedron, 27, 1639–1649.  Web of Science CSD CrossRef CAS Google Scholar
First citationGholivand, K., Vedova, C., Erben, M., Mahzouni, H., Shariatinia, Z. & Amiri, S. (2008b). J. Mol. Struct. 874, 178–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrimes, K. D., Lu, Y.-J., Zhang, Y.-M., Luna, V. A., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, C. O. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009–2014.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk USSR, 324, 103–108.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkopenko, V., Amirkhanov, V., Sliva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797–813.  Google Scholar
First citationZnovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009a). Polyhedron, 28, 3731–3738.  Web of Science CSD CrossRef CAS Google Scholar
First citationZnovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V. & Amirkhanov, V. M. (2009b). Acta Cryst. E65, o2812.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds