organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2,4,5-Tri­meth­oxy­benzyl­­idene)isonicotinohydrazide dihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 April 2010; accepted 26 April 2010; online 30 April 2010)

The asymmetric unit of the title compound, C16H17N3O4·2H2O, contains one Schiff base mol­ecule and two water mol­ecules. The Schiff base mol­ecule exists in an E configuration with respect to the C=N double bond and is essentially planar, the dihedral angle between the benzene and pyridine rings being 5.48 (8)°. The three meth­oxy groups are also coplanar with the benzene ring [C—O—C—C torsion angles = 3.9 (2), 178.51 (15) and 0.8 (2) Å]. In the crystal structure, the water mol­ecules link the mol­ecules into a three-dimensional network via inter­molecular N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For the preparation of the title compound, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For related structures, see: Naveenkumar et al. (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540-o2541.], 2010a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.],b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O4·2H2O

  • Mr = 351.36

  • Monoclinic, P 21

  • a = 6.8156 (4) Å

  • b = 14.5648 (10) Å

  • c = 8.5589 (5) Å

  • β = 103.421 (2)°

  • V = 826.42 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.50 × 0.28 × 0.19 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.979

  • 10676 measured reflections

  • 2254 independent reflections

  • 2171 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.126

  • S = 1.17

  • 2254 reflections

  • 233 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2W 0.88 (3) 2.05 (3) 2.916 (2) 171 (2)
O2W—H1W2⋯O1W 0.84 1.93 2.748 (2) 167
O2W—H2W2⋯N1i 0.83 2.10 2.887 (2) 158
O1W—H1W1⋯O3ii 0.85 2.18 2.8913 (19) 141
O1W—H1W1⋯O4ii 0.85 2.43 3.204 (2) 152
O1W—H2W1⋯O1iii 0.86 1.99 2.834 (2) 170
C4—H4A⋯O2W 0.93 2.34 3.253 (3) 169
C7—H7A⋯O2W 0.93 2.58 3.375 (2) 143
C14—H14A⋯O4iii 0.96 2.60 3.281 (2) 128
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound which was synthesized in our lab.

The asymmetric unit consists of one Schiff base molecule and two water molecules (Fig. 1). The geometry parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010a, b; Shi, 2005). The molecule exists in an E configuration with respect to the C7N3 double bond. The molecule is essentially coplanar with dihedral angle between the benzene ring and the pyridine ring being 5.48 (8)°. The three methoxy groups are coplanar with the benzene ring [torsion angle, C14–O2–C9–C10 = 3.9 (2), C15–O3–C11–C12 = 178.51 (15), C16–O4–C12–C13 = 0.8 (2) Å]. In the crystal structure, the water molecules link the molecules into a three-dimensional network by the intermolecular N–H···O, O–H···O O–H···N and C–H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid derivative was prepared following the procedure by Lourenco et al., (2008). The title compound was prepared by reaction between 2, 4, 5-trimethoxybenzaldehyde (1.0 eq) and isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 hours at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. The yellow single crystal suitable for X-ray analysis was obtained by recrystalization with methanol.

Refinement top

N-bound and O-bound hydrogen atoms were located from the difference Fourier map. The N-bound hydrogen atom was refined freely and the O-bound hydrogen atoms were constrained to ride on the parent atom with Uiso(H) = 1.5 Ueq(O). The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating-group models were applied for the methyl groups. As there is not enough anomalous dispersion to determine the absolute configuration, 4136 Friedel pairs were merged before final refinement.

Structure description top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound which was synthesized in our lab.

The asymmetric unit consists of one Schiff base molecule and two water molecules (Fig. 1). The geometry parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010a, b; Shi, 2005). The molecule exists in an E configuration with respect to the C7N3 double bond. The molecule is essentially coplanar with dihedral angle between the benzene ring and the pyridine ring being 5.48 (8)°. The three methoxy groups are coplanar with the benzene ring [torsion angle, C14–O2–C9–C10 = 3.9 (2), C15–O3–C11–C12 = 178.51 (15), C16–O4–C12–C13 = 0.8 (2) Å]. In the crystal structure, the water molecules link the molecules into a three-dimensional network by the intermolecular N–H···O, O–H···O O–H···N and C–H···O hydrogen bonds (Fig. 2, Table 1).

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(2,4,5-Trimethoxybenzylidene)isonicotinohydrazide dihydrate top
Crystal data top
C16H17N3O4·2H2OF(000) = 372
Mr = 351.36Dx = 1.412 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6099 reflections
a = 6.8156 (4) Åθ = 3.1–37.4°
b = 14.5648 (10) ŵ = 0.11 mm1
c = 8.5589 (5) ÅT = 100 K
β = 103.421 (2)°Block, yellow
V = 826.42 (9) Å30.50 × 0.28 × 0.19 mm
Z = 2
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube2171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 29.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.947, Tmax = 0.979k = 1919
10676 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.098P)2]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
C16H17N3O4·2H2OV = 826.42 (9) Å3
Mr = 351.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.8156 (4) ŵ = 0.11 mm1
b = 14.5648 (10) ÅT = 100 K
c = 8.5589 (5) Å0.50 × 0.28 × 0.19 mm
β = 103.421 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2171 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.979Rint = 0.025
10676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.57 e Å3
2254 reflectionsΔρmin = 0.56 e Å3
233 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7986 (2)0.81175 (12)1.11648 (15)0.0180 (3)
O20.6823 (2)1.23398 (11)0.79017 (15)0.0156 (3)
O30.8195 (2)1.38828 (11)1.30523 (16)0.0189 (3)
O40.89952 (19)1.23697 (11)1.45332 (14)0.0162 (3)
N10.6308 (2)0.59240 (13)0.6538 (2)0.0172 (3)
N20.7323 (2)0.91163 (13)0.90629 (17)0.0130 (3)
N30.7635 (2)0.98623 (13)1.00977 (19)0.0138 (3)
C10.7218 (3)0.65940 (15)0.9179 (2)0.0171 (4)
H1A0.75680.65051.02850.020*
C20.6821 (3)0.58454 (16)0.8141 (2)0.0206 (4)
H2A0.69170.52600.85840.025*
C30.6190 (3)0.67728 (16)0.5943 (2)0.0170 (4)
H3A0.58370.68410.48330.020*
C40.6562 (3)0.75638 (15)0.6879 (2)0.0165 (4)
H4A0.64630.81410.64030.020*
C50.7087 (2)0.74703 (14)0.8545 (2)0.0118 (4)
C60.7510 (2)0.82624 (14)0.9712 (2)0.0126 (4)
C70.7415 (2)1.06540 (15)0.9400 (2)0.0127 (3)
H7A0.71001.06850.82850.015*
C80.7652 (2)1.14993 (14)1.0336 (2)0.0117 (3)
C90.7321 (2)1.23481 (15)0.9547 (2)0.0122 (4)
C100.7488 (3)1.31661 (14)1.0429 (2)0.0131 (4)
H10A0.72421.37270.99020.016*
C110.8021 (2)1.31332 (14)1.2090 (2)0.0130 (4)
C120.8412 (2)1.22870 (15)1.2901 (2)0.0128 (4)
C130.8203 (2)1.14806 (14)1.2032 (2)0.0116 (3)
H13A0.84281.09211.25660.014*
C140.6607 (3)1.32161 (15)0.7124 (2)0.0168 (4)
H14A0.64691.31330.59910.025*
H14B0.77771.35840.75520.025*
H14C0.54301.35190.73080.025*
C150.7866 (3)1.47619 (16)1.2305 (2)0.0184 (4)
H15A0.79061.52251.31100.028*
H15B0.65711.47711.15630.028*
H15C0.89001.48821.17380.028*
C160.9457 (3)1.15432 (15)1.5425 (2)0.0176 (4)
H16A1.00341.16871.65310.026*
H16B1.04031.11911.49990.026*
H16C0.82441.11931.53480.026*
H1N20.692 (4)0.923 (2)0.803 (3)0.017 (6)*
O2W0.6218 (2)0.96947 (12)0.57107 (16)0.0189 (3)
H1W20.71450.96360.52280.028*
H2W20.52460.99580.51130.028*
O1W0.8961 (2)0.92446 (13)0.39361 (16)0.0228 (3)
H1W10.96930.88840.46000.034*
H2W10.85540.89500.30550.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0273 (7)0.0138 (8)0.0110 (6)0.0009 (5)0.0009 (5)0.0001 (5)
O20.0256 (6)0.0115 (7)0.0088 (6)0.0002 (5)0.0017 (4)0.0008 (5)
O30.0313 (7)0.0101 (7)0.0128 (6)0.0004 (6)0.0003 (5)0.0028 (5)
O40.0261 (6)0.0122 (7)0.0085 (5)0.0014 (5)0.0004 (4)0.0006 (5)
N10.0194 (6)0.0137 (9)0.0176 (8)0.0008 (6)0.0025 (5)0.0044 (6)
N20.0178 (6)0.0097 (8)0.0105 (6)0.0013 (6)0.0016 (5)0.0023 (6)
N30.0161 (6)0.0103 (8)0.0143 (6)0.0011 (6)0.0020 (5)0.0030 (6)
C10.0249 (8)0.0123 (10)0.0136 (8)0.0001 (7)0.0035 (6)0.0005 (7)
C20.0328 (9)0.0099 (10)0.0185 (9)0.0008 (8)0.0045 (7)0.0008 (8)
C30.0202 (7)0.0144 (10)0.0148 (8)0.0010 (7)0.0010 (6)0.0023 (7)
C40.0214 (8)0.0126 (10)0.0139 (8)0.0016 (7)0.0008 (6)0.0002 (7)
C50.0122 (6)0.0100 (10)0.0128 (7)0.0002 (6)0.0025 (5)0.0016 (7)
C60.0132 (7)0.0126 (10)0.0115 (7)0.0002 (6)0.0018 (5)0.0008 (6)
C70.0137 (6)0.0121 (9)0.0119 (7)0.0008 (6)0.0024 (5)0.0031 (7)
C80.0138 (7)0.0094 (9)0.0118 (8)0.0003 (6)0.0025 (5)0.0013 (6)
C90.0136 (7)0.0125 (9)0.0100 (7)0.0007 (7)0.0017 (5)0.0017 (7)
C100.0169 (7)0.0090 (9)0.0129 (7)0.0001 (7)0.0024 (6)0.0007 (7)
C110.0153 (7)0.0098 (10)0.0133 (8)0.0003 (7)0.0020 (6)0.0026 (7)
C120.0145 (6)0.0136 (10)0.0095 (7)0.0005 (7)0.0010 (5)0.0003 (7)
C130.0126 (6)0.0098 (9)0.0121 (7)0.0006 (6)0.0020 (5)0.0006 (6)
C140.0252 (8)0.0124 (10)0.0123 (7)0.0002 (7)0.0034 (6)0.0018 (7)
C150.0255 (8)0.0096 (9)0.0185 (8)0.0006 (7)0.0016 (6)0.0027 (7)
C160.0244 (8)0.0154 (10)0.0129 (7)0.0018 (7)0.0042 (6)0.0042 (7)
O2W0.0265 (6)0.0172 (8)0.0127 (6)0.0040 (6)0.0039 (5)0.0029 (6)
O1W0.0282 (7)0.0261 (9)0.0118 (6)0.0080 (6)0.0002 (5)0.0026 (6)
Geometric parameters (Å, º) top
O1—C61.228 (2)C7—H7A0.9300
O2—C91.3700 (19)C8—C91.402 (3)
O2—C141.431 (2)C8—C131.412 (2)
O3—C111.356 (2)C9—C101.401 (3)
O3—C151.426 (3)C10—C111.384 (2)
O4—C121.366 (2)C10—H10A0.9300
O4—C161.421 (2)C11—C121.410 (3)
N1—C31.332 (3)C12—C131.380 (3)
N1—C21.340 (3)C13—H13A0.9300
N2—C61.356 (3)C14—H14A0.9600
N2—N31.387 (2)C14—H14B0.9600
N2—H1N20.88 (3)C14—H14C0.9600
N3—C71.291 (3)C15—H15A0.9600
C1—C51.381 (3)C15—H15B0.9600
C1—C21.393 (3)C15—H15C0.9600
C1—H1A0.9300C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.392 (3)C16—H16C0.9600
C3—H3A0.9300O2W—H1W20.8358
C4—C51.394 (2)O2W—H2W20.8306
C4—H4A0.9300O1W—H1W10.8468
C5—C61.509 (3)O1W—H2W10.8562
C7—C81.457 (3)
C9—O2—C14116.38 (15)C10—C9—C8120.44 (15)
C11—O3—C15117.89 (14)C11—C10—C9119.55 (17)
C12—O4—C16116.76 (16)C11—C10—H10A120.2
C3—N1—C2116.66 (17)C9—C10—H10A120.2
C6—N2—N3118.09 (14)O3—C11—C10124.14 (17)
C6—N2—H1N2124 (2)O3—C11—C12115.12 (15)
N3—N2—H1N2117 (2)C10—C11—C12120.74 (17)
C7—N3—N2114.86 (15)O4—C12—C13126.55 (18)
C5—C1—C2119.19 (17)O4—C12—C11113.82 (17)
C5—C1—H1A120.4C13—C12—C11119.64 (15)
C2—C1—H1A120.4C12—C13—C8120.47 (17)
N1—C2—C1123.5 (2)C12—C13—H13A119.8
N1—C2—H2A118.2C8—C13—H13A119.8
C1—C2—H2A118.2O2—C14—H14A109.5
N1—C3—C4124.15 (17)O2—C14—H14B109.5
N1—C3—H3A117.9H14A—C14—H14B109.5
C4—C3—H3A117.9O2—C14—H14C109.5
C3—C4—C5118.48 (18)H14A—C14—H14C109.5
C3—C4—H4A120.8H14B—C14—H14C109.5
C5—C4—H4A120.8O3—C15—H15A109.5
C1—C5—C4118.01 (17)O3—C15—H15B109.5
C1—C5—C6117.48 (15)H15A—C15—H15B109.5
C4—C5—C6124.52 (18)O3—C15—H15C109.5
O1—C6—N2123.39 (17)H15A—C15—H15C109.5
O1—C6—C5120.23 (18)H15B—C15—H15C109.5
N2—C6—C5116.38 (15)O4—C16—H16A109.5
N3—C7—C8120.95 (15)O4—C16—H16B109.5
N3—C7—H7A119.5H16A—C16—H16B109.5
C8—C7—H7A119.5O4—C16—H16C109.5
C9—C8—C13119.13 (16)H16A—C16—H16C109.5
C9—C8—C7119.69 (15)H16B—C16—H16C109.5
C13—C8—C7121.18 (17)H1W2—O2W—H2W2109.2
O2—C9—C10122.09 (17)H1W1—O1W—H2W1107.4
O2—C9—C8117.47 (16)
C6—N2—N3—C7179.38 (14)C13—C8—C9—O2178.90 (14)
C3—N1—C2—C10.2 (3)C7—C8—C9—O21.3 (2)
C5—C1—C2—N10.1 (3)C13—C8—C9—C101.5 (2)
C2—N1—C3—C40.1 (3)C7—C8—C9—C10178.21 (15)
N1—C3—C4—C50.2 (3)O2—C9—C10—C11179.21 (14)
C2—C1—C5—C40.1 (3)C8—C9—C10—C111.3 (2)
C2—C1—C5—C6179.42 (16)C15—O3—C11—C101.9 (2)
C3—C4—C5—C10.3 (3)C15—O3—C11—C12178.51 (15)
C3—C4—C5—C6179.27 (16)C9—C10—C11—O3179.05 (15)
N3—N2—C6—O11.7 (2)C9—C10—C11—C120.5 (2)
N3—N2—C6—C5177.93 (14)C16—O4—C12—C130.8 (2)
C1—C5—C6—O11.3 (2)C16—O4—C12—C11178.67 (14)
C4—C5—C6—O1179.19 (16)O3—C11—C12—O42.9 (2)
C1—C5—C6—N2178.42 (15)C10—C11—C12—O4177.57 (14)
C4—C5—C6—N21.1 (2)O3—C11—C12—C13177.65 (15)
N2—N3—C7—C8178.65 (14)C10—C11—C12—C131.9 (2)
N3—C7—C8—C9177.35 (15)O4—C12—C13—C8177.80 (15)
N3—C7—C8—C132.4 (2)C11—C12—C13—C81.6 (2)
C14—O2—C9—C103.9 (2)C9—C8—C13—C120.1 (2)
C14—O2—C9—C8176.53 (14)C7—C8—C13—C12179.66 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2W0.88 (3)2.05 (3)2.916 (2)171 (2)
O2W—H1W2···O1W0.841.932.748 (2)167
O2W—H2W2···N1i0.832.102.887 (2)158
O1W—H1W1···O3ii0.852.182.8913 (19)141
O1W—H1W1···O4ii0.852.433.204 (2)152
O1W—H2W1···O1iii0.861.992.834 (2)170
C4—H4A···O2W0.932.343.253 (3)169
C7—H7A···O2W0.932.583.375 (2)143
C14—H14A···O4iii0.962.603.281 (2)128
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H17N3O4·2H2O
Mr351.36
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.8156 (4), 14.5648 (10), 8.5589 (5)
β (°) 103.421 (2)
V3)826.42 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.28 × 0.19
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.947, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10676, 2254, 2171
Rint0.025
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.126, 1.17
No. of reflections2254
No. of parameters233
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2W0.88 (3)2.05 (3)2.916 (2)171 (2)
O2W—H1W2···O1W0.84001.93002.748 (2)167.00
O2W—H2W2···N1i0.83002.10002.887 (2)158.00
O1W—H1W1···O3ii0.85002.18002.8913 (19)141.00
O1W—H1W1···O4ii0.85002.43003.204 (2)152.00
O1W—H2W1···O1iii0.86001.99002.834 (2)170.00
C4—H4A···O2W0.93002.34003.253 (3)169.00
C7—H7A···O2W0.93002.58003.375 (2)143.00
C14—H14A···O4iii0.96002.60003.281 (2)128.00
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+2; (iii) x, y, z1.
 

Footnotes

Additional Correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSNK and CSY are grateful to USM for USM fellowships. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds