metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hepta­carbonyl-1κ3C,2κ4C-(4-phenyl­pyridine-1κN)di-μ-phenyltellurido-1:2κ4Te:Te-dirhenium(I)

aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and bCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: manimaran.che@pondiuni.edu.in

(Received 4 March 2010; accepted 1 April 2010; online 14 April 2010)

In the title complex, [Re2(C6H5Te)2(C11H9N)(CO)7], two Re atoms are coordinated in slightly distorted octa­hedral coordination environments and are bridged by two Te atoms, which are coordinated in trigonal-pyramidal environments. The torsion angle for the Te—Re—Te—Re sequence of atoms is 17.06 (3)°. The crystal structure is stabilized by weak C—H⋯O and C—H⋯π inter­actions. In addition, there are Te⋯Te distances [4.0392 (12) Å] and O⋯O distances [2.902 (19) Å] which are shorter than the sum of the van der Waals radii for these atoms. A short inter­molecular lone pair⋯π distance [C≡O⋯Cg = 3.31 (2) Å] is also observed.

Related literature

For the biological applications of Re and Te compounds, see: Begum et al. (2008[Begum, N., Hyder, M. I., Hassan, M. R., Kabir, S. E., Bennett, D. W., Haworth, D. T., Siddiquee, T. A., Rokhsana, D., Sharmin, A. & Rosenberg, E. (2008). Organometallics. 27, 1550-1560.]); Atwood et al. (1983[Atwood, J. L., Bernal, J., Calderazzo, F., Canada, L. G., Poli, R., Rogers, R. D., Veracini, C. A. & Vitali, D. (1983). Inorg. Chem. 22, 1797-1804.]); Zhang & Leong (2000[Zhang, J. & Leong, W. K. (2000). J. Chem. Soc. Dalton Trans. pp 1249-1253.]); Lima et al. (2009[Lima, C. B. C., Arrais-Silva, W. W., Cunha, R. L. O. R. & Giorgio, S. (2009). Korean J. Parasitol. 47, 213-218.]); Cunha et al. (2009[Cunha, R. L., Gouvea, I. E. & Juliano, L. (2009). An. Acad. Bras. Cienc. 81, 393-407.]); Kopf-Maier & Klapötke (1992[Kopf-Maier, P. & Klapötke, T. (1992). Cancer Chemother. Pharmacol. 29, 361-366.]). For a related structure, see Cecconi et al. (1998[Cecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (1998). Inorg. Chem. Commun. 1, 150-151]). For an example of a structure with weak Te⋯Te contacts, see: Ritch & Chivers (2009[Ritch, S. R. & Chivers, T. (2009). Inorg. Chem. 48, 3857-3865.]). For details of electron lone pair inter­actions, see: Jain et al. (2009[Jain, A., Venkatnarayan, R. & Sankararamakrishnan, R. (2009). Protein Sci. 18, 595-605.]).

[Scheme 1]

Experimental

Crystal data
  • [Re2(C6H5Te)2(C11H9N)(CO)7]

  • Mr = 1133.06

  • Monoclinic, P 21 /c

  • a = 18.549 (2) Å

  • b = 12.3624 (12) Å

  • c = 13.7768 (11) Å

  • β = 92.927 (9)°

  • V = 3155.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.53 mm−1

  • T = 150 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur-S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.218, Tmax = 0.329

  • 22729 measured reflections

  • 5553 independent reflections

  • 4237 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.135

  • S = 1.03

  • 5553 reflections

  • 379 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 2.25 e Å−3

  • Δρmin = −3.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O4i 0.95 2.55 3.33 (2) 139
C11—H11⋯O4ii 0.95 2.71 3.160 (18) 110
C17—H17⋯O1iii 0.95 2.46 3.271 (19) 144
C26—H26⋯O2iv 0.95 2.71 3.34 (2) 124
C21—H21⋯O3v 0.95 2.45 3.200 (16) 136
C29—H29⋯Cgvi 0.95 2.79 3.378 (15) 121
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Rhenium and tellurium compounds posses interesting and promising biological applications (Begum et al., 2008; Atwood et al.,1983; Zhang & Leong, 2000). Organic telluranes have been used as protease inhibitors and have applications in a wide range of disease models. Some tellurium derivatives also exhibit an antioxidant as well as immunomodulatory effects (Cunha et al., 2009). Recently, a novel organotellurium compound RT-01 was proven to act as antileishmanial agent for the disease Leishmaniasis (Lima et al., 2009). Rhenium containing compounds are found to have anti tumor and cytostatic activity (Kopf-Maier & Klapotke, 1992). Considering the importance of the compounds, we have synthesized and undertaken the single crystal structure determination of title compound of which the molecular structure is shown in Fig. 1.

The Re2Te2 four-membered ring of atoms deviates significantly from planarity as described by the Te2-Re1-Te1-Re2 torsion angle of 17.06 (3)°. The Re-Te distances in the title compound can be compared with those in a related structure (Cecconi et al., 1998). An Intermolecular O2···O2(-x, -y, -z) = 2.902 (19)Å distance is less than the sum of the van der Waals radii for these atoms as is a short intermolecular Te···Te distance [Te1···Te2(x, 0.5-y, 0.5+z) = 4.0392 (12) Å]. The Te···Te contacts were also noticed in a Te structure reported by Ritch & Chivers (2009). A lone pair···.π interaction as described by Jain, et al., 2009 is also evident with O3···Cg(C15-C28) = 3.31 (2) Å. Furthemore the crystal structure is stabilzed by weak C-H···O (Fig 2.) and C—H···π interactions.

Related literature top

For the biological applications of Re and Te compounds, see: Begum et al. (2008); Atwood et al. (1983); Zhang & Leong (2000); Lima et al. (2009); Cunha et al. (2009); Kopf-Maier & Klapotke (1992). For a related structure, see Cecconi et al. (1998). For an example of a structure with weak Te···Te contacts, see: Ritch & Chivers (2009). For details of lone pair···π interactions, see: Jain et al. (2009).

Experimental top

A mixture of Re2(CO)10 (130 mg, 0.2 mmol) and diphenyl ditelluride (41 mg, 0.1 mmol), 4-phenylpyridine (93 mg, 0.6 mmol) were taken in a 50 ml two neck Schlenk flask and fitted with a reflux condenser. The system was evacuated and purged with N2. Freshly distilled mesitylene (30 ml) was added under N2 atmosphere. The reaction mixture was heated to 403K under N2 for 6 h and allowed to cool to room temperature. The mesitylene was removed by vacuum distillation and the solid mixture was washed with hexane, chromatographed on silicagel using dichloromethane and hexane as eluent to obtain white color solid of mono substituted [Phpy(CO)3Re(µ-TeC6H5)2Re(CO)4] (61 mg, 27% (based on Re2(CO)10) compound. Single crystals of the title compound were obtained by slow diffusion of hexane into a concentrated solution of the title compound in dichloromethane at 278K.

Refinement top

The hydrogen atoms were placed in calculated positions (C-H = 0.95Å) and included in the refinement in riding-model approximation with Uiso(H) = 1.2Ueq(C). Restraints were applied to the anisotropic displacement parameters of atoms C3 and C18 using the ISOR command in SHELXL-97 (Sheldrick, 2008). The need to restrain these parameters and the presence of some larger positive and lower negative density peaks in the difference Fourier may indicate the lowered precision of the structure.

Structure description top

Rhenium and tellurium compounds posses interesting and promising biological applications (Begum et al., 2008; Atwood et al.,1983; Zhang & Leong, 2000). Organic telluranes have been used as protease inhibitors and have applications in a wide range of disease models. Some tellurium derivatives also exhibit an antioxidant as well as immunomodulatory effects (Cunha et al., 2009). Recently, a novel organotellurium compound RT-01 was proven to act as antileishmanial agent for the disease Leishmaniasis (Lima et al., 2009). Rhenium containing compounds are found to have anti tumor and cytostatic activity (Kopf-Maier & Klapotke, 1992). Considering the importance of the compounds, we have synthesized and undertaken the single crystal structure determination of title compound of which the molecular structure is shown in Fig. 1.

The Re2Te2 four-membered ring of atoms deviates significantly from planarity as described by the Te2-Re1-Te1-Re2 torsion angle of 17.06 (3)°. The Re-Te distances in the title compound can be compared with those in a related structure (Cecconi et al., 1998). An Intermolecular O2···O2(-x, -y, -z) = 2.902 (19)Å distance is less than the sum of the van der Waals radii for these atoms as is a short intermolecular Te···Te distance [Te1···Te2(x, 0.5-y, 0.5+z) = 4.0392 (12) Å]. The Te···Te contacts were also noticed in a Te structure reported by Ritch & Chivers (2009). A lone pair···.π interaction as described by Jain, et al., 2009 is also evident with O3···Cg(C15-C28) = 3.31 (2) Å. Furthemore the crystal structure is stabilzed by weak C-H···O (Fig 2.) and C—H···π interactions.

For the biological applications of Re and Te compounds, see: Begum et al. (2008); Atwood et al. (1983); Zhang & Leong (2000); Lima et al. (2009); Cunha et al. (2009); Kopf-Maier & Klapotke (1992). For a related structure, see Cecconi et al. (1998). For an example of a structure with weak Te···Te contacts, see: Ritch & Chivers (2009). For details of lone pair···π interactions, see: Jain et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. : Part of the crystal structure of the title compound showing weak C-H···O interactions as dashed lines.
Heptacarbonyl-1κ3C,2κ4C-(4-phenylpyridine-1κN)di- µ-phenyltellurido-1:2κ4Te:Te-dirhenium(I) top
Crystal data top
[Re2(C6H5Te)2(C11H9N)(CO)7]F(000) = 2064
Mr = 1133.06Dx = 2.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4169 reflections
a = 18.549 (2) Åθ = 3.0–32.8°
b = 12.3624 (12) ŵ = 9.53 mm1
c = 13.7768 (11) ÅT = 150 K
β = 92.927 (9)°Plate, yellow
V = 3155.0 (5) Å30.23 × 0.18 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
5553 independent reflections
Radiation source: fine-focus sealed tube4237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.218, Tmax = 0.329l = 1616
22729 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0776P)2]
where P = (Fo2 + 2Fc2)/3
5553 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 2.25 e Å3
12 restraintsΔρmin = 3.27 e Å3
Crystal data top
[Re2(C6H5Te)2(C11H9N)(CO)7]V = 3155.0 (5) Å3
Mr = 1133.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.549 (2) ŵ = 9.53 mm1
b = 12.3624 (12) ÅT = 150 K
c = 13.7768 (11) Å0.23 × 0.18 × 0.15 mm
β = 92.927 (9)°
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
5553 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4237 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.329Rint = 0.098
22729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05812 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 2.25 e Å3
5553 reflectionsΔρmin = 3.27 e Å3
379 parameters
Special details top

Experimental. Mean plane calculation for molecule m1 = -0.11114(0.00018) m2 = 0.99346(0.00000) m3 = -0.02622(0.00031) D = 1.07228(0.00135) Atom d s d/s (d/s)**2 Re1 * -0.1293 0.0005 -256.403 65742.445 Te1 * 0.2845 0.0008 379.024 143659.391 Re2 * -0.1290 0.0005 -255.731 65398.523 Te2 * 0.2873 0.0008 382.870 146589.250 ============ Sum((d/s)**2) for starred atoms 421389.625 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.40209 (3)0.14784 (4)0.15533 (4)0.02636 (17)
Re20.18223 (3)0.11194 (4)0.19775 (4)0.02389 (16)
Te10.30828 (5)0.16925 (6)0.30588 (6)0.0238 (2)
Te20.27148 (5)0.15735 (6)0.04687 (6)0.0243 (2)
O10.2230 (6)0.1266 (8)0.2217 (9)0.054 (3)
O20.0593 (6)0.0574 (9)0.0498 (8)0.059 (3)
O30.0858 (6)0.0750 (11)0.3700 (8)0.059 (3)
O40.5334 (7)0.1542 (11)0.2999 (10)0.070 (4)
O50.4940 (7)0.1321 (9)0.0267 (9)0.061 (3)
O60.3823 (6)0.1045 (8)0.1626 (9)0.050 (3)
O70.4133 (7)0.3982 (8)0.1504 (9)0.056 (3)
N10.1553 (6)0.2867 (8)0.1910 (8)0.027 (2)
C10.2085 (8)0.0355 (12)0.2112 (10)0.037 (4)
C20.1057 (8)0.0777 (10)0.1053 (10)0.035 (3)
C30.1248 (8)0.0915 (11)0.3036 (10)0.036 (3)
C40.4859 (10)0.1496 (12)0.2468 (14)0.054 (5)
C50.4597 (8)0.1355 (12)0.0427 (13)0.043 (4)
C60.3904 (8)0.0134 (12)0.1619 (10)0.035 (3)
C70.4075 (8)0.3054 (13)0.1500 (11)0.041 (4)
C80.3253 (7)0.0368 (10)0.4021 (9)0.027 (3)
C90.2741 (7)0.0131 (11)0.4646 (10)0.033 (3)
H90.23160.05610.46350.040*
C100.2808 (9)0.0711 (11)0.5302 (12)0.050 (4)
H100.24250.08680.57130.060*
C110.3421 (9)0.1317 (11)0.5362 (11)0.039 (4)
H110.34770.18890.58200.047*
C120.3957 (9)0.1080 (13)0.4742 (11)0.046 (4)
H120.43830.15070.47700.055*
C130.3897 (8)0.0239 (13)0.4079 (10)0.043 (4)
H130.42810.00760.36720.052*
C140.2771 (8)0.0159 (11)0.0427 (10)0.035 (4)
C150.3222 (8)0.0223 (11)0.1190 (11)0.042 (4)
H150.35060.08530.12770.050*
C160.3259 (9)0.0641 (12)0.1833 (12)0.056 (5)
H160.35590.05970.23700.067*
C170.2861 (10)0.1558 (12)0.1689 (13)0.057 (5)
H170.28900.21520.21220.069*
C180.2416 (9)0.1620 (13)0.0915 (11)0.046 (4)
H180.21490.22640.08190.055*
C190.2352 (8)0.0755 (10)0.0272 (10)0.038 (4)
H190.20350.07880.02480.045*
C200.1244 (6)0.3322 (10)0.1087 (10)0.026 (3)
H200.11920.28830.05220.031*
C210.1002 (7)0.4378 (11)0.1022 (9)0.029 (3)
H210.07860.46500.04310.034*
C220.1083 (7)0.5032 (10)0.1837 (10)0.029 (3)
C230.0838 (7)0.6196 (11)0.1818 (11)0.034 (3)
C240.0800 (8)0.6762 (11)0.0980 (12)0.041 (4)
H240.09460.64340.03980.049*
C250.0545 (9)0.7831 (12)0.0961 (15)0.055 (5)
H250.05250.82180.03640.066*
C260.0331 (9)0.8316 (13)0.1762 (16)0.062 (5)
H260.01480.90340.17330.074*
C270.0379 (8)0.7761 (11)0.2643 (15)0.051 (5)
H270.02450.81000.32260.061*
C280.0629 (7)0.6686 (12)0.2650 (13)0.042 (4)
H280.06530.62930.32430.051*
C290.1396 (7)0.4570 (11)0.2687 (10)0.035 (3)
H290.14530.49860.32660.042*
C300.1617 (7)0.3514 (10)0.2676 (10)0.029 (3)
H300.18330.32250.32600.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0206 (3)0.0269 (3)0.0314 (3)0.0006 (2)0.0005 (2)0.0038 (2)
Re20.0181 (3)0.0254 (3)0.0274 (3)0.0002 (2)0.0063 (2)0.0062 (2)
Te10.0187 (5)0.0269 (4)0.0250 (4)0.0050 (3)0.0060 (4)0.0009 (3)
Te20.0294 (5)0.0198 (4)0.0231 (4)0.0002 (3)0.0042 (4)0.0009 (3)
O10.056 (8)0.029 (6)0.077 (8)0.001 (5)0.014 (7)0.017 (5)
O20.053 (7)0.054 (7)0.065 (7)0.020 (6)0.042 (6)0.011 (6)
O30.028 (6)0.098 (10)0.052 (7)0.000 (6)0.002 (5)0.028 (7)
O40.040 (8)0.094 (10)0.074 (9)0.000 (7)0.033 (7)0.002 (7)
O50.068 (9)0.058 (8)0.062 (8)0.001 (6)0.032 (7)0.010 (6)
O60.048 (7)0.024 (6)0.078 (8)0.000 (5)0.013 (6)0.001 (5)
O70.069 (9)0.027 (6)0.070 (8)0.012 (5)0.000 (7)0.003 (5)
N10.028 (6)0.017 (5)0.035 (6)0.001 (5)0.007 (5)0.002 (5)
C10.027 (8)0.038 (9)0.044 (9)0.007 (6)0.008 (7)0.018 (7)
C20.040 (9)0.020 (7)0.044 (8)0.008 (6)0.011 (7)0.020 (6)
C30.036 (3)0.037 (3)0.037 (3)0.0004 (10)0.0015 (10)0.0002 (10)
C40.052 (12)0.035 (9)0.072 (12)0.001 (8)0.015 (10)0.002 (8)
C50.024 (8)0.039 (9)0.065 (11)0.003 (6)0.012 (8)0.007 (8)
C60.030 (9)0.040 (9)0.034 (8)0.005 (6)0.006 (7)0.004 (7)
C70.023 (8)0.051 (10)0.047 (9)0.010 (7)0.002 (7)0.022 (8)
C80.023 (7)0.033 (7)0.022 (6)0.001 (6)0.013 (6)0.004 (6)
C90.009 (7)0.036 (8)0.054 (9)0.007 (6)0.001 (7)0.005 (7)
C100.049 (10)0.031 (8)0.068 (11)0.014 (7)0.026 (9)0.023 (8)
C110.050 (10)0.030 (8)0.035 (8)0.000 (7)0.020 (8)0.007 (6)
C120.044 (10)0.054 (10)0.038 (9)0.021 (8)0.017 (8)0.002 (7)
C130.036 (9)0.058 (10)0.037 (8)0.009 (8)0.009 (7)0.002 (7)
C140.045 (10)0.032 (8)0.027 (7)0.014 (7)0.015 (7)0.005 (6)
C150.041 (10)0.029 (8)0.054 (10)0.002 (7)0.012 (8)0.003 (7)
C160.062 (12)0.037 (9)0.065 (11)0.014 (8)0.027 (9)0.029 (8)
C170.070 (13)0.036 (9)0.064 (12)0.018 (9)0.016 (10)0.026 (8)
C180.046 (4)0.045 (4)0.046 (4)0.0000 (10)0.0019 (10)0.0002 (10)
C190.054 (10)0.022 (7)0.034 (8)0.006 (7)0.028 (7)0.006 (6)
C200.007 (6)0.035 (7)0.037 (8)0.006 (5)0.004 (6)0.004 (6)
C210.025 (8)0.041 (8)0.020 (6)0.004 (6)0.002 (6)0.002 (6)
C220.009 (7)0.024 (6)0.054 (9)0.006 (5)0.001 (6)0.002 (6)
C230.011 (7)0.043 (8)0.047 (9)0.005 (6)0.001 (6)0.000 (7)
C240.021 (8)0.039 (8)0.063 (10)0.007 (6)0.004 (7)0.012 (8)
C250.040 (10)0.035 (9)0.092 (14)0.002 (8)0.019 (10)0.013 (9)
C260.033 (10)0.035 (9)0.119 (17)0.011 (7)0.022 (11)0.016 (11)
C270.030 (9)0.027 (8)0.097 (14)0.003 (7)0.012 (9)0.020 (9)
C280.013 (7)0.049 (9)0.066 (11)0.010 (6)0.007 (7)0.005 (8)
C290.021 (7)0.037 (8)0.046 (8)0.010 (6)0.009 (7)0.006 (7)
C300.016 (7)0.030 (7)0.040 (8)0.002 (5)0.002 (6)0.004 (6)
Geometric parameters (Å, º) top
Re1—C51.935 (18)C13—H130.9500
Re1—C41.951 (18)C14—C151.38 (2)
Re1—C71.951 (16)C14—C191.39 (2)
Re1—C62.007 (15)C15—C161.391 (19)
Re1—Te22.7832 (11)C15—H150.9500
Re1—Te12.7872 (10)C16—C171.37 (2)
Re2—C31.867 (15)C16—H160.9500
Re2—C11.894 (15)C17—C181.38 (2)
Re2—C21.906 (14)C17—H170.9500
Re2—N12.218 (10)C18—C191.40 (2)
Re2—Te22.7799 (11)C18—H180.9500
Re2—Te12.7986 (10)C19—H190.9500
Te1—C82.120 (13)C20—C211.382 (18)
Te2—C142.145 (13)C20—H200.9500
O1—C11.164 (16)C21—C221.385 (18)
O2—C21.149 (16)C21—H210.9500
O3—C31.212 (17)C22—C291.402 (18)
O4—C41.117 (19)C22—C231.509 (18)
O5—C51.175 (19)C23—C241.35 (2)
O6—C61.136 (16)C23—C281.37 (2)
O7—C71.152 (18)C24—C251.40 (2)
N1—C301.325 (16)C24—H240.9500
N1—C201.365 (16)C25—C261.33 (2)
C8—C91.346 (18)C25—H250.9500
C8—C131.410 (19)C26—C271.39 (2)
C9—C101.380 (18)C26—H260.9500
C9—H90.9500C27—C281.41 (2)
C10—C111.36 (2)C27—H270.9500
C10—H100.9500C28—H280.9500
C11—C121.37 (2)C29—C301.369 (18)
C11—H110.9500C29—H290.9500
C12—C131.38 (2)C30—H300.9500
C12—H120.9500
C5—Re1—C493.7 (7)C11—C12—C13122.3 (14)
C5—Re1—C790.9 (6)C11—C12—H12118.9
C4—Re1—C788.4 (6)C13—C12—H12118.9
C5—Re1—C691.3 (6)C12—C13—C8118.4 (14)
C4—Re1—C693.8 (6)C12—C13—H13120.8
C7—Re1—C6176.7 (6)C8—C13—H13120.8
C5—Re1—Te294.3 (4)C15—C14—C19121.9 (13)
C4—Re1—Te2171.7 (6)C15—C14—Te2116.2 (11)
C7—Re1—Te289.0 (4)C19—C14—Te2121.9 (11)
C6—Re1—Te288.5 (4)C14—C15—C16119.5 (15)
C5—Re1—Te1174.8 (4)C14—C15—H15120.3
C4—Re1—Te191.4 (6)C16—C15—H15120.3
C7—Re1—Te188.2 (4)C17—C16—C15119.9 (17)
C6—Re1—Te189.3 (4)C17—C16—H16120.1
Te2—Re1—Te180.57 (3)C15—C16—H16120.1
C3—Re2—C187.0 (6)C16—C17—C18120.3 (15)
C3—Re2—C293.2 (6)C16—C17—H17119.9
C1—Re2—C291.8 (6)C18—C17—H17119.9
C3—Re2—N191.6 (5)C17—C18—C19121.3 (15)
C1—Re2—N1176.3 (5)C17—C18—H18119.4
C2—Re2—N191.7 (5)C19—C18—H18119.4
C3—Re2—Te2175.5 (4)C14—C19—C18117.2 (15)
C1—Re2—Te296.2 (4)C14—C19—H19121.4
C2—Re2—Te289.8 (4)C18—C19—H19121.4
N1—Re2—Te285.1 (3)N1—C20—C21124.3 (12)
C3—Re2—Te196.5 (4)N1—C20—H20117.8
C1—Re2—Te189.3 (4)C21—C20—H20117.8
C2—Re2—Te1170.3 (4)C20—C21—C22118.5 (12)
N1—Re2—Te187.5 (3)C20—C21—H21120.8
Te2—Re2—Te180.42 (3)C22—C21—H21120.8
C8—Te1—Re1108.3 (4)C21—C22—C29117.6 (12)
C8—Te1—Re2103.4 (3)C21—C22—C23121.5 (12)
Re1—Te1—Re296.67 (3)C29—C22—C23120.9 (12)
C14—Te2—Re2108.3 (4)C24—C23—C28118.8 (14)
C14—Te2—Re1102.0 (4)C24—C23—C22120.8 (14)
Re2—Te2—Re197.20 (3)C28—C23—C22120.4 (14)
C30—N1—C20115.4 (11)C23—C24—C25120.6 (16)
C30—N1—Re2123.0 (8)C23—C24—H24119.7
C20—N1—Re2121.3 (8)C25—C24—H24119.7
O1—C1—Re2177.8 (14)C26—C25—C24121.4 (17)
O2—C2—Re2179.7 (16)C26—C25—H25119.3
O3—C3—Re2177.2 (13)C24—C25—H25119.3
O4—C4—Re1177.6 (15)C25—C26—C27119.4 (15)
O5—C5—Re1177.4 (14)C25—C26—H26120.3
O6—C6—Re1177.6 (13)C27—C26—H26120.3
O7—C7—Re1176.7 (13)C26—C27—C28118.6 (16)
C9—C8—C13118.1 (12)C26—C27—H27120.7
C9—C8—Te1118.8 (9)C28—C27—H27120.7
C13—C8—Te1123.0 (10)C23—C28—C27121.3 (16)
C8—C9—C10122.7 (13)C23—C28—H28119.4
C8—C9—H9118.6C27—C28—H28119.4
C10—C9—H9118.6C30—C29—C22119.4 (13)
C11—C10—C9120.1 (16)C30—C29—H29120.3
C11—C10—H10119.9C22—C29—H29120.3
C9—C10—H10119.9N1—C30—C29124.8 (13)
C10—C11—C12118.3 (14)N1—C30—H30117.6
C10—C11—H11120.9C29—C30—H30117.6
C12—C11—H11120.9
C5—Re1—Te1—C8132 (5)C7—Re1—C4—O419 (44)
C4—Re1—Te1—C858.8 (6)C6—Re1—C4—O4158 (44)
C7—Re1—Te1—C8147.2 (5)Te2—Re1—C4—O453 (46)
C6—Re1—Te1—C835.0 (5)Te1—Re1—C4—O469 (44)
Te2—Re1—Te1—C8123.5 (3)C4—Re1—C5—O5110 (30)
C5—Re1—Te1—Re226 (5)C7—Re1—C5—O522 (30)
C4—Re1—Te1—Re2165.3 (5)C6—Re1—C5—O5156 (30)
C7—Re1—Te1—Re2106.4 (4)Te2—Re1—C5—O568 (30)
C6—Re1—Te1—Re271.5 (4)Te1—Re1—C5—O559 (32)
Te2—Re1—Te1—Re217.05 (3)C5—Re1—C6—O669 (33)
C3—Re2—Te1—C855.6 (6)C4—Re1—C6—O6163 (33)
C1—Re2—Te1—C831.3 (6)C7—Re1—C6—O665 (38)
C2—Re2—Te1—C8128 (2)Te2—Re1—C6—O625 (33)
N1—Re2—Te1—C8146.9 (5)Te1—Re1—C6—O6106 (33)
Te2—Re2—Te1—C8127.7 (4)C5—Re1—C7—O7101 (25)
C3—Re2—Te1—Re1166.2 (4)C4—Re1—C7—O77 (24)
C1—Re2—Te1—Re179.3 (4)C6—Re1—C7—O7125 (22)
C2—Re2—Te1—Re117 (2)Te2—Re1—C7—O7165 (25)
N1—Re2—Te1—Re1102.5 (3)Te1—Re1—C7—O785 (24)
Te2—Re2—Te1—Re117.08 (3)Re1—Te1—C8—C9162.0 (9)
C3—Re2—Te2—C14169 (6)Re2—Te1—C8—C960.2 (10)
C1—Re2—Te2—C1434.1 (6)Re1—Te1—C8—C1321.8 (12)
C2—Re2—Te2—C1457.7 (5)Re2—Te1—C8—C13123.6 (11)
N1—Re2—Te2—C14149.4 (5)C13—C8—C9—C103 (2)
Te1—Re2—Te2—C14122.3 (4)Te1—C8—C9—C10179.6 (11)
C3—Re2—Te2—Re164 (6)C8—C9—C10—C112 (2)
C1—Re2—Te2—Re171.1 (4)C9—C10—C11—C121 (2)
C2—Re2—Te2—Re1162.9 (4)C10—C11—C12—C131 (2)
N1—Re2—Te2—Re1105.4 (3)C11—C12—C13—C82 (2)
Te1—Re2—Te2—Re117.13 (3)C9—C8—C13—C123 (2)
C5—Re1—Te2—C1453.1 (6)Te1—C8—C13—C12179.1 (10)
C4—Re1—Te2—C14144 (3)Re2—Te2—C14—C15177.0 (9)
C7—Re1—Te2—C14144.0 (6)Re1—Te2—C14—C1575.1 (10)
C6—Re1—Te2—C1438.1 (6)Re2—Te2—C14—C195.7 (12)
Te1—Re1—Te2—C14127.7 (4)Re1—Te2—C14—C19107.6 (11)
C5—Re1—Te2—Re2163.6 (4)C19—C14—C15—C161 (2)
C4—Re1—Te2—Re234 (3)Te2—C14—C15—C16176.7 (11)
C7—Re1—Te2—Re2105.5 (4)C14—C15—C16—C172 (2)
C6—Re1—Te2—Re272.4 (4)C15—C16—C17—C181 (2)
Te1—Re1—Te2—Re217.19 (3)C16—C17—C18—C191 (3)
C3—Re2—N1—C3051.4 (11)C15—C14—C19—C181 (2)
C1—Re2—N1—C3016 (9)Te2—C14—C19—C18178.3 (10)
C2—Re2—N1—C30144.6 (11)C17—C18—C19—C142 (2)
Te2—Re2—N1—C30125.7 (10)C30—N1—C20—C210.4 (19)
Te1—Re2—N1—C3045.1 (10)Re2—N1—C20—C21173.8 (10)
C3—Re2—N1—C20122.5 (10)N1—C20—C21—C221 (2)
C1—Re2—N1—C20170 (8)C20—C21—C22—C291.1 (18)
C2—Re2—N1—C2029.2 (11)C20—C21—C22—C23179.4 (12)
Te2—Re2—N1—C2060.5 (9)C21—C22—C23—C2426.1 (19)
Te1—Re2—N1—C20141.1 (10)C29—C22—C23—C24154.5 (14)
C3—Re2—C1—O17 (36)C21—C22—C23—C28151.8 (13)
C2—Re2—C1—O186 (36)C29—C22—C23—C2827.6 (19)
N1—Re2—C1—O175 (38)C28—C23—C24—C250 (2)
Te2—Re2—C1—O1176 (100)C22—C23—C24—C25177.5 (13)
Te1—Re2—C1—O1104 (36)C23—C24—C25—C260 (2)
C3—Re2—C2—O258 (100)C24—C25—C26—C272 (3)
C1—Re2—C2—O2145 (100)C25—C26—C27—C282 (2)
N1—Re2—C2—O234 (100)C24—C23—C28—C270 (2)
Te2—Re2—C2—O2119 (100)C22—C23—C28—C27178.1 (13)
Te1—Re2—C2—O2119 (100)C26—C27—C28—C231 (2)
C1—Re2—C3—O362 (27)C21—C22—C29—C301.1 (19)
C2—Re2—C3—O330 (27)C23—C22—C29—C30179.5 (12)
N1—Re2—C3—O3122 (27)C20—N1—C30—C290.4 (19)
Te2—Re2—C3—O3163 (22)Re2—N1—C30—C29173.7 (11)
Te1—Re2—C3—O3151 (27)C22—C29—C30—N11 (2)
C5—Re1—C4—O4110 (44)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O4i0.952.553.33 (2)139
C11—H11···O4ii0.952.713.160 (18)110
C17—H17···O1iii0.952.463.271 (19)144
C26—H26···O2iv0.952.713.34 (2)124
C21—H21···O3v0.952.453.200 (16)136
C29—H29···Cgvi0.952.793.378 (15)121
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y+1, z; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Re2(C6H5Te)2(C11H9N)(CO)7]
Mr1133.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)18.549 (2), 12.3624 (12), 13.7768 (11)
β (°) 92.927 (9)
V3)3155.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)9.53
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur-S
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.218, 0.329
No. of measured, independent and
observed [I > 2σ(I)] reflections
22729, 5553, 4237
Rint0.098
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.135, 1.03
No. of reflections5553
No. of parameters379
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.25, 3.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O4i0.952.553.33 (2)139
C11—H11···O4ii0.952.713.160 (18)110
C17—H17···O1iii0.952.463.271 (19)144
C26—H26···O2iv0.952.713.34 (2)124
C21—H21···O3v0.952.453.200 (16)136
C29—H29···Cgvi0.952.793.378 (15)121
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y+1, z; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology (DST), Government of India, New Delhi, for financial support. RK thanks the Centre for Bioinformatics, Pondicherry University, for providing computational facilities to carry out this research work.

References

First citationAtwood, J. L., Bernal, J., Calderazzo, F., Canada, L. G., Poli, R., Rogers, R. D., Veracini, C. A. & Vitali, D. (1983). Inorg. Chem. 22, 1797–1804.  CSD CrossRef Web of Science Google Scholar
First citationBegum, N., Hyder, M. I., Hassan, M. R., Kabir, S. E., Bennett, D. W., Haworth, D. T., Siddiquee, T. A., Rokhsana, D., Sharmin, A. & Rosenberg, E. (2008). Organometallics. 27, 1550–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationCecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. (1998). Inorg. Chem. Commun. 1, 150–151  Web of Science CSD CrossRef CAS Google Scholar
First citationCunha, R. L., Gouvea, I. E. & Juliano, L. (2009). An. Acad. Bras. Cienc. 81, 393–407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJain, A., Venkatnarayan, R. & Sankararamakrishnan, R. (2009). Protein Sci. 18, 595–605.  Web of Science PubMed CAS Google Scholar
First citationKopf-Maier, P. & Klapötke, T. (1992). Cancer Chemother. Pharmacol. 29, 361–366.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLima, C. B. C., Arrais-Silva, W. W., Cunha, R. L. O. R. & Giorgio, S. (2009). Korean J. Parasitol. 47, 213–218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRitch, S. R. & Chivers, T. (2009). Inorg. Chem. 48, 3857–3865.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. & Leong, W. K. (2000). J. Chem. Soc. Dalton Trans. pp 1249–1253.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds