organic compounds
4-Nitro-N′-[(1E,2E)-3-phenylprop-2-en-1-ylidene]benzohydrazide
aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: rehman_pcsir@hotmail.com
In the title molecule, C16H13N3O3, the benzene and phenyl rings are linked through a propenylidene hydrazide fragment, C—C(=O)—N(H)—N=C(H)—C(H)=C(H)—, which is fully extended with torsion angles in the range 175.4 (2)–179.9 (2)°. The dihedral angle between the the benzene and phenyl rings is 58.28 (7)°. In the intermolecular N—H⋯O hydrogen bonds link the molecules into chains along the b axis and additional stabilization is provided by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For the synthesis of related compounds, see: Ahmad et al. (2010); Küçükgüzel et al. (2007); Navidpour et al. (2006); Stocks et al. (2004). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009); Galal et al. (2009); Bordoloi et al. (2009). For a related structure, see: Ji & Shi (2008). For carbohydrazides, see: Rodríguez-Argüelles et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810011864/lh5023sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810011864/lh5023Isup2.hkl
A mixture of para nitrobenzohydrazide (0.5 g, 2.76 mmoles), cinnamaldehyde (0.348 ml, 2.76 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was refluxed for a period of 2 hours followed by removal of the solvent under vacuum. The contents were cooled and washed with cold methanol followed by crystallization from the same solvent at room temperature by slow evaporation. Yield: 94%. M.p. 516-517 K.
Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 Å. The Uiso(H) were allowed at 1.2Ueq(N/C). The final difference map was essentially featurless.
Hydrazides represent one of the most biologically active class of compounds, possessing a wide spectrum of activities such as anti-microbial (Zia-ur-Rehman et al., 2009), anti-cancer (Galal et al., 2009) and anti-genotoxic (Bordoloi et al., 2009). These have been used as intermediates in the synthesis of oxadiazoles, triazoles and thiadiazoles (Küçükgüzel et al., 2007; et al., 2006; Stocks et al., 2004). Prompted by these observations and in continuation of our studies on the synthesis of various
(Ahmad et al., 2010; Zia-ur-Rehman et al., 2009), we herein report the structure of the title compound (I).In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in a closely related compound (Ji & Shi, 2008). The benzene rings in (I) are linked through a propenylidenehydrazide fragment, C1/C7/N2/N3/C8/C9/C10, which is fully extended with torsion angles in the range 175.4 (2) and 179.9 (2)°. The dihedral angle between the two benzene rings is 58.28 (7)°. In the
intermolecular N—H···O hydrogen bonds link the molecules into a chain along the b-axis and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1 and Fig. 2.For the synthesis of related compounds, see: Ahmad et al. (2010); Küçükgüzel et al. (2007); Navidpour et al. (2006); Stocks et al. (2004). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009); Galal et al. (2009); Bordoloi et al. (2009). For a related structure, see: Ji & Shi (2008).
For related literature [on what subject?], see: Rodríguez-Argüelles et al. (2004).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H13N3O3 | F(000) = 616 |
Mr = 295.29 | Dx = 1.439 Mg m−3 |
Monoclinic, P21/c | Melting point: 516 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 16.4236 (17) Å | Cell parameters from 5585 reflections |
b = 5.3360 (5) Å | θ = 1.0–30.0° |
c = 17.1073 (18) Å | µ = 0.10 mm−1 |
β = 114.578 (5)° | T = 123 K |
V = 1363.4 (2) Å3 | Prism, yellow |
Z = 4 | 0.22 × 0.15 × 0.10 mm |
Nonius KappaCCD diffractometer | 2398 independent reflections |
Radiation source: fine-focus sealed tube | 2194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω and φ scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | h = −19→19 |
Tmin = 0.978, Tmax = 0.990 | k = −6→6 |
7965 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.31 | w = 1/[σ2(Fo2) + (0.0266P)2 + 1.5943P] where P = (Fo2 + 2Fc2)/3 |
2398 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C16H13N3O3 | V = 1363.4 (2) Å3 |
Mr = 295.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.4236 (17) Å | µ = 0.10 mm−1 |
b = 5.3360 (5) Å | T = 123 K |
c = 17.1073 (18) Å | 0.22 × 0.15 × 0.10 mm |
β = 114.578 (5)° |
Nonius KappaCCD diffractometer | 2398 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 2194 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.990 | Rint = 0.040 |
7965 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.31 | Δρmax = 0.20 e Å−3 |
2398 reflections | Δρmin = −0.22 e Å−3 |
199 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.03166 (12) | 1.0652 (4) | 0.43280 (12) | 0.0336 (5) | |
O2 | 0.08966 (14) | 0.7047 (4) | 0.42635 (14) | 0.0444 (6) | |
O3 | 0.42637 (12) | 1.3627 (3) | 0.78587 (11) | 0.0251 (4) | |
N1 | 0.09193 (15) | 0.9101 (4) | 0.45964 (14) | 0.0282 (5) | |
N2 | 0.44504 (13) | 0.9434 (4) | 0.81446 (13) | 0.0208 (5) | |
H2N | 0.4231 | 0.7923 | 0.7981 | 0.025* | |
N3 | 0.52157 (13) | 0.9734 (4) | 0.88984 (13) | 0.0218 (5) | |
C1 | 0.32370 (16) | 1.0791 (5) | 0.68390 (15) | 0.0182 (5) | |
C2 | 0.25118 (16) | 1.2420 (5) | 0.65552 (16) | 0.0213 (6) | |
H2 | 0.2538 | 1.3906 | 0.6871 | 0.026* | |
C3 | 0.17520 (17) | 1.1907 (5) | 0.58186 (16) | 0.0229 (6) | |
H3 | 0.1255 | 1.3019 | 0.5622 | 0.028* | |
C4 | 0.17367 (16) | 0.9725 (5) | 0.53757 (15) | 0.0211 (6) | |
C5 | 0.24504 (16) | 0.8084 (5) | 0.56339 (16) | 0.0221 (6) | |
H5 | 0.2423 | 0.6615 | 0.5310 | 0.026* | |
C6 | 0.32073 (17) | 0.8615 (5) | 0.63727 (15) | 0.0212 (6) | |
H6 | 0.3705 | 0.7505 | 0.6562 | 0.025* | |
C7 | 0.40351 (16) | 1.1446 (5) | 0.76550 (16) | 0.0204 (6) | |
C8 | 0.54992 (17) | 0.7684 (5) | 0.93255 (16) | 0.0224 (6) | |
H8 | 0.5171 | 0.6176 | 0.9125 | 0.027* | |
C9 | 0.63111 (17) | 0.7669 (5) | 1.01056 (16) | 0.0224 (6) | |
H9 | 0.6635 | 0.9186 | 1.0302 | 0.027* | |
C10 | 0.66201 (16) | 0.5566 (5) | 1.05602 (16) | 0.0224 (6) | |
H10 | 0.6255 | 0.4117 | 1.0365 | 0.027* | |
C11 | 0.74637 (16) | 0.5263 (5) | 1.13289 (15) | 0.0199 (5) | |
C12 | 0.81544 (17) | 0.7031 (5) | 1.15687 (16) | 0.0221 (6) | |
H12 | 0.8087 | 0.8480 | 1.1225 | 0.027* | |
C13 | 0.89376 (17) | 0.6686 (5) | 1.23042 (16) | 0.0242 (6) | |
H13 | 0.9399 | 0.7910 | 1.2464 | 0.029* | |
C14 | 0.90515 (16) | 0.4560 (5) | 1.28093 (16) | 0.0235 (6) | |
H14 | 0.9586 | 0.4336 | 1.3315 | 0.028* | |
C15 | 0.83804 (16) | 0.2771 (5) | 1.25705 (16) | 0.0223 (6) | |
H15 | 0.8458 | 0.1306 | 1.2909 | 0.027* | |
C16 | 0.75935 (16) | 0.3118 (5) | 1.18347 (15) | 0.0199 (5) | |
H16 | 0.7138 | 0.1877 | 1.1674 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0222 (10) | 0.0422 (12) | 0.0276 (10) | 0.0033 (9) | 0.0016 (8) | 0.0063 (9) |
O2 | 0.0420 (13) | 0.0311 (12) | 0.0397 (12) | −0.0064 (10) | −0.0033 (10) | −0.0095 (10) |
O3 | 0.0251 (10) | 0.0190 (10) | 0.0251 (10) | −0.0038 (8) | 0.0044 (8) | −0.0010 (8) |
N1 | 0.0250 (12) | 0.0297 (13) | 0.0236 (12) | −0.0064 (11) | 0.0038 (10) | 0.0034 (10) |
N2 | 0.0172 (10) | 0.0185 (11) | 0.0199 (11) | −0.0029 (9) | 0.0009 (9) | 0.0007 (9) |
N3 | 0.0175 (11) | 0.0223 (11) | 0.0202 (11) | −0.0023 (9) | 0.0025 (9) | −0.0020 (9) |
C1 | 0.0183 (12) | 0.0175 (12) | 0.0183 (12) | −0.0011 (10) | 0.0073 (10) | 0.0037 (10) |
C2 | 0.0233 (13) | 0.0162 (12) | 0.0232 (13) | 0.0001 (10) | 0.0084 (11) | −0.0009 (10) |
C3 | 0.0197 (13) | 0.0225 (13) | 0.0238 (13) | 0.0045 (11) | 0.0062 (11) | 0.0050 (11) |
C4 | 0.0194 (13) | 0.0230 (13) | 0.0177 (12) | −0.0033 (11) | 0.0045 (10) | 0.0041 (10) |
C5 | 0.0245 (14) | 0.0199 (13) | 0.0204 (13) | −0.0014 (11) | 0.0081 (11) | −0.0008 (10) |
C6 | 0.0215 (13) | 0.0188 (13) | 0.0217 (13) | 0.0025 (10) | 0.0074 (11) | 0.0024 (10) |
C7 | 0.0189 (13) | 0.0201 (13) | 0.0229 (13) | −0.0010 (10) | 0.0093 (11) | −0.0003 (10) |
C8 | 0.0221 (13) | 0.0199 (13) | 0.0248 (13) | 0.0001 (11) | 0.0095 (11) | −0.0010 (11) |
C9 | 0.0202 (13) | 0.0211 (13) | 0.0214 (13) | −0.0027 (11) | 0.0041 (10) | −0.0040 (11) |
C10 | 0.0198 (13) | 0.0213 (13) | 0.0255 (13) | −0.0020 (11) | 0.0088 (11) | −0.0034 (11) |
C11 | 0.0190 (13) | 0.0211 (13) | 0.0199 (12) | 0.0013 (10) | 0.0083 (10) | −0.0027 (10) |
C12 | 0.0252 (14) | 0.0165 (13) | 0.0250 (13) | 0.0014 (11) | 0.0108 (11) | 0.0008 (11) |
C13 | 0.0195 (13) | 0.0235 (13) | 0.0275 (14) | −0.0013 (11) | 0.0077 (11) | −0.0021 (11) |
C14 | 0.0182 (13) | 0.0265 (14) | 0.0217 (13) | 0.0052 (11) | 0.0043 (10) | −0.0007 (11) |
C15 | 0.0245 (13) | 0.0201 (13) | 0.0218 (13) | 0.0037 (11) | 0.0089 (11) | 0.0020 (10) |
C16 | 0.0222 (13) | 0.0160 (12) | 0.0221 (13) | −0.0010 (10) | 0.0098 (11) | −0.0016 (10) |
O1—N1 | 1.224 (3) | C6—H6 | 0.9500 |
O2—N1 | 1.228 (3) | C8—C9 | 1.442 (3) |
O3—C7 | 1.228 (3) | C8—H8 | 0.9500 |
N1—C4 | 1.484 (3) | C9—C10 | 1.339 (4) |
N2—C7 | 1.358 (3) | C9—H9 | 0.9500 |
N2—N3 | 1.386 (3) | C10—C11 | 1.470 (3) |
N2—H2N | 0.8800 | C10—H10 | 0.9500 |
N3—C8 | 1.290 (3) | C11—C16 | 1.397 (3) |
C1—C2 | 1.389 (3) | C11—C12 | 1.399 (4) |
C1—C6 | 1.398 (3) | C12—C13 | 1.388 (4) |
C1—C7 | 1.506 (3) | C12—H12 | 0.9500 |
C2—C3 | 1.383 (4) | C13—C14 | 1.391 (4) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.384 (4) | C14—C15 | 1.385 (4) |
C3—H3 | 0.9500 | C14—H14 | 0.9500 |
C4—C5 | 1.380 (4) | C15—C16 | 1.391 (3) |
C5—C6 | 1.384 (3) | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
O1—N1—O2 | 124.5 (2) | N3—C8—C9 | 120.4 (2) |
O1—N1—C4 | 118.3 (2) | N3—C8—H8 | 119.8 |
O2—N1—C4 | 117.3 (2) | C9—C8—H8 | 119.8 |
C7—N2—N3 | 120.8 (2) | C10—C9—C8 | 121.6 (2) |
C7—N2—H2N | 119.6 | C10—C9—H9 | 119.2 |
N3—N2—H2N | 119.6 | C8—C9—H9 | 119.2 |
C8—N3—N2 | 113.8 (2) | C9—C10—C11 | 126.9 (2) |
C2—C1—C6 | 119.9 (2) | C9—C10—H10 | 116.5 |
C2—C1—C7 | 117.9 (2) | C11—C10—H10 | 116.5 |
C6—C1—C7 | 122.2 (2) | C16—C11—C12 | 118.3 (2) |
C3—C2—C1 | 120.8 (2) | C16—C11—C10 | 119.3 (2) |
C3—C2—H2 | 119.6 | C12—C11—C10 | 122.4 (2) |
C1—C2—H2 | 119.6 | C13—C12—C11 | 120.6 (2) |
C2—C3—C4 | 118.0 (2) | C13—C12—H12 | 119.7 |
C2—C3—H3 | 121.0 | C11—C12—H12 | 119.7 |
C4—C3—H3 | 121.0 | C12—C13—C14 | 120.4 (2) |
C5—C4—C3 | 122.6 (2) | C12—C13—H13 | 119.8 |
C5—C4—N1 | 118.4 (2) | C14—C13—H13 | 119.8 |
C3—C4—N1 | 119.0 (2) | C15—C14—C13 | 119.6 (2) |
C4—C5—C6 | 118.9 (2) | C15—C14—H14 | 120.2 |
C4—C5—H5 | 120.6 | C13—C14—H14 | 120.2 |
C6—C5—H5 | 120.6 | C14—C15—C16 | 120.1 (2) |
C5—C6—C1 | 119.7 (2) | C14—C15—H15 | 120.0 |
C5—C6—H6 | 120.1 | C16—C15—H15 | 120.0 |
C1—C6—H6 | 120.1 | C15—C16—C11 | 120.9 (2) |
O3—C7—N2 | 123.9 (2) | C15—C16—H16 | 119.5 |
O3—C7—C1 | 121.9 (2) | C11—C16—H16 | 119.5 |
N2—C7—C1 | 114.1 (2) | ||
C7—N2—N3—C8 | 175.4 (2) | C2—C1—C7—O3 | −33.6 (4) |
C6—C1—C2—C3 | 0.7 (4) | C6—C1—C7—O3 | 146.9 (3) |
C7—C1—C2—C3 | −178.9 (2) | C2—C1—C7—N2 | 144.5 (2) |
C1—C2—C3—C4 | 0.1 (4) | C6—C1—C7—N2 | −35.0 (3) |
C2—C3—C4—C5 | −1.0 (4) | N2—N3—C8—C9 | 177.3 (2) |
C2—C3—C4—N1 | 178.4 (2) | N3—C8—C9—C10 | −179.9 (2) |
O1—N1—C4—C5 | −174.1 (2) | C8—C9—C10—C11 | 175.6 (2) |
O2—N1—C4—C5 | 5.8 (3) | C9—C10—C11—C16 | 165.8 (3) |
O1—N1—C4—C3 | 6.5 (3) | C9—C10—C11—C12 | −15.3 (4) |
O2—N1—C4—C3 | −173.6 (2) | C16—C11—C12—C13 | −1.8 (4) |
C3—C4—C5—C6 | 1.1 (4) | C10—C11—C12—C13 | 179.4 (2) |
N1—C4—C5—C6 | −178.3 (2) | C11—C12—C13—C14 | 0.7 (4) |
C4—C5—C6—C1 | −0.3 (4) | C12—C13—C14—C15 | 0.5 (4) |
C2—C1—C6—C5 | −0.6 (4) | C13—C14—C15—C16 | −0.7 (4) |
C7—C1—C6—C5 | 178.9 (2) | C14—C15—C16—C11 | −0.3 (4) |
N3—N2—C7—O3 | −4.4 (4) | C12—C11—C16—C15 | 1.5 (4) |
N3—N2—C7—C1 | 177.5 (2) | C10—C11—C16—C15 | −179.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3i | 0.88 | 2.30 | 3.132 (3) | 157 |
C8—H8···O3i | 0.95 | 2.47 | 3.296 (3) | 146 |
C14—H14···O1ii | 0.95 | 2.56 | 3.305 (3) | 135 |
C14—H14···O2iii | 0.95 | 2.54 | 3.296 (3) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y−1, z+1; (iii) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H13N3O3 |
Mr | 295.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 16.4236 (17), 5.3360 (5), 17.1073 (18) |
β (°) | 114.578 (5) |
V (Å3) | 1363.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.22 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SORTAV; Blessing, 1997) |
Tmin, Tmax | 0.978, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7965, 2398, 2194 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.130, 1.31 |
No. of reflections | 2398 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.22 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3i | 0.88 | 2.30 | 3.132 (3) | 157 |
C8—H8···O3i | 0.95 | 2.47 | 3.296 (3) | 146 |
C14—H14···O1ii | 0.95 | 2.56 | 3.305 (3) | 135 |
C14—H14···O2iii | 0.95 | 2.54 | 3.296 (3) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, y−1, z+1; (iii) x+1, y, z+1. |
Acknowledgements
HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.
References
Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704. Web of Science CSD CrossRef PubMed CAS Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754–2757. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918. Web of Science CSD CrossRef IUCr Journals Google Scholar
Küçükgüzel, S. G., Küçükgüzel, I., Tatar, E., Rollas, S., Sahin, F., Güllüce, M., Clercq, E. D. & Kabasakal, L. (2007). Eur. J. Med. Chem. 42, 893–901. Web of Science PubMed Google Scholar
Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507–2517. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stocks, M. J., Cheshire, D. R. & Reynalds, R. (2004). Org. Lett. 6, 2969–2971. Web of Science CrossRef PubMed CAS Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazides represent one of the most biologically active class of compounds, possessing a wide spectrum of activities such as anti-microbial (Zia-ur-Rehman et al., 2009), anti-cancer (Galal et al., 2009) and anti-genotoxic (Bordoloi et al., 2009). These have been used as intermediates in the synthesis of oxadiazoles, triazoles and thiadiazoles (Küçükgüzel et al., 2007; et al., 2006; Stocks et al., 2004). Prompted by these observations and in continuation of our studies on the synthesis of various heterocyclic compounds (Ahmad et al., 2010; Zia-ur-Rehman et al., 2009), we herein report the structure of the title compound (I).
In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in a closely related compound (Ji & Shi, 2008). The benzene rings in (I) are linked through a propenylidenehydrazide fragment, C1/C7/N2/N3/C8/C9/C10, which is fully extended with torsion angles in the range 175.4 (2) and 179.9 (2)°. The dihedral angle between the two benzene rings is 58.28 (7)°. In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into a chain along the b-axis and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1 and Fig. 2.