organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-N′-[(1E,2E)-3-phenyl­prop-2-en-1-yl­­idene]benzohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 26 March 2010; accepted 29 March 2010; online 2 April 2010)

In the title mol­ecule, C16H13N3O3, the benzene and phenyl rings are linked through a propenyl­idene hydrazide fragment, C—C(=O)—N(H)—N=C(H)—C(H)=C(H)—, which is fully extended with torsion angles in the range 175.4 (2)–179.9 (2)°. The dihedral angle between the the benzene and phenyl rings is 58.28 (7)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the b axis and additional stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of related compounds, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]); Küçükgüzel et al. (2007[Küçükgüzel, S. G., Küçükgüzel, I., Tatar, E., Rollas, S., Sahin, F., Güllüce, M., Clercq, E. D. & Kabasakal, L. (2007). Eur. J. Med. Chem. 42, 893-901.]); Navidpour et al. (2006[Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507-2517.]); Stocks et al. (2004[Stocks, M. J., Cheshire, D. R. & Reynalds, R. (2004). Org. Lett. 6, 2969-2971.]). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Galal et al. (2009[Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500-1508.]); Bordoloi et al. (2009[Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754-2757.]). For a related structure, see: Ji & Shi (2008[Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918.]). For carbohydrazides, see: Rodríguez-Argüelles et al. (2004[Rodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3O3

  • Mr = 295.29

  • Monoclinic, P 21 /c

  • a = 16.4236 (17) Å

  • b = 5.3360 (5) Å

  • c = 17.1073 (18) Å

  • β = 114.578 (5)°

  • V = 1363.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.978, Tmax = 0.990

  • 7965 measured reflections

  • 2398 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.130

  • S = 1.31

  • 2398 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3i 0.88 2.30 3.132 (3) 157
C8—H8⋯O3i 0.95 2.47 3.296 (3) 146
C14—H14⋯O1ii 0.95 2.56 3.305 (3) 135
C14—H14⋯O2iii 0.95 2.54 3.296 (3) 137
Symmetry codes: (i) x, y-1, z; (ii) x+1, y-1, z+1; (iii) x+1, y, z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazides represent one of the most biologically active class of compounds, possessing a wide spectrum of activities such as anti-microbial (Zia-ur-Rehman et al., 2009), anti-cancer (Galal et al., 2009) and anti-genotoxic (Bordoloi et al., 2009). These have been used as intermediates in the synthesis of oxadiazoles, triazoles and thiadiazoles (Küçükgüzel et al., 2007; et al., 2006; Stocks et al., 2004). Prompted by these observations and in continuation of our studies on the synthesis of various heterocyclic compounds (Ahmad et al., 2010; Zia-ur-Rehman et al., 2009), we herein report the structure of the title compound (I).

In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in a closely related compound (Ji & Shi, 2008). The benzene rings in (I) are linked through a propenylidenehydrazide fragment, C1/C7/N2/N3/C8/C9/C10, which is fully extended with torsion angles in the range 175.4 (2) and 179.9 (2)°. The dihedral angle between the two benzene rings is 58.28 (7)°. In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into a chain along the b-axis and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1 and Fig. 2.

Related literature top

For the synthesis of related compounds, see: Ahmad et al. (2010); Küçükgüzel et al. (2007); Navidpour et al. (2006); Stocks et al. (2004). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009); Galal et al. (2009); Bordoloi et al. (2009). For a related structure, see: Ji & Shi (2008).

For related literature [on what subject?], see: Rodríguez-Argüelles et al. (2004).

Experimental top

A mixture of para nitrobenzohydrazide (0.5 g, 2.76 mmoles), cinnamaldehyde (0.348 ml, 2.76 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was refluxed for a period of 2 hours followed by removal of the solvent under vacuum. The contents were cooled and washed with cold methanol followed by crystallization from the same solvent at room temperature by slow evaporation. Yield: 94%. M.p. 516-517 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 Å. The Uiso(H) were allowed at 1.2Ueq(N/C). The final difference map was essentially featurless.

Structure description top

Hydrazides represent one of the most biologically active class of compounds, possessing a wide spectrum of activities such as anti-microbial (Zia-ur-Rehman et al., 2009), anti-cancer (Galal et al., 2009) and anti-genotoxic (Bordoloi et al., 2009). These have been used as intermediates in the synthesis of oxadiazoles, triazoles and thiadiazoles (Küçükgüzel et al., 2007; et al., 2006; Stocks et al., 2004). Prompted by these observations and in continuation of our studies on the synthesis of various heterocyclic compounds (Ahmad et al., 2010; Zia-ur-Rehman et al., 2009), we herein report the structure of the title compound (I).

In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in a closely related compound (Ji & Shi, 2008). The benzene rings in (I) are linked through a propenylidenehydrazide fragment, C1/C7/N2/N3/C8/C9/C10, which is fully extended with torsion angles in the range 175.4 (2) and 179.9 (2)°. The dihedral angle between the two benzene rings is 58.28 (7)°. In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into a chain along the b-axis and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1 and Fig. 2.

For the synthesis of related compounds, see: Ahmad et al. (2010); Küçükgüzel et al. (2007); Navidpour et al. (2006); Stocks et al. (2004). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009); Galal et al. (2009); Bordoloi et al. (2009). For a related structure, see: Ji & Shi (2008).

For related literature [on what subject?], see: Rodríguez-Argüelles et al. (2004).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. The unit cell packing of the title compound; H-bonds have been plotted with dashed lines and H-atoms not involved in H-bonds have been excluded for clarity.
4-Nitro-N'-[(1E,2E)-3-phenylprop-2-en-1- ylidene]benzohydrazide top
Crystal data top
C16H13N3O3F(000) = 616
Mr = 295.29Dx = 1.439 Mg m3
Monoclinic, P21/cMelting point: 516 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.4236 (17) ÅCell parameters from 5585 reflections
b = 5.3360 (5) Åθ = 1.0–30.0°
c = 17.1073 (18) ŵ = 0.10 mm1
β = 114.578 (5)°T = 123 K
V = 1363.4 (2) Å3Prism, yellow
Z = 40.22 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2398 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and φ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1919
Tmin = 0.978, Tmax = 0.990k = 66
7965 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.130H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.0266P)2 + 1.5943P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13N3O3V = 1363.4 (2) Å3
Mr = 295.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4236 (17) ŵ = 0.10 mm1
b = 5.3360 (5) ÅT = 123 K
c = 17.1073 (18) Å0.22 × 0.15 × 0.10 mm
β = 114.578 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2398 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2194 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.990Rint = 0.040
7965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.31Δρmax = 0.20 e Å3
2398 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03166 (12)1.0652 (4)0.43280 (12)0.0336 (5)
O20.08966 (14)0.7047 (4)0.42635 (14)0.0444 (6)
O30.42637 (12)1.3627 (3)0.78587 (11)0.0251 (4)
N10.09193 (15)0.9101 (4)0.45964 (14)0.0282 (5)
N20.44504 (13)0.9434 (4)0.81446 (13)0.0208 (5)
H2N0.42310.79230.79810.025*
N30.52157 (13)0.9734 (4)0.88984 (13)0.0218 (5)
C10.32370 (16)1.0791 (5)0.68390 (15)0.0182 (5)
C20.25118 (16)1.2420 (5)0.65552 (16)0.0213 (6)
H20.25381.39060.68710.026*
C30.17520 (17)1.1907 (5)0.58186 (16)0.0229 (6)
H30.12551.30190.56220.028*
C40.17367 (16)0.9725 (5)0.53757 (15)0.0211 (6)
C50.24504 (16)0.8084 (5)0.56339 (16)0.0221 (6)
H50.24230.66150.53100.026*
C60.32073 (17)0.8615 (5)0.63727 (15)0.0212 (6)
H60.37050.75050.65620.025*
C70.40351 (16)1.1446 (5)0.76550 (16)0.0204 (6)
C80.54992 (17)0.7684 (5)0.93255 (16)0.0224 (6)
H80.51710.61760.91250.027*
C90.63111 (17)0.7669 (5)1.01056 (16)0.0224 (6)
H90.66350.91861.03020.027*
C100.66201 (16)0.5566 (5)1.05602 (16)0.0224 (6)
H100.62550.41171.03650.027*
C110.74637 (16)0.5263 (5)1.13289 (15)0.0199 (5)
C120.81544 (17)0.7031 (5)1.15687 (16)0.0221 (6)
H120.80870.84801.12250.027*
C130.89376 (17)0.6686 (5)1.23042 (16)0.0242 (6)
H130.93990.79101.24640.029*
C140.90515 (16)0.4560 (5)1.28093 (16)0.0235 (6)
H140.95860.43361.33150.028*
C150.83804 (16)0.2771 (5)1.25705 (16)0.0223 (6)
H150.84580.13061.29090.027*
C160.75935 (16)0.3118 (5)1.18347 (15)0.0199 (5)
H160.71380.18771.16740.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (10)0.0422 (12)0.0276 (10)0.0033 (9)0.0016 (8)0.0063 (9)
O20.0420 (13)0.0311 (12)0.0397 (12)0.0064 (10)0.0033 (10)0.0095 (10)
O30.0251 (10)0.0190 (10)0.0251 (10)0.0038 (8)0.0044 (8)0.0010 (8)
N10.0250 (12)0.0297 (13)0.0236 (12)0.0064 (11)0.0038 (10)0.0034 (10)
N20.0172 (10)0.0185 (11)0.0199 (11)0.0029 (9)0.0009 (9)0.0007 (9)
N30.0175 (11)0.0223 (11)0.0202 (11)0.0023 (9)0.0025 (9)0.0020 (9)
C10.0183 (12)0.0175 (12)0.0183 (12)0.0011 (10)0.0073 (10)0.0037 (10)
C20.0233 (13)0.0162 (12)0.0232 (13)0.0001 (10)0.0084 (11)0.0009 (10)
C30.0197 (13)0.0225 (13)0.0238 (13)0.0045 (11)0.0062 (11)0.0050 (11)
C40.0194 (13)0.0230 (13)0.0177 (12)0.0033 (11)0.0045 (10)0.0041 (10)
C50.0245 (14)0.0199 (13)0.0204 (13)0.0014 (11)0.0081 (11)0.0008 (10)
C60.0215 (13)0.0188 (13)0.0217 (13)0.0025 (10)0.0074 (11)0.0024 (10)
C70.0189 (13)0.0201 (13)0.0229 (13)0.0010 (10)0.0093 (11)0.0003 (10)
C80.0221 (13)0.0199 (13)0.0248 (13)0.0001 (11)0.0095 (11)0.0010 (11)
C90.0202 (13)0.0211 (13)0.0214 (13)0.0027 (11)0.0041 (10)0.0040 (11)
C100.0198 (13)0.0213 (13)0.0255 (13)0.0020 (11)0.0088 (11)0.0034 (11)
C110.0190 (13)0.0211 (13)0.0199 (12)0.0013 (10)0.0083 (10)0.0027 (10)
C120.0252 (14)0.0165 (13)0.0250 (13)0.0014 (11)0.0108 (11)0.0008 (11)
C130.0195 (13)0.0235 (13)0.0275 (14)0.0013 (11)0.0077 (11)0.0021 (11)
C140.0182 (13)0.0265 (14)0.0217 (13)0.0052 (11)0.0043 (10)0.0007 (11)
C150.0245 (13)0.0201 (13)0.0218 (13)0.0037 (11)0.0089 (11)0.0020 (10)
C160.0222 (13)0.0160 (12)0.0221 (13)0.0010 (10)0.0098 (11)0.0016 (10)
Geometric parameters (Å, º) top
O1—N11.224 (3)C6—H60.9500
O2—N11.228 (3)C8—C91.442 (3)
O3—C71.228 (3)C8—H80.9500
N1—C41.484 (3)C9—C101.339 (4)
N2—C71.358 (3)C9—H90.9500
N2—N31.386 (3)C10—C111.470 (3)
N2—H2N0.8800C10—H100.9500
N3—C81.290 (3)C11—C161.397 (3)
C1—C21.389 (3)C11—C121.399 (4)
C1—C61.398 (3)C12—C131.388 (4)
C1—C71.506 (3)C12—H120.9500
C2—C31.383 (4)C13—C141.391 (4)
C2—H20.9500C13—H130.9500
C3—C41.384 (4)C14—C151.385 (4)
C3—H30.9500C14—H140.9500
C4—C51.380 (4)C15—C161.391 (3)
C5—C61.384 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
O1—N1—O2124.5 (2)N3—C8—C9120.4 (2)
O1—N1—C4118.3 (2)N3—C8—H8119.8
O2—N1—C4117.3 (2)C9—C8—H8119.8
C7—N2—N3120.8 (2)C10—C9—C8121.6 (2)
C7—N2—H2N119.6C10—C9—H9119.2
N3—N2—H2N119.6C8—C9—H9119.2
C8—N3—N2113.8 (2)C9—C10—C11126.9 (2)
C2—C1—C6119.9 (2)C9—C10—H10116.5
C2—C1—C7117.9 (2)C11—C10—H10116.5
C6—C1—C7122.2 (2)C16—C11—C12118.3 (2)
C3—C2—C1120.8 (2)C16—C11—C10119.3 (2)
C3—C2—H2119.6C12—C11—C10122.4 (2)
C1—C2—H2119.6C13—C12—C11120.6 (2)
C2—C3—C4118.0 (2)C13—C12—H12119.7
C2—C3—H3121.0C11—C12—H12119.7
C4—C3—H3121.0C12—C13—C14120.4 (2)
C5—C4—C3122.6 (2)C12—C13—H13119.8
C5—C4—N1118.4 (2)C14—C13—H13119.8
C3—C4—N1119.0 (2)C15—C14—C13119.6 (2)
C4—C5—C6118.9 (2)C15—C14—H14120.2
C4—C5—H5120.6C13—C14—H14120.2
C6—C5—H5120.6C14—C15—C16120.1 (2)
C5—C6—C1119.7 (2)C14—C15—H15120.0
C5—C6—H6120.1C16—C15—H15120.0
C1—C6—H6120.1C15—C16—C11120.9 (2)
O3—C7—N2123.9 (2)C15—C16—H16119.5
O3—C7—C1121.9 (2)C11—C16—H16119.5
N2—C7—C1114.1 (2)
C7—N2—N3—C8175.4 (2)C2—C1—C7—O333.6 (4)
C6—C1—C2—C30.7 (4)C6—C1—C7—O3146.9 (3)
C7—C1—C2—C3178.9 (2)C2—C1—C7—N2144.5 (2)
C1—C2—C3—C40.1 (4)C6—C1—C7—N235.0 (3)
C2—C3—C4—C51.0 (4)N2—N3—C8—C9177.3 (2)
C2—C3—C4—N1178.4 (2)N3—C8—C9—C10179.9 (2)
O1—N1—C4—C5174.1 (2)C8—C9—C10—C11175.6 (2)
O2—N1—C4—C55.8 (3)C9—C10—C11—C16165.8 (3)
O1—N1—C4—C36.5 (3)C9—C10—C11—C1215.3 (4)
O2—N1—C4—C3173.6 (2)C16—C11—C12—C131.8 (4)
C3—C4—C5—C61.1 (4)C10—C11—C12—C13179.4 (2)
N1—C4—C5—C6178.3 (2)C11—C12—C13—C140.7 (4)
C4—C5—C6—C10.3 (4)C12—C13—C14—C150.5 (4)
C2—C1—C6—C50.6 (4)C13—C14—C15—C160.7 (4)
C7—C1—C6—C5178.9 (2)C14—C15—C16—C110.3 (4)
N3—N2—C7—O34.4 (4)C12—C11—C16—C151.5 (4)
N3—N2—C7—C1177.5 (2)C10—C11—C16—C15179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.882.303.132 (3)157
C8—H8···O3i0.952.473.296 (3)146
C14—H14···O1ii0.952.563.305 (3)135
C14—H14···O2iii0.952.543.296 (3)137
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13N3O3
Mr295.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)16.4236 (17), 5.3360 (5), 17.1073 (18)
β (°) 114.578 (5)
V3)1363.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.978, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7965, 2398, 2194
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.130, 1.31
No. of reflections2398
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.882.303.132 (3)157
C8—H8···O3i0.952.473.296 (3)146
C14—H14···O1ii0.952.563.305 (3)135
C14—H14···O2iii0.952.543.296 (3)137
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754–2757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJi, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKüçükgüzel, S. G., Küçükgüzel, I., Tatar, E., Rollas, S., Sahin, F., Güllüce, M., Clercq, E. D. & Kabasakal, L. (2007). Eur. J. Med. Chem. 42, 893–901.  Web of Science PubMed Google Scholar
First citationNavidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStocks, M. J., Cheshire, D. R. & Reynalds, R. (2004). Org. Lett. 6, 2969–2971.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds