organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Methyl­enedipyridinium dichloride monohydrate

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 April 2010; accepted 24 April 2010; online 30 April 2010)

In the crystal structure of the title salt, C11H12N22+·2Cl·H2O, the dication adopts a butterfly shape [dihedral angle between rings = 69.0 (1)°] with the water mol­ecule lying in the V-shaped cavity. Each O—H bond of the water molecule lies parallel to an aromatic ring and forms an O—H⋯Cl inter­action to a chloride anion. The methyl­ene C atom in the dication and the water O atoms lie on special positions of twofold site symmetry.

Related literature

For the synthesis, see: Almarzoqi et al. (1986[Almarzoqi, B., George, A. V. & Isaacs, N. S. (1986). Tetrahedron, 42, 601-607.]). For the crystal structure of dipyridiniomethane diiodide, see: Brüdgam & Hartl (1986[Brüdgam, I. & Hartl, H. (1986). Acta Cryst. C42, 866-868.]). For background to the use of similar compounds in the synthesis of coordination polymers, see: Niu et al. (2008[Niu, Y. Y., Wu, B. L., Guo, X. L., Song, Y. L., Liu, X. C., Zhang, H. Y., Hou, H. W., Niu, C. Y. & Ng, S. W. (2008). Cryst. Growth Des. 8, 2393-2401.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N22+·2Cl·H2O

  • Mr = 261.14

  • Orthorhombic, F d d 2

  • a = 16.3384 (15) Å

  • b = 19.0958 (18) Å

  • c = 7.7916 (7) Å

  • V = 2430.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.861, Tmax = 0.950

  • 5641 measured reflections

  • 1389 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.04

  • 1389 reflections

  • 78 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 642 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯Cl1 0.85 (1) 2.37 (1) 3.216 (1) 177 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Dichloromethane reacts with tertiary amines under high pressure to form bis-ammonium salts, as exemplified by its reaction with pyridine (Almarzoqi et al., 1986). This class of compounds represents a class of ammonium salts that are excellent directing regents for the construction of metal–organic architectures (Niu et al., 2008). The structure of the dipyridiniomethane dichloride homolog has not been reported but the structure of the anhydrous diiodide has been known for some time. The salt shows short cation–iodine contacts [3.620 (7)–3.742 (9) Å], which are believed to render the salt useful for studing charge-transfer processes in the solid state (Brüdgam & Hartl, 1986). Dipyridiniomethane dichloride crystallizes as a dihydrate (Scheme I, Fig. 1). The dication lies about a two-fold rotation axis that passes through the methylene carbon atom [N–C–N 110.2 (2) °]; the water molecule also lies on a two-fold rotation axis; the molecule is hydrogen–bond donor to the chorine atom.

Related literature top

For the synthesis, see: Almarzoqi et al. (1986). For the crystal structure of dipyridiniomethane diiodide, see: Brüdgam & Hartl (1986). For background to the use of similar compounds in the synthesis of coordination polymers, see: Niu et al. (2008).

Experimental top

The compound was synthesized as described by Almarzoqi et al. (1986). The attempt to react it with CuI and [NH4]2[WO2S2] in a methanol-DMF mixture. returned the salt as rice-bead shaped yellow crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The water H-atom was located in a difference Fourier map, and was refined with a restraint of O–H 0.84±0.01 Å.

Structure description top

Dichloromethane reacts with tertiary amines under high pressure to form bis-ammonium salts, as exemplified by its reaction with pyridine (Almarzoqi et al., 1986). This class of compounds represents a class of ammonium salts that are excellent directing regents for the construction of metal–organic architectures (Niu et al., 2008). The structure of the dipyridiniomethane dichloride homolog has not been reported but the structure of the anhydrous diiodide has been known for some time. The salt shows short cation–iodine contacts [3.620 (7)–3.742 (9) Å], which are believed to render the salt useful for studing charge-transfer processes in the solid state (Brüdgam & Hartl, 1986). Dipyridiniomethane dichloride crystallizes as a dihydrate (Scheme I, Fig. 1). The dication lies about a two-fold rotation axis that passes through the methylene carbon atom [N–C–N 110.2 (2) °]; the water molecule also lies on a two-fold rotation axis; the molecule is hydrogen–bond donor to the chorine atom.

For the synthesis, see: Almarzoqi et al. (1986). For the crystal structure of dipyridiniomethane diiodide, see: Brüdgam & Hartl (1986). For background to the use of similar compounds in the synthesis of coordination polymers, see: Niu et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C11H12N2]2+ 2Cl-.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1,1'-Methylenedipyridinium dichloride monohydrate top
Crystal data top
C11H12N22+·2Cl·H2OF(000) = 1088
Mr = 261.14Dx = 1.427 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F2 -2dCell parameters from 2704 reflections
a = 16.3384 (15) Åθ = 3.1–28.2°
b = 19.0958 (18) ŵ = 0.51 mm1
c = 7.7916 (7) ÅT = 100 K
V = 2430.9 (4) Å3Bead, yellow
Z = 80.30 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
1389 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.861, Tmax = 0.950k = 2324
5641 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.2206P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1389 reflectionsΔρmax = 0.23 e Å3
78 parametersΔρmin = 0.16 e Å3
2 restraintsAbsolute structure: Flack (1983), 642 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C11H12N22+·2Cl·H2OV = 2430.9 (4) Å3
Mr = 261.14Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 16.3384 (15) ŵ = 0.51 mm1
b = 19.0958 (18) ÅT = 100 K
c = 7.7916 (7) Å0.30 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX
diffractometer
1389 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1333 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.950Rint = 0.028
5641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056Δρmax = 0.23 e Å3
S = 1.04Δρmin = 0.16 e Å3
1389 reflectionsAbsolute structure: Flack (1983), 642 Friedel pairs
78 parametersAbsolute structure parameter: 0.01 (6)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.12462 (2)0.17275 (2)0.49998 (5)0.01587 (10)
O1W0.25000.25000.2443 (2)0.0215 (3)
H10.2178 (13)0.2280 (11)0.311 (3)0.045 (7)*
N10.18673 (8)0.21731 (7)0.11511 (17)0.0151 (3)
C10.19934 (9)0.15212 (8)0.0531 (2)0.0166 (3)
H1A0.24900.12830.07800.020*
C20.14070 (9)0.12028 (8)0.0456 (2)0.0179 (3)
H20.14950.07440.08920.021*
C30.06819 (9)0.15569 (8)0.0813 (2)0.0181 (3)
H30.02720.13450.15030.022*
C40.05662 (9)0.22220 (8)0.0150 (2)0.0206 (3)
H40.00720.24680.03730.025*
C50.11688 (10)0.25259 (9)0.0834 (2)0.0185 (3)
H50.10930.29830.12890.022*
C60.25000.25000.2232 (3)0.0204 (5)
H6A0.27540.21410.29780.024*0.50
H6B0.22460.28590.29780.024*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01387 (14)0.01789 (17)0.01585 (16)0.00100 (12)0.00111 (14)0.00074 (14)
O1W0.0237 (8)0.0210 (8)0.0199 (9)0.0049 (6)0.0000.000
N10.0153 (6)0.0175 (6)0.0127 (6)0.0044 (5)0.0002 (5)0.0016 (5)
C10.0141 (7)0.0166 (7)0.0191 (8)0.0001 (6)0.0005 (6)0.0034 (6)
C20.0184 (7)0.0149 (8)0.0204 (8)0.0012 (6)0.0016 (6)0.0001 (6)
C30.0153 (7)0.0222 (8)0.0166 (8)0.0065 (6)0.0019 (6)0.0034 (7)
C40.0150 (6)0.0207 (7)0.0261 (9)0.0011 (6)0.0001 (7)0.0066 (7)
C50.0183 (8)0.0154 (8)0.0219 (9)0.0013 (6)0.0067 (6)0.0025 (7)
C60.0199 (10)0.0282 (12)0.0131 (11)0.0111 (9)0.0000.000
Geometric parameters (Å, º) top
O1W—H10.85 (1)C3—C41.384 (2)
N1—C51.348 (2)C3—H30.9500
N1—C11.351 (2)C4—C51.376 (2)
N1—C61.4724 (18)C4—H40.9500
C1—C21.371 (2)C5—H50.9500
C1—H1A0.9500C6—N1i1.4724 (18)
C2—C31.392 (2)C6—H6A0.9900
C2—H20.9500C6—H6B0.9900
C5—N1—C1121.60 (14)C5—C4—C3119.82 (14)
C5—N1—C6119.16 (12)C5—C4—H4120.1
C1—N1—C6119.22 (12)C3—C4—H4120.1
N1—C1—C2120.18 (15)N1—C5—C4119.80 (16)
N1—C1—H1A119.9N1—C5—H5120.1
C2—C1—H1A119.9C4—C5—H5120.1
C1—C2—C3119.44 (15)N1i—C6—N1110.20 (18)
C1—C2—H2120.3N1i—C6—H6A109.6
C3—C2—H2120.3N1—C6—H6A109.6
C4—C3—C2119.15 (14)N1i—C6—H6B109.6
C4—C3—H3120.4N1—C6—H6B109.6
C2—C3—H3120.4H6A—C6—H6B108.1
C5—N1—C1—C20.4 (2)C1—N1—C5—C40.3 (2)
C6—N1—C1—C2178.98 (14)C6—N1—C5—C4178.89 (16)
N1—C1—C2—C30.0 (2)C3—C4—C5—N10.2 (2)
C1—C2—C3—C40.5 (2)C5—N1—C6—N1i97.68 (14)
C2—C3—C4—C50.6 (2)C1—N1—C6—N1i83.73 (13)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···Cl10.85 (1)2.37 (1)3.216 (1)177 (2)

Experimental details

Crystal data
Chemical formulaC11H12N22+·2Cl·H2O
Mr261.14
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)16.3384 (15), 19.0958 (18), 7.7916 (7)
V3)2430.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.861, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
5641, 1389, 1333
Rint0.028
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.04
No. of reflections1389
No. of parameters78
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.16
Absolute structureFlack (1983), 642 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···Cl10.85 (1)2.37 (1)3.216 (1)177 (2)
 

Acknowledgements

We thank Zhengzhou University and the University of Malaya for supporting this study.

References

First citationAlmarzoqi, B., George, A. V. & Isaacs, N. S. (1986). Tetrahedron, 42, 601–607.  CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrüdgam, I. & Hartl, H. (1986). Acta Cryst. C42, 866–868.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNiu, Y. Y., Wu, B. L., Guo, X. L., Song, Y. L., Liu, X. C., Zhang, H. Y., Hou, H. W., Niu, C. Y. & Ng, S. W. (2008). Cryst. Growth Des. 8, 2393–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds