organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-sec-butyl-2-p-tolyl-1H-benzimidazole-5-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 April 2010; accepted 26 April 2010; online 30 April 2010)

In the title compound, C21H24N2O2, the butyl group is disordered over two orientations with refined site occupancies of 0.883 (3) and 0.117 (3). The dihedral angle between the mean plane of benzimidazole ring system and the benzene ring is 39.32 (4)° and the dihedral angle between the mean plane of carboxyl­ate group and the benzimidazole ring system is 6.87 (5)°. A weak intra­molecular C—H⋯π inter­action may have some influence on the conformation of the mol­ecule. In the crystal structure, mol­ecules are linked into infinite chains along the b axis by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background information on benzimidazole derivatives, their biological activity and medical applications, see: Richter (1997[Richter, J. E. (1997). Am. J. Gastroenterol. 92, 34-34.]); Can-Eke et al. (1998[Can-Eke, B., Puskullu, M. O., Buyukbingol, E. & Iscan, M. (1998). Chem. Biol. Interact. 113, 65-67.]); Evans et al. (1997[Evans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409-412.]); Garuti et al. (2000[Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193-2195.]); Sondhi et al. (2005[Sondhi, S. M., Singh, N., Lahoti, A. M., Bajaj, K., Kumar, A., Lozech, O. & Meijer, L. (2005). Bioorg. Med. Chem. 13, 4291-4299.]). For the synthesis of the title compound and related structures, see: Arumugam et al. (2010a[Arumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o776-o777.],b[Arumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o796-o797.],c[Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o845.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O2

  • Mr = 336.42

  • Monoclinic, P 21 /c

  • a = 10.6093 (7) Å

  • b = 12.5617 (9) Å

  • c = 13.6025 (10) Å

  • β = 96.412 (2)°

  • V = 1801.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.46 × 0.29 × 0.24 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.981

  • 31247 measured reflections

  • 8425 independent reflections

  • 6598 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.177

  • S = 1.08

  • 8425 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is centroid of the N1/C7/N2/C13/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.93 2.58 3.5007 (13) 173
C20—H20CCg1 0.96 2.72 3.3432 (13) 123
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles are important heterocyclic compounds from the view point of their biological activities. Substituted benzimidazole derivatives have diverse therapeutic applications as they exhibit antiulcerative (Richter, 1997), antioxidant (Can-Eke et al., 1998), anti-HIV-1 (Evans et al., 1997), antiproliferative (Garuti et al., 2000) and antikinase (Sondhi et al., 2005) activities. In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

The geometric parameters of the title compound (Fig. 1) are comparable to those closely related structures (Arumugam et al., 2010a,b,c). The butyl group is disordered over two positions with refined site-occupancies of 0.883 (3) and 0.117 (3). The dihedral angle between the mean plane of benzimidazole ring system (C7/N1/C8–C13/N2) and the benzene ring (C1–C6) is 39.32 (4)°. The mean plane of carboxylate group (O1/O2/C14–C16) is slightly twisted from the mean plane of benzimidazole ring system with a dihedral angle of 6.87 (5)°. In the crystal structure, the molecules are linked into infinite one-dimensional chains along b axis by intermolecular C12—H12A···O1i hydrogen bonds (Fig. 2, Table 1). A weak intramolecular C20—H20C···Cg1 interaction may have some influence on the conformation of the molecule (Table 1).

Related literature top

For background information on benzimidazole derivatives, their biological activity and medical applications, see: Richter (1997); Can-Eke et al. (1998); Evans et al. (1997); Garuti et al. (2000); Sondhi et al. (2005). For the synthesis of the title compound and related structures, see: Arumugam et al. (2010a,b,c). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesised using the previous procedures (Arumugam et al., 2010a,b,c) and recrystallized from EtOAc by slow evaporation technique.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The rotating group model was applied for the methyl groups. The minor disorder component is refined isotropically.

Structure description top

Benzimidazoles are important heterocyclic compounds from the view point of their biological activities. Substituted benzimidazole derivatives have diverse therapeutic applications as they exhibit antiulcerative (Richter, 1997), antioxidant (Can-Eke et al., 1998), anti-HIV-1 (Evans et al., 1997), antiproliferative (Garuti et al., 2000) and antikinase (Sondhi et al., 2005) activities. In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

The geometric parameters of the title compound (Fig. 1) are comparable to those closely related structures (Arumugam et al., 2010a,b,c). The butyl group is disordered over two positions with refined site-occupancies of 0.883 (3) and 0.117 (3). The dihedral angle between the mean plane of benzimidazole ring system (C7/N1/C8–C13/N2) and the benzene ring (C1–C6) is 39.32 (4)°. The mean plane of carboxylate group (O1/O2/C14–C16) is slightly twisted from the mean plane of benzimidazole ring system with a dihedral angle of 6.87 (5)°. In the crystal structure, the molecules are linked into infinite one-dimensional chains along b axis by intermolecular C12—H12A···O1i hydrogen bonds (Fig. 2, Table 1). A weak intramolecular C20—H20C···Cg1 interaction may have some influence on the conformation of the molecule (Table 1).

For background information on benzimidazole derivatives, their biological activity and medical applications, see: Richter (1997); Can-Eke et al. (1998); Evans et al. (1997); Garuti et al. (2000); Sondhi et al. (2005). For the synthesis of the title compound and related structures, see: Arumugam et al. (2010a,b,c). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing one-dimensional chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
Ethyl 1-sec-butyl-2-p-tolyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C21H24N2O2F(000) = 720
Mr = 336.42Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9348 reflections
a = 10.6093 (7) Åθ = 2.5–35.7°
b = 12.5617 (9) ŵ = 0.08 mm1
c = 13.6025 (10) ÅT = 100 K
β = 96.412 (2)°Block, colourless
V = 1801.5 (2) Å30.46 × 0.29 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8425 independent reflections
Radiation source: fine-focus sealed tube6598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 35.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.964, Tmax = 0.981k = 2018
31247 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0965P)2 + 0.2974P]
where P = (Fo2 + 2Fc2)/3
8425 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C21H24N2O2V = 1801.5 (2) Å3
Mr = 336.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6093 (7) ŵ = 0.08 mm1
b = 12.5617 (9) ÅT = 100 K
c = 13.6025 (10) Å0.46 × 0.29 × 0.24 mm
β = 96.412 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8425 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6598 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.981Rint = 0.050
31247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
8425 reflectionsΔρmin = 0.35 e Å3
249 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.49342 (7)0.02746 (7)0.17217 (6)0.02380 (16)
O20.65726 (7)0.02944 (6)0.09409 (6)0.02268 (16)
N10.97240 (7)0.27803 (6)0.12066 (6)0.01543 (14)
N20.88175 (7)0.41780 (6)0.19145 (6)0.01655 (14)
C11.08554 (9)0.54848 (8)0.10257 (7)0.01777 (16)
H1A1.00630.58100.09550.021*
C21.19164 (9)0.60526 (8)0.08166 (7)0.01913 (17)
H2A1.18260.67570.06110.023*
C31.31155 (9)0.55829 (8)0.09096 (7)0.01821 (16)
C41.32288 (9)0.45317 (8)0.12279 (8)0.02007 (17)
H4A1.40230.42090.12990.024*
C51.21734 (8)0.39545 (8)0.14411 (7)0.01823 (16)
H5A1.22670.32510.16510.022*
C61.09738 (8)0.44266 (7)0.13421 (7)0.01533 (15)
C70.98590 (8)0.37775 (7)0.15004 (7)0.01501 (15)
C80.85266 (8)0.24973 (7)0.14314 (6)0.01444 (14)
C90.78890 (8)0.15330 (7)0.12648 (7)0.01558 (15)
H9A0.82620.09640.09690.019*
C100.66749 (8)0.14490 (7)0.15547 (7)0.01544 (15)
C110.61067 (8)0.23144 (8)0.19943 (7)0.01795 (16)
H11A0.52930.22350.21760.022*
C120.67222 (9)0.32803 (8)0.21644 (7)0.01830 (16)
H12A0.63440.38480.24570.022*
C130.79460 (8)0.33574 (7)0.18720 (7)0.01546 (15)
C140.59579 (9)0.04345 (8)0.14279 (7)0.01746 (16)
C150.59689 (11)0.13214 (8)0.07980 (9)0.0248 (2)
H15A0.50920.12390.05190.030*
H15B0.59870.16940.14240.030*
C160.67033 (12)0.19304 (10)0.00983 (10)0.0309 (2)
H16A0.63440.26280.00070.046*
H16B0.75720.19920.03770.046*
H16C0.66620.15600.05220.046*
C170.88130 (11)0.51250 (9)0.25531 (10)0.0177 (2)0.883 (3)
H17A0.96320.54810.25350.021*0.883 (3)
C180.77857 (12)0.59232 (10)0.21723 (12)0.0295 (3)0.883 (3)
H18A0.78300.60540.14820.044*0.883 (3)
H18B0.79150.65780.25330.044*0.883 (3)
H18C0.69670.56390.22630.044*0.883 (3)
C190.87392 (12)0.47809 (11)0.36205 (9)0.0252 (3)0.883 (3)
H19A0.88520.53990.40480.030*0.883 (3)
H19B0.79040.44890.36780.030*0.883 (3)
C200.97390 (13)0.39537 (13)0.39635 (9)0.0283 (3)0.883 (3)
H20A0.96960.37940.46490.042*0.883 (3)
H20B1.05650.42280.38800.042*0.883 (3)
H20C0.95880.33170.35780.042*0.883 (3)
C17B0.9123 (10)0.4910 (8)0.2883 (8)0.0205 (17)*0.117 (3)
H17B0.99140.52910.28100.025*0.117 (3)
C18B0.9279 (12)0.4407 (10)0.3838 (8)0.028 (2)*0.117 (3)
H18D0.93590.49420.43450.042*0.117 (3)
H18E1.00280.39730.38950.042*0.117 (3)
H18F0.85530.39700.39120.042*0.117 (3)
C19B0.8068 (10)0.5725 (9)0.2776 (8)0.028 (2)*0.117 (3)
H19C0.82370.62490.32980.034*0.117 (3)
H19D0.72810.53700.28780.034*0.117 (3)
C20B0.7858 (14)0.6360 (12)0.1703 (11)0.041 (3)*0.117 (3)
H20D0.72880.69460.17510.061*0.117 (3)
H20E0.75070.58790.11960.061*0.117 (3)
H20F0.86590.66230.15410.061*0.117 (3)
C211.42509 (11)0.62003 (10)0.06554 (8)0.0258 (2)
H21A1.50010.59360.10380.039*
H21B1.41420.69400.08020.039*
H21C1.43340.61190.00360.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (3)0.0222 (4)0.0325 (4)0.0070 (2)0.0084 (3)0.0006 (3)
O20.0226 (3)0.0155 (3)0.0316 (4)0.0089 (2)0.0100 (3)0.0062 (3)
N10.0142 (3)0.0130 (3)0.0200 (3)0.0026 (2)0.0059 (2)0.0017 (2)
N20.0157 (3)0.0132 (3)0.0217 (3)0.0031 (2)0.0066 (3)0.0045 (2)
C10.0181 (4)0.0147 (4)0.0207 (4)0.0026 (3)0.0031 (3)0.0002 (3)
C20.0231 (4)0.0151 (4)0.0195 (4)0.0057 (3)0.0035 (3)0.0004 (3)
C30.0187 (4)0.0190 (4)0.0175 (4)0.0073 (3)0.0046 (3)0.0017 (3)
C40.0163 (4)0.0195 (4)0.0252 (4)0.0035 (3)0.0057 (3)0.0000 (3)
C50.0160 (3)0.0152 (4)0.0242 (4)0.0019 (3)0.0056 (3)0.0004 (3)
C60.0153 (3)0.0138 (4)0.0174 (3)0.0034 (3)0.0044 (3)0.0016 (3)
C70.0141 (3)0.0135 (4)0.0181 (3)0.0025 (2)0.0047 (3)0.0014 (3)
C80.0139 (3)0.0123 (3)0.0178 (3)0.0025 (2)0.0045 (3)0.0015 (3)
C90.0155 (3)0.0127 (3)0.0192 (4)0.0028 (3)0.0048 (3)0.0018 (3)
C100.0153 (3)0.0139 (4)0.0175 (3)0.0037 (3)0.0037 (3)0.0001 (3)
C110.0145 (3)0.0184 (4)0.0217 (4)0.0024 (3)0.0056 (3)0.0012 (3)
C120.0153 (3)0.0168 (4)0.0238 (4)0.0016 (3)0.0068 (3)0.0038 (3)
C130.0142 (3)0.0135 (4)0.0193 (4)0.0026 (3)0.0047 (3)0.0028 (3)
C140.0166 (3)0.0162 (4)0.0197 (4)0.0044 (3)0.0027 (3)0.0008 (3)
C150.0265 (5)0.0175 (4)0.0314 (5)0.0108 (3)0.0076 (4)0.0043 (4)
C160.0303 (5)0.0212 (5)0.0426 (6)0.0081 (4)0.0110 (5)0.0081 (4)
C170.0177 (4)0.0137 (4)0.0224 (5)0.0019 (3)0.0046 (4)0.0060 (4)
C180.0230 (5)0.0171 (5)0.0492 (9)0.0041 (4)0.0076 (5)0.0052 (5)
C190.0232 (5)0.0321 (7)0.0213 (5)0.0070 (5)0.0070 (4)0.0101 (4)
C200.0289 (6)0.0361 (7)0.0195 (5)0.0105 (5)0.0007 (4)0.0019 (4)
C210.0246 (4)0.0261 (5)0.0280 (5)0.0124 (4)0.0090 (4)0.0016 (4)
Geometric parameters (Å, º) top
O1—C141.2151 (11)C15—H15A0.9700
O2—C141.3412 (12)C15—H15B0.9700
O2—C151.4438 (12)C16—H16A0.9600
N1—C71.3178 (12)C16—H16B0.9600
N1—C81.3858 (11)C16—H16C0.9600
N2—C131.3817 (11)C17—C191.5253 (18)
N2—C71.3895 (11)C17—C181.5281 (19)
N2—C171.4733 (13)C17—H17A0.9800
N2—C17B1.609 (10)C18—H18A0.9600
C1—C21.3886 (13)C18—H18B0.9600
C1—C61.3985 (13)C18—H18C0.9600
C1—H1A0.9300C19—C201.521 (2)
C2—C31.3952 (14)C19—H19A0.9700
C2—H2A0.9300C19—H19B0.9700
C3—C41.3907 (14)C20—H20A0.9600
C3—C211.5051 (13)C20—H20B0.9600
C4—C51.3914 (13)C20—H20C0.9600
C4—H4A0.9300C17B—C18B1.438 (16)
C5—C61.3969 (13)C17B—C19B1.512 (15)
C5—H5A0.9300C17B—H17B0.9800
C6—C71.4720 (12)C18B—H18D0.9600
C8—C91.3935 (12)C18B—H18E0.9600
C8—C131.4101 (12)C18B—H18F0.9600
C9—C101.3926 (12)C19B—C20B1.656 (19)
C9—H9A0.9300C19B—H19C0.9700
C10—C111.4083 (13)C19B—H19D0.9700
C10—C141.4842 (13)C20B—H20D0.9600
C11—C121.3851 (13)C20B—H20E0.9600
C11—H11A0.9300C20B—H20F0.9600
C12—C131.4031 (12)C21—H21A0.9600
C12—H12A0.9300C21—H21B0.9600
C15—C161.5047 (17)C21—H21C0.9600
C14—O2—C15116.33 (8)O2—C15—H15B110.4
C7—N1—C8104.38 (7)C16—C15—H15B110.4
C13—N2—C7105.76 (7)H15A—C15—H15B108.6
C13—N2—C17125.52 (8)C15—C16—H16A109.5
C7—N2—C17125.91 (8)C15—C16—H16B109.5
C13—N2—C17B122.2 (4)H16A—C16—H16B109.5
C7—N2—C17B116.2 (4)C15—C16—H16C109.5
C2—C1—C6120.28 (9)H16A—C16—H16C109.5
C2—C1—H1A119.9H16B—C16—H16C109.5
C6—C1—H1A119.9N2—C17—C19109.65 (10)
C1—C2—C3121.07 (9)N2—C17—C18112.27 (11)
C1—C2—H2A119.5C19—C17—C18113.46 (10)
C3—C2—H2A119.5N2—C17—H17A107.0
C4—C3—C2118.42 (8)C19—C17—H17A107.0
C4—C3—C21121.15 (9)C18—C17—H17A107.0
C2—C3—C21120.42 (10)C20—C19—C17112.18 (10)
C3—C4—C5121.07 (9)C20—C19—H19A109.2
C3—C4—H4A119.5C17—C19—H19A109.2
C5—C4—H4A119.5C20—C19—H19B109.2
C4—C5—C6120.29 (9)C17—C19—H19B109.2
C4—C5—H5A119.9H19A—C19—H19B107.9
C6—C5—H5A119.9C18B—C17B—C19B113.2 (9)
C5—C6—C1118.86 (8)C18B—C17B—N2118.7 (8)
C5—C6—C7119.27 (8)C19B—C17B—N2103.2 (8)
C1—C6—C7121.71 (8)C18B—C17B—H17B107.0
N1—C7—N2113.75 (7)C19B—C17B—H17B107.0
N1—C7—C6122.96 (8)N2—C17B—H17B107.0
N2—C7—C6123.17 (8)C17B—C18B—H18D109.5
N1—C8—C9128.86 (8)C17B—C18B—H18E109.5
N1—C8—C13110.60 (7)H18D—C18B—H18E109.5
C9—C8—C13120.53 (8)C17B—C18B—H18F109.5
C10—C9—C8117.86 (8)H18D—C18B—H18F109.5
C10—C9—H9A121.1H18E—C18B—H18F109.5
C8—C9—H9A121.1C17B—C19B—C20B115.8 (9)
C9—C10—C11121.00 (8)C17B—C19B—H19C108.3
C9—C10—C14120.69 (8)C20B—C19B—H19C108.3
C11—C10—C14118.29 (8)C17B—C19B—H19D108.3
C12—C11—C10122.07 (8)C20B—C19B—H19D108.3
C12—C11—H11A119.0H19C—C19B—H19D107.4
C10—C11—H11A119.0C19B—C20B—H20D109.5
C11—C12—C13116.55 (8)C19B—C20B—H20E109.5
C11—C12—H12A121.7H20D—C20B—H20E109.5
C13—C12—H12A121.7C19B—C20B—H20F109.5
N2—C13—C12132.51 (8)H20D—C20B—H20F109.5
N2—C13—C8105.51 (7)H20E—C20B—H20F109.5
C12—C13—C8121.98 (8)C3—C21—H21A109.5
O1—C14—O2123.46 (9)C3—C21—H21B109.5
O1—C14—C10124.68 (9)H21A—C21—H21B109.5
O2—C14—C10111.86 (8)C3—C21—H21C109.5
O2—C15—C16106.63 (8)H21A—C21—H21C109.5
O2—C15—H15A110.4H21B—C21—H21C109.5
C16—C15—H15A110.4
C6—C1—C2—C30.45 (15)C17B—N2—C13—C1244.5 (5)
C1—C2—C3—C40.67 (14)C7—N2—C13—C80.23 (10)
C1—C2—C3—C21178.44 (9)C17—N2—C13—C8161.60 (10)
C2—C3—C4—C50.58 (15)C17B—N2—C13—C8135.9 (5)
C21—C3—C4—C5178.53 (9)C11—C12—C13—N2179.26 (10)
C3—C4—C5—C60.26 (15)C11—C12—C13—C80.27 (14)
C4—C5—C6—C10.02 (14)N1—C8—C13—N20.09 (10)
C4—C5—C6—C7175.50 (9)C9—C8—C13—N2179.20 (8)
C2—C1—C6—C50.12 (14)N1—C8—C13—C12179.55 (9)
C2—C1—C6—C7175.48 (9)C9—C8—C13—C120.43 (14)
C8—N1—C7—N20.25 (10)C15—O2—C14—O11.73 (15)
C8—N1—C7—C6175.82 (8)C15—O2—C14—C10178.60 (8)
C13—N2—C7—N10.31 (11)C9—C10—C14—O1174.76 (10)
C17—N2—C7—N1161.42 (10)C11—C10—C14—O13.91 (15)
C17B—N2—C7—N1138.9 (4)C9—C10—C14—O25.57 (13)
C13—N2—C7—C6175.74 (9)C11—C10—C14—O2175.76 (8)
C17—N2—C7—C622.52 (15)C14—O2—C15—C16170.62 (10)
C17B—N2—C7—C645.1 (5)C13—N2—C17—C1951.97 (14)
C5—C6—C7—N138.44 (13)C7—N2—C17—C19106.28 (11)
C1—C6—C7—N1136.90 (10)C17B—N2—C17—C1936.7 (9)
C5—C6—C7—N2145.86 (9)C13—N2—C17—C1875.12 (14)
C1—C6—C7—N238.79 (13)C7—N2—C17—C18126.63 (11)
C7—N1—C8—C9178.93 (9)C17B—N2—C17—C18163.7 (10)
C7—N1—C8—C130.10 (10)N2—C17—C19—C2051.24 (13)
N1—C8—C9—C10179.49 (9)C18—C17—C19—C20177.66 (10)
C13—C8—C9—C100.55 (13)C13—N2—C17B—C18B43.5 (10)
C8—C9—C10—C110.54 (14)C7—N2—C17B—C18B88.4 (9)
C8—C9—C10—C14178.09 (8)C17—N2—C17B—C18B149.4 (15)
C9—C10—C11—C120.41 (15)C13—N2—C17B—C19B82.6 (7)
C14—C10—C11—C12178.26 (9)C7—N2—C17B—C19B145.4 (5)
C10—C11—C12—C130.26 (14)C17—N2—C17B—C19B23.2 (7)
C7—N2—C13—C12179.36 (10)C18B—C17B—C19B—C20B178.5 (9)
C17—N2—C13—C1218.81 (17)N2—C17B—C19B—C20B51.9 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the N1/C7/N2/C13/C8 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.583.5007 (13)173
C20—H20C···Cg10.962.723.3432 (13)123
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H24N2O2
Mr336.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6093 (7), 12.5617 (9), 13.6025 (10)
β (°) 96.412 (2)
V3)1801.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.29 × 0.24
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
31247, 8425, 6598
Rint0.050
(sin θ/λ)max1)0.825
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.177, 1.08
No. of reflections8425
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is centroid of the N1/C7/N2/C13/C8 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.583.5007 (13)173
C20—H20C···Cg10.962.723.3432 (13)123
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NA, ASAR and HO are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the USM Research University Grant (1001/PFARMASI/815026). NA thanks USM for the award of a postdoctoral fellowship. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM fellowship.

References

First citationArumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o776–o777.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o796–o797.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCan-Eke, B., Puskullu, M. O., Buyukbingol, E. & Iscan, M. (1998). Chem. Biol. Interact. 113, 65–67.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409–412.  CrossRef CAS Web of Science Google Scholar
First citationGaruti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193–2195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRichter, J. E. (1997). Am. J. Gastroenterol. 92, 34–34.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Lahoti, A. M., Bajaj, K., Kumar, A., Lozech, O. & Meijer, L. (2005). Bioorg. Med. Chem. 13, 4291–4299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds